
1/18

January 21, 2022

DTPacker – a .NET Packer with a Curious Password
proofpoint.com/us/blog/threat-insight/dtpacker-net-packer-curious-password-1

https://www.proofpoint.com/us/blog/threat-insight/dtpacker-net-packer-curious-password-1

2/18

Blog
Threat Insight
DTPacker – a .NET Packer with a Curious Password

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

3/18

January 24, 2022 Proofpoint Staff

Key Findings

Proofpoint identified a malware packer which researchers have dubbed DTPacker.
The payload decoding uses a fixed password containing former U.S. president Donald Trump’s name.
For several weeks the downloader variant used Liverpool Football Club themed download locations.
The malware is typically used to pack remote access trojans that can be used to steal information and load
follow-on payloads such as ransomware.

Overview

In a previous blog Commodity .NET Packers use Embedded Images to Hide Payloads, we described the "CyaX" and
"Hectobmp" families of .NET packers.

In this blog, we describe a two-stage commodity .NET packer or downloader which although seeing considerable
variety in the first stage, uses a second stage with a fixed password as part of the decoding. The main difference
between a packer and a downloader is the location of the payload data which is embedded in the former and
downloaded in the latter. DTPacker uses both forms. It is unusual for a piece of malware to be both a packer and
downloader.

Proofpoint has observed DTPacker distributing multiple remote access trojans (RATs) and information stealers
including Agent Tesla, Ave Maria, AsyncRAT, and FormBook. The malware uses multiple obfuscation techniques to
evade antivirus, sandboxing, and analysis. It is likely distributed on underground forums. Proofpoint has observed
DTPacker associated with dozens of campaigns and multiple threat actors including TA2536 and TA2715 since 2020.
Proofpoint has observed DTPacker used by both advanced persistent threat (APT) and cybercrime threat actors.
Identified campaigns included thousands of messages and impacted hundreds of customers in multiple industries.

Attack Path Example

In many observed campaigns, email is used as an initial infection vector. The attachment is typically a malicious
document or compressed executable that, when interacted with by a user, downloads the packer executable. The
malware decodes an embedded or downloaded resource to a DLL which contains the malware payload, and then
executes the malware.

https://www.proofpoint.com/us/blog/threat-insight/commodity-net-packers-use-embedded-images-hide-payloads

4/18

Figure 1: DTPacker attack path example.

Custom XOR Decoding

Proofpoint observed multiple decoding methods and two Donald Trump-themed fixed keys, thus the name
“DT”Packer. Many packers and loaders are built in two stages of functionality. Earlier versions of DTPacker used a
custom XOR routine to decode the malicious content in both stages. The first stage of DTPacker decodes an
embedded or downloaded resource to an intermediate stage (usually a DLL), then the second stage extracts and
executes the payload from that DLL.

The custom XOR routine, in addition to XORing with the key, subtracts the next data value and is implemented in this
Python script (on Github) decoder-xor-sub.py.

For a Windows Portable Executable, there are significant sequences of null bytes, and consequently, XORing the
ciphertext with itself shifted by 1 byte reveals the key at locations corresponding to those null bytes.

For example, in this sample (SHA256

512b2f1f4b659930900abcc8f51d175e88c81b0641b7450a6618b77848fa3b40):

The intermediate stage is stored in a .NET resource encoded with the custom XOR routine and key "P" (in ASCII not
Unicode UTF-16 this time).

The .NET resource XORed with itself shifted by one byte reveals the password "P":

https://raw.githubusercontent.com/EmergingThreats/threatresearch/master/dtpacker/decoder-xor-sub.py

5/18

Decoding with key "P" gives the second stage executable:

The second stage contains a .NET resource (named "00112266"):

XORed with itself shifted by one byte gives:

which gives a key of "trump2020" in Unicode UTF-16. The threat actors used this key consistently for a year and is
the reason for the packer’s name.

Decoding with the “trump2020” key gives the final payload:

6/18

In this case, the payload was Agent Tesla, a common information stealer.

Varied First Stage Encoding

In this downloader sample (SHA256

9d713d2254e529286ed3ac471e134169d2c7279b0eaf82eb9923cd46954d5d27) the Download URLs are stored as
strings obfuscated with junk Unicode characters

In this case, the decompiled code looks like:

and removing the Unicode characters gives:

The downloads are glued together and contain base64-encoded strings:

These decode to:

7/18

which after XORing with byte 0x02 gives:

This is a second stage executable containing a "00112266" resource encoded with the "trump2020" key as before,
which then decodes to Agent Tesla.

Decimal Character Codes

One recurrent theme in this family of packers is the use of decimal character codes with digits substituted with other
characters.

For example, this sample (SHA256

285f4e79ae946ef179e45319caf11bf0c1cdaa376924b83bfbf82ed39361911b) is a packer with the second stage
embedded in the .NET Strings table:

which are comma-separated decimal ASCII character codes with digits 0-9 replaced by "!@#$%[X]&*()" where "[X]"
represents Unicode character 0x8ac2; reversing this gives us:

This decodes to an intermediate PE containing the "00112266" resource with key "trump2020" which decodes to Ave
Maria, also known as Warzone RAT.

This sample (SHA256

1312912d725d45bcd1b63922ec9a84abca7a8c9c669c13efbd03472c764be056 is similar to the above, but with the
second stage stored in the User Strings table:

8/18

with digits 0-9 replaced by "zxcasdwqru" (partially matching the first three letters on rows of a QWERTY keyboard).
This decodes to AsyncRAT.

Another sample (SHA256

ba0f9be7cf006404bcfab6b6adbad0cef7281c3792490903632a4010d8a74f42) is a loader with download string
obfuscated in a similar way to Sample 1, which deobfuscates to (defanged):

hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=E2E813E9694BE43CAD964C0453632F91@@@hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=63DC49E5D8F5F50F8838551347009928@@@hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=D13B96F0619AC39B44A32D3E0A260C89@@@hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=85530E49BB23CD9DBD8461A2FC5D18A2

The downloads are obfuscated in a similar in the above samples, with digits 0-9 replaced by the letters A-J:

The download decodes to the usual second stage which in turn decodes to Agent Tesla.

String Obfuscation using Large Character Code Offsets

This sample (SHA256 5d555eddfc23183dd821432fd2a4a04a543c8c1907b636440eb6e7d21829576c) is a loader
with strings obfuscated as Unicode strings followed by an integer to subtract from their character codes, e.g.

which decodes to:

The downloads are again ASCII character codes with digits 0-9 replaced by the letters "PxfnVCKsAi".

This time, however, there is no intermediate step with the custom XOR routine and "trump2020" key, and the payload
is Agent Tesla.

Soccer Club-Themed Payload Locations

9/18

From March 2021, Proofpoint observed samples using websites for soccer clubs and their fans being used as
download locations. These websites appear to have been decoys, with the actual payload locations embedded in the
list.

For example, in this sample (SHA256
b53558a85b8bb10ce70cb0592a81e540683d459b9d8666b7927c105f1141a189), decompiled code looks like:

which when deobfuscated is:

The payload was Snake Keylogger in this case.

Later samples used Liverpool Football Club-themed download locations.

10/18

In this sample (SHA256

9cc817f0205da4bde1d938e1817aa98fe4f4a5dcbcaffbe8b45041e24c105aa0), the download locations are
obfuscated with junk Unicode sequences and string assembly:

which after removing the non-ASCII characters is:

leading to download locations (defanged):

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-future-dalglish--goal-
1FE8F2E05D5035C0446552639B8336B8.html

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-future-dalglish--goal-
EC7D4835EC6F56BD999A943FEDF8D489.html

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-future-dalglish--goal-
DE7C2CE9F7D38544A851414C40C46A3F.html

which amidst innocent-looking pages that appear to be taken from liverpool.com, includes the next stage as ASCII-
character codes with digits 0-9 replaced by "GIucvPNTOs":

Finally, the usual "00112266" resource, encoded with the "trump2020" key, has the final payload, Agent Tesla.

Later samples varied the domain name but kept very similar paths and the same innocent-looking page.

11/18

Figure: DTPacker used Liverpool FC themed download locations for the final payload. The sites masqueraded as
legitimate Liverpool FC and fan-related websites.

String Obfuscation using Obfuscated Character Code Arrays

This sample (SHA256 281cdbf590c22cd684700dcde609d6be48ddf3e4d988d48e65d9c688ce76f7af) uses
obfuscated .NET code to store important strings as arrays of ASCII character codes:

[0] : qHWXhtvYuc

[1] : Append

[2] : hxxp://mmwrlridbhmibnr[.]ml/liverpool-fc-news/features/steven-gerrard-liverpool-future-dalglish--goal-
40505C0917C3E190B486745F4941F177.html

[3] : <meta name="keywords" content="([\w\d]*)">

[4] : UserAgent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106
Safari/537.36 OPR/38.0.2220.41

[5] : GetType

[6] : Assembly

[7] : ToArray

[8] : Load

[9] : EntryPoint

[10] : Invoke

[11] : LoginForm

For the URL string, we have (when decompiled in ILSpy):

12/18

In each block of four assignments, the first three are junk and overwritten by the next.

This appears to be done in the underlying MSIL (intermediate language) code:

13/18

The obfuscating instructions are not actually in the shortest form as would be expected from a normal compiler. E.g.

(05) 2000000000 : ldc.i4 0x0

could have been achieved with

(01) 16 : ldc.i4.0

as it is in the instruction performing the final assignment.

The final payload in this case was Agent Tesla.

This Python script (on Github) decoder-dup-array-strings.py will output deobfuscated strings from a .NET binary
using this technique.

“Trump2026” Variant with Straight XOR

Beginning in August 2021, Proofpoint observed samples where the second stage is no longer using the custom XOR
routine and fixed key "trump2020", but instead is using straight XOR with fixed ASCII key "Trump2026".

In this sample (SHA256 a564eb282800ed662b1c55ae65fbba86b6feca00a2e15ebb36a61fc53ac47c3a), the
intermediate stage is stored as ASCII character codes in the "Strings" table:

The payload is stored from offset 0x250 in the intermediate stage:

https://raw.githubusercontent.com/EmergingThreats/threatresearch/master/dtpacker/decoder-dup-array-strings.py

14/18

which, after XORing with key "Trump2026" gives:

This payload was Agent Tesla.

This sample (SHA256 affea9c276ded88eea1e39ac39fb19373c4b62d4251fb1d06f37a05e35dfa463), is a downloader
with the download URLs stored in the clear in User Strings (defanged):

hxxps://cdn.discordapp[.]com/attachments/893177342426509335/897124528768032848/9722D04C.jpg

hxxps://cdn.discordapp[.]com/attachments/893177342426509335/897124531213336656/F526E587.jpg

The downloads are ASCII character codes:

which when glued together and decoded give the intermediate stage containing:

When decoded with XOR key "Trump2026," the final payload is FormBook.

CyaX Packer using Same Modified XOR Routine

From November 2021, Proofpoint observed CyaX-packer using a very similar second stage to that of DTPacker with
the "trump2020" key.

https://www.proofpoint.com/us/blog/threat-insight/commodity-net-packers-use-embedded-images-hide-payloads

15/18

This time, however, the keys are randomly generated, ASCII, mixed case alphabetic, and 8-14 characters long,
rather than UTF-16-encoded "trump2020".

In this sample (SHA2564053206d66d627d145d9da8d8e208d08c85755036a5393ccc6e8afd6117df864), the
intermediate stage contains a .NET resource file "18Ocjj4dc4" starting:

jCcPzKq+9JLar8eO2ILnqfrkj8Wj64Lqo7XsiMaV85jStPyV/bTiu9+RwqTPheOrwqrjteyIxpXzmNK0/BV9NGItKqrrjTJvPFOC
...

which after base64-decoding gives:

XORing this with itself shifted by one byte gives:

and then using the modified XOR routine with key "dNSfkJfHihIVY" gives:

which, after fixing the first byte, is Agent Tesla.

This would suggest a common source for the second stage of both the "trump2020" version of DTPacker and the
latest second stage of CyaX. It is possible there is a resource overlap between DTPacker and CyaX, such as both
authors paying for the same DLL encoder, but Proofpoint cannot confirm this.

Conclusion

16/18

DTPacker’s use as both a packer and downloader and its variation in delivery and obfuscation whilst keeping two
such unique keys as part of its decoding is very unusual.

It is unknown why the malware author specifically referred to Donald Trump in the malware’s fixed passwords, as it is
not used to specifically target politicians or political organizations and would not be seen by the intended victims.
Proofpoint assesses this malware will continue to be used by multiple threat actors.

Network IDS Rules:

Proofpoint Emerging Threats includes multiple detections for this malware.

2031127 - ET MALWARE DTLoader Binary Request

2031128 - ET MALWARE DTLoader Encoded Binary - Server Response

2031129 - ET MALWARE DTLoader Domain (ahgwqrq .xyz in TLS SNI)

2033356 - ET MALWARE DTLoader Binary Request M2

2844913 - ETPRO MALWARE Haskell Downloader/DTLoader CnC Activity

2846706 - ETPRO MALWARE DTLoader Variant Activity

2847389 - ETPRO MALWARE DTLoader CnC Activity

2847503 - ETPRO MALWARE DTLoader Variant Activity

2847916 - ETPRO MALWARE DTLoader Obfuscated HTML Payload Inbound

2847940 - ETPRO MALWARE DTLoader Activity

2850461 - ETPRO MALWARE DTLoader Retrieving Encoded Payload

Sample Indicators of Compromise

Indicator Description Associated
Malware

9d713d2254e529286ed3ac471e134169d2c7279b0eaf82eb9923cd46954d5d27 DTPacker
SHA256

Agent
Tesla

hxxps://hastebin[.]com/raw/azipitojuj

hxxps://hastebin[.]com/raw/urafehisiv

Payload
Download
Location

Agent
Tesla

285f4e79ae946ef179e45319caf11bf0c1cdaa376924b83bfbf82ed39361911b DTPacker
SHA256

Ave Maria
RAT

512b2f1f4b659930900abcc8f51d175e88c81b0641b7450a6618b77848fa3b40 DTPacker
SHA256

Agent
Tesla

1312912d725d45bcd1b63922ec9a84abca7a8c9c669c13efbd03472c764be056 DTPacker
SHA256

AsyncRAT

17/18

ba0f9be7cf006404bcfab6b6adbad0cef7281c3792490903632a4010d8a74f42 DTPacker
SHA256

Agent
Tesla

hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=E2E813E9694BE43CAD964C0453632F91

 hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=63DC49E5D8F5F50F8838551347009928

 hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=D13B96F0619AC39B44A32D3E0A260C89

 hxxps://ahgwqrq[.]xyz/getrandombase64.php?
get=85530E49BB23CD9DBD8461A2FC5D18A2

Payload
Download
Location

Agent
Tesla

5d555eddfc23183dd821432fd2a4a04a543c8c1907b636440eb6e7d21829576c DTPacker
SHA256

Agent
Tesla

hxxp://193.239.147[.]103/base/264712C97B662289D6644F926525A252.html Payload
Download
Location

Agent
Tesla

b53558a85b8bb10ce70cb0592a81e540683d459b9d8666b7927c105f1141a189 DTPacker
SHA256

Snake
Keylogger

hxxp://osndjdjjjdjshgaggdkf[.]com/base/377A23697621555ED2123D80005200D7.html

hxxp://osndjdjjjdjshgaggdkf[.]com/base/650D6251494D3B160CBC93685F2FA1E4.html

hxxp://osndjdjjjdjshgaggdkf[.]com/base/2A812C716BD7EB40F36227E584D97524.html

Payload
Download
Location

Snake
Keylogger

9cc817f0205da4bde1d938e1817aa98fe4f4a5dcbcaffbe8b45041e24c105aa0 DTPacker
SHA256

Agent
Tesla

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-
future-dalglish--goal-1FE8F2E05D5035C0446552639B8336B8.htm

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-
future-dalglish--goal-EC7D4835EC6F56BD999A943FEDF8D489.html

hxxp://liverpoolofcfanclub[.]com/liverpool-fc-news/features/steven-gerrard-liverpool-
future-dalglish--goal-DE7C2CE9F7D38544A851414C40C46A3F.html

Payload
Download
Location

Agent
Tesla

281cdbf590c22cd684700dcde609d6be48ddf3e4d988d48e65d9c688ce76f7af DTPacker
SHA256

Agent
Tesla

hxxp://mmwrlridbhmibnr[.]ml/liverpool-fc-news/features/steven-gerrard-liverpool-future-
dalglish--goal-40505C0917C3E190B486745F4941F177.html

DTPacker
Download
URL

Agent
Tesla

a564eb282800ed662b1c55ae65fbba86b6feca00a2e15ebb36a61fc53ac47c3a DTPacker
SHA256

Agent
Tesla

affea9c276ded88eea1e39ac39fb19373c4b62d4251fb1d06f37a05e35dfa463 DTPacker
SHA256

FormBook

18/18

hxxps://cdn.discordapp[.]com/attachments/
 893177342426509335/897124528768032848/9722D04C.jpg

hxxps://cdn.discordapp[.]com/attachments/

893177342426509335/897124531213336656/F526E587.jpg

DTPacker
Download
URL

FormBook

4053206d66d627d145d9da8d8e208d08c85755036a5393ccc6e8afd6117df864 DTPacker
SHA256

Agent
Tesla

Subscribe to the Proofpoint Blog

