Analysis of Xloader’s C2 Network Encryption

zscaler.com/blogs/security-research/analysis-xloaders-c2-network-encryption

Introduction

Xloader is an information stealing malware that is the successor to Formbook, which had been sold in hacking forums since early 2016.
In October 2020, Formbook was rebranded as Xloader and some significant improvements were introduced, especially related to the
command and control (C2) network encryption. With the arrival of Xloader, the malware authors also stopped selling the panel’s code
together with the malware executable. When Formbook was sold, a web-based command and control (C2) panel was given to
customers, so they could self-manage their own botnets. In 2017, Formbook’s panel source was leaked, and subsequently, the threat
actor behind Xloader moved to a different business model. Rather than distributing a fully functional crimeware kit, Xloader C2
infrastructure is rented to customers. This malware-as-a-service (MaaS) business model is likely more profitable and makes piracy more
difficult.

The capabilities of Xloader include the following:

« Steal credentials from web browsers and other applications
o Capture keystrokes

o Take screenshots

o Steal stored passwords

* Download and execute additional binaries

o Execute commands

Previous blog posts have analyzed various aspects of Formbook and Xloader’s obfuscation. In this blog post, we perform a detailed
analysis of Xloader’s C2 network encryption and communication protocol. Note that Xloader is cross-platform with the ability to run on
Microsoft Windows and MacOS. This analysis focuses specifically on the Windows version of Xloader.

Technical Analysis

Xloader and Formbook use HTTP to communicate with the C2 server. An HTTP GET query is sent as a form of registration. Afterwards,
the malware makes HTTP POST requests to the C2 to exfiltrate information such as screenshots, stolen data, etc. In both cases, the
GET parameters and the POST data share a similar format and are encrypted as shown in Figure 1. We will explain the encryption
algorithms in the following sections.

1/8

https://www.zscaler.com/blogs/security-research/analysis-xloaders-c2-network-encryption

DNS 80 Standard query @x49f1l A www.erikahealth.info
DNS 118 Standard query response @x49fl A www.erikahealth.info CNAME erikahealth.info A 184.168.221.56

HTTP 221 GET /pw9/?jfGHNt=vD]i6145]1dfLu9VbK2jDv/mP+ABHYxbBNKAQaxCkCRxvIKadnaknVL1fe59KnFDADSxVyQ==&UBk=D8Tp7BM HTTP/1.1 Continuation

DNS 76 Standard query ©x5f83 A www.artiyong.com
DNS 92 Standard query response Bx5f83 A www.artiyong.com A 63.258.45.114

HTTP 217 GET /pw9/?jFGHNt=BWMVEkoueRSVBINQPD+pOXeHTMELk/gzFj@TOmfsDWprmvNnKAVKSFYzBre0,/71AQ0zbz1A==8UBk=D8Tp7BM HTTP/1.1 Continuation

HTTP 556 HTTP/1.1 484 Not Found (text/html)
HTTP 753 POST /pw9/ HTTP/1.1 (application/x-www-form-urlencoded)Continuation
HTTP 522 HTTP/1.1 484 Not Found (text/html)
HTTP 592 POST /pw9/ HTTP/1.1 (application/x-www-form-urlenceded)Continuation
HTTP 522 HTTP/1.1 484 Not Found (text/html)
HTTP 620 POST /pw®/ HTTP/1.1 (application/x-www-form-urlencoded)Continuation
HTTP 522 HTTP/1.1 4R4 Not Found (text/html)

Figure 1. Xloader C2 communications capture

Decoy and Real C2 Servers

Throughout the Xloader malware there are multiple structures of encrypted blocks of data and code. These blocks are designed to

confuse malware analysts and disassemblers by using the assembly instructions for a function prologue push ebp and mov ebp, esp as

shown in Figure 2. We have named these structures PUSHEBP encrypted blocks. These blocks are decrypted using an RC4 based
algorithm combined with an encoding layer and a custom virtual machine (VM).

Ltext:8e41E3C4 loc_41E3C4:

Ltext:8e41E3C4

Ltext:8841E3C4 ES 00 00 B0 00 call $+5
Ltext:Be41E3C9 58 pop eax
ext:Be41E3CA O3 retn

Ltext:8e41E3CE e
ctext:@@41E3CE 55 push ebp
Jtext:@841E3CC 8B EC mov ebp, esp
Ltext:8e41E3CC P
Jtext:@@41E3CE 22 db 22h ; "
Ltext:8e41E3CF 35 db 35h ; 5
Ltext:Be41E3D8 BA db 8ah ; S
Jtext:@841E3D1 Al db @Alh ;
Ltext:@841E3D2 A9 db 84A9h ; @
.text:8841E3D3 DD db @bbh ; ¥

Figure 2. Xloader PUSHEBP encrypted block

One of these PUSHEBP blocks contains encrypted strings, and a list of decoy C2s. These decoys are legitimate domains that have
been added to mislead malware researchers and automated malware analysis systems. The real C2 server is stored separately and
encrypted using another more complex scheme. The pseudocode responsible for decrypting the real C2 server is shown in Figure 3.

dec_real_c2[0] = @;
key_rc4a_1 = @;
key_rc4_2 = @;
dec_real c2 layerl = @;

memset(&v10, @, ©xC8u); ' Get and decrypt two PUSHEBP
v5 = GetPUSHEBPEncContent8_ keylenl4(); blocks containing RC4 keys to
VM_Decryptor((int)&key rc4 1, v5 + 2, @xl4u); | be used later

v6 = GetPUSHEBPEncContent2__keylenl4(); \
VM_Decryptor((int)&key rca 2, v6 + 2, ©x14u); \
enc_real c2 = GetPUSHEBPEncContentll__ RealC2_();
VM _Decryptor((int)&dec real c2 layerl, enc real c2 + 2, @xC7u); |
DecryptorRc4_KeyShalEncStrings((int)&dec_real c2 layerl); '

, _— Getanddecrypt
"~ PUSHEBP block
containing the encrypted

memcpy ((int)dec_real c2, &vil, ©x19); ~ real C2
RC4_based_Decryptor(dec_real c2, @x19u, (int)&key rca 2); ~ Use the RC4 based decryptor to decrypt
RC4_based_Decryptor(dec_real c2, @x19u, (int)&key rca 1); | one more layer of the real C2. RC4 key is the
if (a3) SHA1 of the full block of encrypted strings
*(_WORD *)((char *)&v32 + 1) = 0; . (recovered also from PUSHEBP blocks)

if (*(_DWORD *)dec_real c2 == ".www') A

Decrypt two last layers of the real C2,
using the RC4 based algorithm and the
two keys recovered in the beginning
of the function

Figure 3. Xloader C2 decryption algorithm

2/8

In Figure 3, the RC4_based_Decryptor function consists of RC4 encryption (with a 0x14 byte key) with an additional two encoding layers
as shown below:

def decrypt_PUSHEBP_encrypted_function_block(self, rc4_key,
encdata):

#backward / forward sub layer 1
encdata =
self.decrypt_PUSHEBP_backward_forward_sub_layers(encdata)

#rc4
encdata = self.rc4(encdata, rc4_key)

#backward / forward sub layer 2
encdata =
self.decrypt_PUSHEBP_backward_forward_sub_layers(encdata)

return encdata

The additional encoding layers consist of simple subtraction operations:

def decrypt_PUSHEBP_backward_forward_sub_layers(self, encdata):
encdata = list(encdata)
lencdata = len(encdata)
#backward sub
pl = lencdata - 2
counter = lencdata - 1
while True:
encdata[pl] = chr(exff&(ord(encdata[pl]) - ord(encdata[pl +
1))
p1 -= 1
counter -= 1
if not counter: break
#forward sub

pl1 =0
counter = lencdata - 1
while True:
encdata[pl] = chr(oxff&(ord(encdata[pl]) - ord(encdata[pl +
1))
pl += 1
counter -= 1
if not counter: break
return ''.join(encdata)

The VM_Decryptor function is another algorithm that is used by Xloader, which implements a custom virtual machine (VM). The
following lines of Python reproduce the steps that Xloader performs to decrypt the real C2.

3/8

https://github.com/tildedennis/malware/blob/master/formbook/formbook_decryption.py

get blocks of enc strings
b1l = GetPUSHEBPBlock(1)
enc_strings_block = VM_Decryptor(b1)

get rc4 key 1, 0x14 bytes
b8 = GetPUSHEBPBlock(8)
key_rc4_1 = VM_Decryptor(b8)

get rc4 key 2, 014 bytes
b2 = GetPUSHEBPBlock(2)
key_rc4_2 = VM_Decryptor(b2)

get the block containing enc real C2
b1l = GetPUSHEBPBlock(11)
enc_real_c2 = VM_Decryptor(b11)

decrypt first layer of the real C2, use the RC4 based algorithm
and

the SHA1 of the full block of encrypted strings

enc_real_c2 = RC4_based_Decryptor(enc_real_c2,
SHA1(enc_strings_block))

decrypt the next layers of the real C2, use RC4 based algorithm
and

the two RC4 key recovered previously from the PUSHEBP blocks
enc_real_c2 RC4_based_Decryptor(enc_real_c2, key_rc4_1)
dec_real_c2 RC4_based_Decryptor(enc_real_c2, key_rc4_2)

the valid decrypted real c2 must start with www.
b_ok = is_www(dec_real_c2)
Once decrypted, the C2 URL has a format similar to www.domain.tld/botnet_id/.

The C2 communications occur with the decoy domains and the real C2 server, including sending stolen data from the victim. Thus, there
is a possibility that a backup C2 can be hidden in the decoy C2 domains and be used as a fallback communication channel in the event
that the primary C2 domain is taken down.

Formbook Communication Encryption Specific Details

In FormBook, the HTTP GET parameters (and POST data) were encrypted in four steps:

1. Using the domain and path of the real C2, an RC4 key was calculated in this way:
Reverse_ DWORDs(SHA1(<domain>/<cncpath>/))
2. The result was used as an RC4 key to encrypt the data
3. Once the data was RC4 encrypted, it was additionally encoded using Base64
4. Data sent via HTTP POST requests was formatted using the character substitution that is shown in Table 1.

Original Symbol Replacement Symbol

+ -
/ -

+ ~

/ (

=)

+ <space>

Table 1. Formbook C2 Characters Substitution

Therefore, Formbook C2 communications could be easily decrypted by reversing the process since the C2 domain and path are known.

4/8

Xloader Communication Encryption Specific Details

The network encryption in XLoader is more complex. An additional RC4 layer was added to the process, with a convoluted algorithm
that is used to derive this encryption key using the following steps:

1) To encrypt the HTTP network data, Xloader first calculates a key that we call KeyOComm as shown in Figure 4.

pushebp7enc = GetPUSHEBPEncContent7__ keylenlS5 (); ——M
VM_Decryptor(al + @x8D4C, pushebp7enc + 2, 8x15u);

key_switch = *(_BYTE *)(al + ex8De@); 0x14 bytes 0x1 byte
*(_BYTE *)(al1 + ©x8D60) = @; .
if ((unsigned int8) (key_switch - 1) <= 5u) RC4 key (1) |SWIDCH‘

finalkey = 8;

vie = @; |

vll = @;

vi2z = @;

witch == 1)

pushebpdenc = GetPUSHEBPEncContent4__keylenld() + 2;
VM_Decryptor((int)&finalkey, pushebpdenc, ©xl14u);

¥
else
{
if (key_switch 1= 2)
switch (key_switch) The first block {size 0x15) contains an RC4 key
{ (first 0x14 bytes), and an additional byte that
case 3: ’ ¥ : i ¥
VS = GetPUSHEBPEncContent1e_ keylen1a(); will be used in a switch statement. With this
break; switch (that will change from sample to sample),
case 4:

v6 = GetPUSHEBPEncContent6_ keylenld() + 2;
VM_Decryptor((int)&finalkey, ve, @xl4u);
goto LABEL_15;

a second PUSHEBP block is chosen. This second
PUSHEBP block's size is 0x14, and it is an RC4 key
that is encrypted with the first RC4 key

case 5:
v7 = GetPUSHEBPEncContent9__keylenl4() + 2;
VM_Decryptor((int)&finalkey, v7, @x14u);
goto LABEL_15;

case 6:
v5 = GetPUSHEBPEncContent8__keylenl4();
break;

default:
goto LABEL_15;

VM_Decryptor((int)&finalkey,
goto LABEL_15;

v5 + 2, 8xl4u);

KeyOComm = RC4_based_decryptor{decPushebpBlock7Key,
vd4 = GetPUSHEBPEncContent5__keylenld() + 2; decSwitchBasedPushebpBlock)
VM_Decryptor((int)&finalkey, v4, @x14u);

\BEL_15:
RC4_based_Decryptor((_BYTE *)(al + @x8D4C), exldu, (int)&finalkey);

Figure 4. Xloader KeyCommO Derivation

As we can see in Figure 4, the PUSHEBP block 7 is decrypted using the Xloader VM. This block, once decrypted, has a length of 0x15
bytes. The first 0x14 bytes are used as an RC4 key, and the last byte is used to choose and decrypt another PUSHEBP block (among
the blocks 4, 5, 6, 8, 9 and 10) based on a switch statement. Thus the parameter KeyOComm in derived as follows:

KeyOComm = RC4_based_Decryptor(decPushebpBlock7Key[:0x14], decSwitchBasedPushebpBlock)

However, the order of the PUSHEBP blocks, and the associations between the switch and the block number, changes from one sample
to another (i.e., the code of this function is randomized), even on the same versions of Xloader. Figure 5 shows a comparison of this
function between two different Xloader v2.5 samples.

5/8

From sample 18B5783DE4068B6E8B7CDGEAZOCBIAFA (Xloader 2.5)

if (key_switch == 1)

{]
pushebpdenc = GetPUSHEBPEncContent4_ keylenld() + 2;
VM_Decryptor((int)&Ffinalkey, pushebpdenc, @x14u);

}

else

if (key_switch 1= 2)
switch (key_switch)
{
case 3: |
v5 = GetPUSHEBPEncContenFlB_Lkeylen14();
break; s
case 4:
v = GetPUSHEBPEncContentE_Lkeylen14() + 2;
VM_Decryptor((int)&finalkey, ve, @xldu);
goto LABEL_15;
case 5:

7 = GetPUSHEBPEncCDntei;?__keylen14() + 2;
VM_Decryptor((int)&finalkey, v7, exldu);
goto LABEL_15;

case 6:
vs = GetPUSHEBPEncConteJtS__keylen14();
break; —
default:
goto LABEL_15;
}

VM_Decryptor((int)&Ffinalkey, v5 + 2, @xl4u);

goto LABEL_15;
} =
vd = GetPUSHEBPEncContentS_Lkeylen14() + 2;
VM_Decryptor((int)&Finalkey, v4, @xldu);

Figure 5. Xloader KeyCommO Function to Map the Switch to a Block

From sample F841C72B1CACADC4CI8903AD26A96ALE (Xloader 2.5)

if (key_switch == 1)

{ 1
pushebpéenc = GetPUSHEBPEncContents_Jkeylenl4() + 2;
VM_Decryptor(&finalkey, pushebpeenc, 8x14);

}

else

{
1'F (ey _"-:‘."T\':“
{

1=2)

switch (key_switch)
{
case 3:
Vs = GetPUSHEBPEncConte%tB_ikeylenld(};
break; : .
case 4:
vE = GetPUSHEBPEncContent5_ keylenl4() + 2;
UM_Decryptor(&ﬂ:ralagy,”ibj’ax14);
goto LABEL_15;
case 5:
v7 = GetPUSHEBPEncContent4_ keylenl4() + 2;
ey, V7, 0x14);

VM_Decryptor(&finalke
goto LABEL_15:

case 6: i :
V5 = GetPUSHEBPEncConte%t19__keylen14();
break;

default:

goto LABEL_15;

}

VM_Decryptor(&finalkey, vs + 2, @x14);

goto LABEL_15;
} r
vd = GetPUSHEBPEncConteht?_Lkeylen14() + 2;
VM_Decryptor(&finalkey, va, @x14);

Table 2 shows how these switch statements map to different block IDs in these samples.

Switch 1 Switch2 Switch 3 Switch4 Switch5 Switch 6

Sample 1 Block4 Block5 Block 10 Block 6

Block 9

Block 8

Sample 2 Block6 Block7 Block8 Block 5

Table 2. Xloader Block ID Mapping Example

Block 4

Block 10

In order to perform encryption for the C2 communications, the sample-specific table that maps these blocks must be known to derive the

encryption key KeyOComm.

2) Next, another key that we refer to as Key7Comm is calculated using the same algorithm as Formbook:

Key1Comm = Reverse_ DWORDs(SHA1(<domain>/<cncpath>/))

3) Finally, we need to calculate one last key, using the Xloader custom RC4-based decryption algorithm as follows:

Key2Comm = RC4based_Decryptor(KeyOComm, Key1Comm)

Having all three of these RC4 keys, we can encrypt and decrypt Xloader C2 communications. The packets are encrypted with two layers
of standard RC4 using the keys Key2Comm and Key1Comm, as shown below:

6/8

KeyoComm = <..from binary..>

c2 = "www.pc6888.com"
c2path = "htbn"

getl="xPeDUfwp=X/0PTsm65bsBOxXA5p5tU+UuBoyxUJvYd1leRdCOqFrd+bvOrgN9yTTECZJITYp88Jb6Qhj

uA=="

KeylComm = Reverse_DWORDs(SHA1(f"{c2}/{path}/"))
fake_var, encrypted_params = getl.split('=", 1)

sdecO® = b64_trans(encrypted_params)
sdecl = base64.b64decode(sdecO)

Key2Comm = RC4_based_Decryptor (Key@Comm, KeylComm)
sdec2 = rc4(sdecl, Key2Comm) #layers encrypted with standard rc4

sdec3 = rc4(sdec2, KeylComm)
print(sdec3)

Xloader also further applies the Base64 and character substitution described earlier for POST queries.

Conclusion

Xloader is a well-developed malware family that has numerous techniques to mislead researchers and hinder malware analysis

including multiple layers of encryption and a custom virtual machine. Even though the authors abandoned the Formbook branch to focus

on the rebranded Xloader, both strains are still quite active today. Formbook is still being used by threat actors using the leaked panel
source code and self-managing the C2, while the original authors have continued to sell Xloader as MaaS, supporting and renting the
servers infrastructure. Not surprisingly, it has been one of the most active threats in recent years.

Cloud Sandbox Detection

@5 zscaler cloud Sandbox

SANDBOX DETAIL REPORT i -
Report ID (MDS): C37B42D5F74FBIETE1252F9243734530 Analysis Performed: 1/20/2022 9:08:00 AM File Type: exe
CLASSIFICATION MACHINE LEARNING ANALYSIS MITRE ATTACK M
Class Type Threat Score This report contains 19 ATTRCK techniques mapped to 8 tactics
Madicious
s 100
Matwars & Botnet Datacted: ng
TR/Formbook_ajxid
VIRUS AND MALWARE SECURITY BYPASS NETWORKING i
» Trojan.GenerckD.47608181 ® Maps A DLL Or Memory Area Into Another Process = Snort IDS Alert For Network Traffic
* Queues An APC In Another Process Found Strings Which Match To Known Social Media URLs
* Too Many Similar Processes Found URLs Found In Memory Or Binary Data
Tries To Detect Sandboxes And Other Dynaméc Analysis Tools
* Sample Execution Stops While Process Was Sleeping (Likely An Evasion)
* Sample Sleeps For A Long Time (Installer Files Shows These Property).
* Modifies The Context Of A Thread In Another Process
STEALTH SPREADING INFORMATION LEAKAGE 4
* Injects A PE File Into A Foreign Processes * C2 URLs / IPs Found In Malware Configuration * Tries To Harvest And Steal Browser information
* Binary Contains A Suspicious Time Stamp # Tries To Search For Mall Accounts
Creates A Process In Suspended Made (Likely To Inject Code)
* Sample Uses Process Hollowing Technigque
* System Process Connects To Network
= Tries To Detect Virtualization Through ROTSC Time Measurements
Disables Application Eror Messages
EXPLOITING PERSISTENCE SYSTEM SUMMARY e
= Benign Windows Process Is Dropping New PE Files = Creates An Undocumented Autostart Registry Key = Found Malware Configuration
® Knawn MDS Creates Temporary Files = Abnarmal High CPU Usage
May Try To Detect The Windows Explarer Process Drops PE Files * Contains Thread Delay
= PE File Has An Executable .Text Section Which Is Very Likely To Contain
Packed Code
Binary Contains Paths To Debug Symbols
Checks If Microsoft Office Is Installed
Zscaler's multilayered cloud security platform detects indicators at various levels, as shown below:
Variant Version SHA256 Real C2
Xloader 2.5 c60a64f8910005f98f6cd8c5787e4fe8c6580751a43bdbbd6a14af1ef6999b8f http://www.finetipster[.Jcom/pvxz/

7/8

Xloader 2.5 2c78fa1d90fe76c14f0a642af43c560875054e342bbb144aa9ff8f0fdbb0670f http://www.go2payme[.Jcom/snec/

Xloader 2.5 f3c3c0c49c037e7efa2fbef61995¢1dc97cfe2887281badb687bdd6aalad4ela http://www.pochi-owarai[.Jcom/hr8n/
Xloader 2.5 efd1897cf1232815bb1f1fbe8496804186d7c48c6bfa05b2deabbd3bb0b67ed0 http://www.hosotructiep|.Jonline/bsz6/
References

8/8

