
1/8

Analysis of Xloader’s C2 Network Encryption
zscaler.com/blogs/security-research/analysis-xloaders-c2-network-encryption

Introduction

Xloader is an information stealing malware that is the successor to Formbook, which had been sold in hacking forums since early 2016.
In October 2020, Formbook was rebranded as Xloader and some significant improvements were introduced, especially related to the
command and control (C2) network encryption. With the arrival of Xloader, the malware authors also stopped selling the panel’s code
together with the malware executable. When Formbook was sold, a web-based command and control (C2) panel was given to
customers, so they could self-manage their own botnets. In 2017, Formbook’s panel source was leaked, and subsequently, the threat
actor behind Xloader moved to a different business model. Rather than distributing a fully functional crimeware kit, Xloader C2
infrastructure is rented to customers. This malware-as-a-service (MaaS) business model is likely more profitable and makes piracy more
difficult.

The capabilities of Xloader include the following:

Steal credentials from web browsers and other applications
Capture keystrokes
Take screenshots
Steal stored passwords
Download and execute additional binaries
Execute commands

Previous blog posts have analyzed various aspects of Formbook and Xloader’s obfuscation. In this blog post, we perform a detailed
analysis of Xloader’s C2 network encryption and communication protocol. Note that Xloader is cross-platform with the ability to run on
Microsoft Windows and MacOS. This analysis focuses specifically on the Windows version of Xloader.

Technical Analysis

Xloader and Formbook use HTTP to communicate with the C2 server. An HTTP GET query is sent as a form of registration. Afterwards,
the malware makes HTTP POST requests to the C2 to exfiltrate information such as screenshots, stolen data, etc. In both cases, the
GET parameters and the POST data share a similar format and are encrypted as shown in Figure 1. We will explain the encryption
algorithms in the following sections.

https://www.zscaler.com/blogs/security-research/analysis-xloaders-c2-network-encryption

2/8

Figure 1. Xloader C2 communications capture

Decoy and Real C2 Servers

Throughout the Xloader malware there are multiple structures of encrypted blocks of data and code. These blocks are designed to
confuse malware analysts and disassemblers by using the assembly instructions for a function prologue push ebp and mov ebp, esp as
shown in Figure 2. We have named these structures PUSHEBP encrypted blocks. These blocks are decrypted using an RC4 based
algorithm combined with an encoding layer and a custom virtual machine (VM).

Figure 2. Xloader PUSHEBP encrypted block

One of these PUSHEBP blocks contains encrypted strings, and a list of decoy C2s. These decoys are legitimate domains that have
been added to mislead malware researchers and automated malware analysis systems. The real C2 server is stored separately and
encrypted using another more complex scheme. The pseudocode responsible for decrypting the real C2 server is shown in Figure 3.

Figure 3. Xloader C2 decryption algorithm

3/8

In Figure 3, the RC4_based_Decryptor function consists of RC4 encryption (with a 0x14 byte key) with an additional two encoding layers
as shown below:

def decrypt_PUSHEBP_encrypted_function_block(self, rc4_key,
encdata):

 #backward / forward sub layer 1
 encdata =
self.decrypt_PUSHEBP_backward_forward_sub_layers(encdata)

 #rc4
 encdata = self.rc4(encdata, rc4_key)

 #backward / forward sub layer 2
 encdata =
self.decrypt_PUSHEBP_backward_forward_sub_layers(encdata)

 return encdata

The additional encoding layers consist of simple subtraction operations:

def decrypt_PUSHEBP_backward_forward_sub_layers(self, encdata):
 encdata = list(encdata)
 lencdata = len(encdata)
 #backward sub
 p1 = lencdata - 2
 counter = lencdata - 1
 while True:
 encdata[p1] = chr(0xff&(ord(encdata[p1]) - ord(encdata[p1 +
1])))
 p1 -= 1
 counter -= 1
 if not counter: break
 #forward sub
 p1 = 0
 counter = lencdata - 1
 while True:
 encdata[p1] = chr(0xff&(ord(encdata[p1]) - ord(encdata[p1 +
1])))
 p1 += 1
 counter -= 1
 if not counter: break
 return ''.join(encdata)

The VM_Decryptor function is another algorithm that is used by Xloader, which implements a custom virtual machine (VM). The
following lines of Python reproduce the steps that Xloader performs to decrypt the real C2.

https://github.com/tildedennis/malware/blob/master/formbook/formbook_decryption.py

4/8

get blocks of enc strings
b1 = GetPUSHEBPBlock(1)
enc_strings_block = VM_Decryptor(b1)

get rc4 key 1, 0x14 bytes
b8 = GetPUSHEBPBlock(8)
key_rc4_1 = VM_Decryptor(b8)

get rc4 key 2, 014 bytes
b2 = GetPUSHEBPBlock(2)
key_rc4_2 = VM_Decryptor(b2)

get the block containing enc real C2
b11 = GetPUSHEBPBlock(11)
enc_real_c2 = VM_Decryptor(b11)

decrypt first layer of the real C2, use the RC4 based algorithm
and
the SHA1 of the full block of encrypted strings
enc_real_c2 = RC4_based_Decryptor(enc_real_c2,
SHA1(enc_strings_block))

decrypt the next layers of the real C2, use RC4 based algorithm
and
the two RC4 key recovered previously from the PUSHEBP blocks
enc_real_c2 = RC4_based_Decryptor(enc_real_c2, key_rc4_1)
dec_real_c2 = RC4_based_Decryptor(enc_real_c2, key_rc4_2)

the valid decrypted real c2 must start with www.
b_ok = is_www(dec_real_c2)

Once decrypted, the C2 URL has a format similar to www.domain.tld/botnet_id/.

The C2 communications occur with the decoy domains and the real C2 server, including sending stolen data from the victim. Thus, there
is a possibility that a backup C2 can be hidden in the decoy C2 domains and be used as a fallback communication channel in the event
that the primary C2 domain is taken down.

Formbook Communication Encryption Specific Details

In FormBook, the HTTP GET parameters (and POST data) were encrypted in four steps:

1. Using the domain and path of the real C2, an RC4 key was calculated in this way:
Reverse_DWORDs(SHA1(<domain>/<cncpath>/))

2. The result was used as an RC4 key to encrypt the data
3. Once the data was RC4 encrypted, it was additionally encoded using Base64
4. Data sent via HTTP POST requests was formatted using the character substitution that is shown in Table 1.

Original Symbol Replacement Symbol

+ -

/ _

= .

+ ~

/ (

=)

+ <space>

Table 1. Formbook C2 Characters Substitution

Therefore, Formbook C2 communications could be easily decrypted by reversing the process since the C2 domain and path are known.

5/8

Xloader Communication Encryption Specific Details

The network encryption in XLoader is more complex. An additional RC4 layer was added to the process, with a convoluted algorithm
that is used to derive this encryption key using the following steps:

1) To encrypt the HTTP network data, Xloader first calculates a key that we call Key0Comm as shown in Figure 4.

Figure 4. Xloader KeyComm0 Derivation

As we can see in Figure 4, the PUSHEBP block 7 is decrypted using the Xloader VM. This block, once decrypted, has a length of 0x15
bytes. The first 0x14 bytes are used as an RC4 key, and the last byte is used to choose and decrypt another PUSHEBP block (among
the blocks 4, 5, 6, 8, 9 and 10) based on a switch statement. Thus the parameter Key0Comm in derived as follows:

Key0Comm = RC4_based_Decryptor(decPushebpBlock7Key[:0x14], decSwitchBasedPushebpBlock)

However, the order of the PUSHEBP blocks, and the associations between the switch and the block number, changes from one sample
to another (i.e., the code of this function is randomized), even on the same versions of Xloader. Figure 5 shows a comparison of this
function between two different Xloader v2.5 samples.

6/8

Figure 5. Xloader KeyComm0 Function to Map the Switch to a Block

Table 2 shows how these switch statements map to different block IDs in these samples.

 Switch 1 Switch 2 Switch 3 Switch 4 Switch 5 Switch 6

Sample 1 Block 4 Block 5 Block 10 Block 6 Block 9 Block 8

Sample 2 Block 6 Block 7 Block 8 Block 5 Block 4 Block 10

Table 2. Xloader Block ID Mapping Example

In order to perform encryption for the C2 communications, the sample-specific table that maps these blocks must be known to derive the
encryption key Key0Comm.

2) Next, another key that we refer to as Key1Comm is calculated using the same algorithm as Formbook:

Key1Comm = Reverse_DWORDs(SHA1(<domain>/<cncpath>/))

3) Finally, we need to calculate one last key, using the Xloader custom RC4-based decryption algorithm as follows:

Key2Comm = RC4based_Decryptor(Key0Comm, Key1Comm)

Having all three of these RC4 keys, we can encrypt and decrypt Xloader C2 communications. The packets are encrypted with two layers
of standard RC4 using the keys Key2Comm and Key1Comm, as shown below:

7/8

Key0Comm = <…from binary…>

c2 = "www.pc6888.com"
c2path = "htbn"

get1="xPeDUfwp=X/0PTsm65bsB0xA5p5tU+UuBoyxUJvYd1eRdC0qFrd+bv9rqN9yTTECZJTYp88Jb6Qhj
uA=="

Key1Comm = Reverse_DWORDs(SHA1(f"{c2}/{path}/"))
fake_var, encrypted_params = get1.split('=', 1)
sdec0 = b64_trans(encrypted_params)
sdec1 = base64.b64decode(sdec0)
Key2Comm = RC4_based_Decryptor(Key0Comm, Key1Comm)
sdec2 = rc4(sdec1, Key2Comm) #layers encrypted with standard rc4
sdec3 = rc4(sdec2, Key1Comm)
print(sdec3)

Xloader also further applies the Base64 and character substitution described earlier for POST queries.

Conclusion

Xloader is a well-developed malware family that has numerous techniques to mislead researchers and hinder malware analysis
including multiple layers of encryption and a custom virtual machine. Even though the authors abandoned the Formbook branch to focus
on the rebranded Xloader, both strains are still quite active today. Formbook is still being used by threat actors using the leaked panel
source code and self-managing the C2, while the original authors have continued to sell Xloader as MaaS, supporting and renting the
servers infrastructure. Not surprisingly, it has been one of the most active threats in recent years.

Cloud Sandbox Detection

Zscaler's multilayered cloud security platform detects indicators at various levels, as shown below:

Indicators of Compromise

Variant Version SHA256 Real C2

Xloader 2.5 c60a64f8910005f98f6cd8c5787e4fe8c6580751a43bdbbd6a14af1ef6999b8f http://www.finetipster[.]com/pvxz/

8/8

Xloader 2.5 2c78fa1d90fe76c14f0a642af43c560875054e342bbb144aa9ff8f0fdbb0670f http://www.go2payme[.]com/snec/

Xloader 2.5 f3c3c0c49c037e7efa2fbef61995c1dc97cfe2887281ba4b687bdd6aa0a44e0a http://www.pochi-owarai[.]com/hr8n/

Xloader 2.5 efd1897cf1232815bb1f1fbe8496804186d7c48c6bfa05b2dea6bd3bb0b67ed0 http://www.hosotructiep[.]online/bsz6/

References

