
1/3

Analyzing an IDA Pro anti-decompilation code
antonioparata.blogspot.com/2022/01/analyzing-ida-pro-anti-decompilation.html

Twitter: @s4tan

 GitHub: https://github.com/enkomio/

In this post I'll analyze a piece of code that induces IDA Pro to decompile the assembly in a
wrong way. I'll propose a fix, but I'm open to more elegant solutions :)

The function that we want to decompile has the following assembly code (I'm using IDA Pro
v7.6):

.text:1001BC95 56 push esi

.text:1001BC96 FF 74 24 10 push [esp+4+arg_8]

.text:1001BC9A 8B 74 24 10 mov esi, [esp+8+arg_4]

.text:1001BC9E 56 push esi

.text:1001BC9F FF 74 24 10 push [esp+0Ch+arg_0]

.text:1001BCA3 52 push edx

.text:1001BCA4 51 push ecx

.text:1001BCA5 E8 57 20 FF FF call nullsub_1

.text:1001BCAA 8B 0A mov ecx, [edx]

.text:1001BCAC 83 C4 14 add esp, 14h

.text:1001BCAF 89 4E 0C mov [esi+0Ch], ecx

.text:1001BCB2 8B 42 04 mov eax, [edx+4]

.text:1001BCB5 03 C1 add eax, ecx

.text:1001BCB7 89 46 04 mov [esi+4], eax

.text:1001BCBA 5E pop esi

.text:1001BCBB C3 retn

The function uses two arguments with an unconventional calling convention. If we decompile
the code, we obtain:

int __cdecl sub_1001BC95(int a1, int a2)
{
 int *v2; // edx
 int v3; // ecx
 int result; // eax

 nullsub_1();
 v3 = *v2;
 *(a2 + 12) = *v2;
 result = v3 + v2[1];
 *(a2 + 4) = result;
 return result;
}

In IDA Pro the v2 variable (corrisponding to the line at address 0x1001BCAA) is colored in
red, since its value might be undefined.

https://antonioparata.blogspot.com/2022/01/analyzing-ida-pro-anti-decompilation.html
https://twitter.com/s4tan
https://github.com/enkomio/

2/3

Custom calling convention might cause some problems to the decompilation process (see
this), but, in general, there exist an easy fix to it: it is enough to inform IDA Pro that the
function uses a custom calling convention. By modifying the function, we can set the new
type with the following definition:

int __usercall sub_1001BC95@<eax>(PUCHAR arg0@<edx>, int garbage, PUCHAR arg1)

with this new definition, the decompiled code now looks like the following:

int __usercall sub_1001BC95@<eax>(PUCHAR arg0@<edx>, int garbage, PUCHAR arg1)
{
 int *v1; // edx
 int v2; // ecx
 int result; // eax
 int v4; // [esp+Ch] [ebp+8h]

 nullsub_1();
 v2 = *v1;
 *(v4 + 12) = *v1;
 result = v2 + v1[1];
 *(v4 + 4) = result;
 return result;
}

We haven't done any progress at all. The only place where we haven't checked is the
nullsub_1 function, the problem must be in its call. If we analyze this function, we notice that
it has an empty body, as shown below.

.text:1000DD01 C3 retn

Why is this function causing problems? The answer is in the software convention used by the
compiler. During the compilation, the compiler considers some registers as volatile. This
means that the value of these registers, after a function call, should not be considered
preserved ([1]). Among the volatile registers, there is EDX, which is exactly one of the
registers used to pass a function parameter in the custom calling convention.

This code causes problem to the decompilation process that considers (correctly) the EDX
register to have an undefined value after the function call.

I'm not aware of any particular IDA Pro command to inform the decompiler to not consider
EDX as volatile, so the simpler solution that I found is to just remove the call instruction (I
patched the bytes E8 57 20 FF FF with 90 90 90 90 90). The result is a much cleaner
decompiled code, as shown below.

https://github.com/enkomio/Misc/tree/master/Hex-Rays
https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions?view=msvc-170

3/3

int __usercall sub_1001BC95@<eax>(PUCHAR arg0@<edx>, int garbage, PUCHAR arg1)
{
 PUCHAR v3; // ecx
 int result; // eax

 v3 = *arg0;
 *(arg1 + 3) = *arg0;
 result = &arg0[1][v3];
 *(arg1 + 1) = result;
 return result;
}

Now we can proceed to further improve the decompilation code (we can clearly see the
usage of a struct in the code) now that the decompiled code represents the real intent of the
assembly code.

Update:

I received a message on twitter and reddit that suggests to have a look at the __spoils
keyword mentioned in this Igor’s tip of the week post [2] (shame on me for not having found
it).

Its meaning is exactly what we need to solve the problem in a more elegant and generic way.
It is enough to change the nullsub_1 function definition by adding the __spoils keyword, as
show below:

void __spoils<> nullsub_1(void)

The decompilation result of the function sub_1001BC95 is the same as before with the
exception that the call to the nullsub_1 function is still there (it is not necessary to patch the
bytes anymore).

Links:

[1] Register volatility and preservation
 [2] Igor’s tip of the week #51: Custom calling conventions

https://mobile.twitter.com/namazso/status/1484328336167878657
https://www.reddit.com/r/ReverseEngineering/comments/s8u7y6/comment/htiwl4s/?utm_source=share&utm_medium=web2x&context=3
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions?view=msvc-170
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

