
1/3

A deeper UEFI dive into MoonBounce
binarly.io/posts/A_deeper_UEFI_dive_into_MoonBounce/index.html

After uncovering FinSpy several months ago, an APT threat targeting UEFI bootloaders, in the
morning of January 20th 2022, Kaspersky Lab has released a new report on their latest discovery,
a very interesting UEFI firmware threat dubbed MoonBounce.

Last year, the ESET researchers discovered ESPecter another threat which also targets EFI
bootloaders.

MoonBounce, FinSpy and ESPecter are examples of APT malware comprising components that
target both UEFI and Legacy BIOS boot processes.

To kickstart our investigation, we leveraged VirusTotal Intelligence and discovered an archive
exhibiting the detections mentioned in the Kaspersky Lab’s MoonBounce report. Recently, a user
uploaded the related samples, which surprised us greatly since we did not expect to find them that
quickly by just querying using the detection name.

Figure1 Figure2

Let’s dive into the dark waters of the MoonBounce firmware implant. In this blog we want to
discuss some of the facts which weren’t covered by the original report and are interesting to share.

Kaspersky Lab’s original report emphasizes that the aforementioned malware consists of a number
of known malware components and frameworks: Microcin, Mimikat SSP, xTalker, etc.

Binarly Research Team has analyzed the samples found in VirusTotal and discovered that the
UEFI component (the first stage in the malware boot process) is quite old too. It was compiled with
borrowed code from an unknown old malware project, most likely previously discovered in the wild
on some Dell systems back in 2018 (according to GitHub repository information) and reconstructed
in detail in the GitHub repository called “BootLoader”.

Figure3

Binarly investigation focused on the firmware research of the UEFI component to provide
additional technical information to the already detailed original report on MoonBounce threat.

Our deep dive uncovered similarities between the MoonBounce UEFI component and the binaries
available in the BootLoader GitHub repository. Diving into the BootLoader code, visually the
hooking routine Search_OslArchTransferToKernel() piqued our interest, as it is almost identical
with the textual disassembly of the MoonBounce’s CORE_DXE firmware dump component:

Figure4 Code from CORE_DXE of MoonBounce firmware dump

Figure5 Disassembled 32-bit code of BootLoader binary

https://www.binarly.io/posts/A_deeper_UEFI_dive_into_MoonBounce/index.html
https://securelist.com/finspy-unseen-findings/104322/
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://github.com/lslx/BootLoader
https://github.com/lslx/BootLoader/blob/502c43312f2759329c3570920a9101f0368b5d74/BootLoader.Asm#L1056


2/3

During early runtime of the DXE phase, it is a known practice employed by malicious actors to
modify or hook DXE Services to intercept a boot flow inside the firmware. From a forensics
perspective, such modifications are very visible and can be detected using common integrity
firmware monitoring approaches.

Figure6 Disassembly code from CORE_DXE of MoonBounce firmware dump

This code from MoonBounce component is pretty similar with code flow from BootLoader.asm.
These observations lead to the conclusion that MoonBounce's authors are the same or use similar
code techniques or frameworks to embed their modification into the firmware and Windows kernel.

Additional details can be found in the original Kaspersky report “Technical details of MoonBounce’s
implementation” (p. 6, “Code that set up a hook in the ExAllocatePool function within
ntoskrnl.exe”).

Another technical detail we'd like to highlight here relates to the multiple infection delivery paths.
The original report explains the usage of CoreCreateEventInternal() hook - as support for both
UEFI boot and Legacy boot mode (assuming it’s targeting deprecated Compatibility Support
Module (CSM)).

Compatibility Support Module (CSM) - this module emulates the legacy BIOS in UEFI systems and
was developed by Intel to ease the transition to UEFI world. It's pretty common on hardware
released before 2020. For newer enterprise hardware is usually disabled by default.

The reason for using CoreExitBootServices() is to hook a call from Windows loader (Winload) and
prepare the next steps for the MoonBounce boot interception process. What is the point of hooking
InternalAllocatePool() at the beginning? The possible motivation for this could be to avoid storing
the shellcode in a virtual address space along the Windows kernel, by placing it in a physical
memory and then executing it directly from there. Such a technique can be used for fileless in
memory code execution which would be orchestrated directly from the firmware. During incident
response, this will cause complications from a forensic perspective.

Upon further analysis, we found that CORE_DXE contains the target firmware name as a string
constant "E7846IMS.M30".

Figure7

Therefore, we became curious to determine the exact targeted platform. The first forensic artifact
is the PE header timestamp for the CORE_DXE module (Fri Jul 18 03:29:55 2014).

Figure8

PE Tree snapshot of the CORE_DXE module

On the same day, Taiwanese company MSI released a firmware update for their hardware platform
which is very similar to the firmware that has been infected by MoonBounce.

Searching on Google for the string constant "E7846IMS.M30", we found the following website:

https://github.com/lslx/BootLoader/blob/master/BootLoader.Asm#L1116


3/3

Figure9
hxxps://www.mmnt[.]net/db/0/13/lupd01[.]eu[.]msi[.]com/ALL_BIOS_Update_Genie_update_20140831

After obtaining the original firmware image, we were curious about the similarity between the
original CORE_DXE component and the modified one in MoonBounce. According to our code
analysis (binary diffing the MoonBounce UEFI component with the original firmware image from
the vendor), there were no other modifications besides hooks for InternalAllocatePool,
CoreExitBootServices and CoreCreateEventInternal services.

Figure10 BinDiff analysis with the original CORE_DXE {5AE3F37E-4EAE-41AE-8240-
35465B5E81EB} driver from E7846IMS.M30 firmware

Using the Binarly Cloud Platform, we found a DXE Core driver which is very similar to the
MoonBounce UEFI firmware dump component. The similarity was confirmed by matching control
flow graphs through further analysis with Google BinDiff tool. The code similarity search reveals
exactly three modified/hooked routines that we discussed earlier.

There are other interesting questions we need to discuss, such as potential methods of delivering
malware to the target system. How could such malware be written into SPI flash storage of the
targeted system? It is worth noticing that the analyzed MoonBounce UEFI component was built
for a target hardware related to a MSI system from 2014. This fact allows us to suggest two
possible initial points of compromise:

Physical access-based implant delivery to the target system - no Intel Boot Guard
technology present or enabled thus there are no physical or hardware restrictions to get
access to SPI flash storage of the system.
Software-based implant delivery to the target system - keeping in mind the historical
ignorance of many vendors on firmware security threats, we infer that no SPI protections
were enabled on the system, hence SPI write-operations could be issued easily with no
exploits required (access only to physical memory is required for working with PCH SPI
controller MMIO).

Public information regarding firmware related implants is more present in the media lately, but it is
just scratching the surface in terms of threat detection. Many security research papers have been
published which provide examples of more advanced techniques for threat actors to persist in
firmware. The supply chain complexity significantly increases the chances for the attackers to
effectively reuse 1/N-day vulnerabilities (“The Firmware Supply-Chain Security is broken: Can we
fix it?”.

We need to increase the industry awareness to firmware related threats and build more
effective threat hunting programs with cross-industry collaboration between the vendors to
mutually benefit customers and provide better detection rates.

MoonBounce Firmware Implants Threat Intelligence Supply Chain Binarly Platform

Back to overview

https://www.binarly.io/posts/The_Firmware_Supply_Chain_Security_is_broken_Can_we_fix_it
http://10.10.0.46/posts/MoonBounce
http://10.10.0.46/posts/Firmware%20Implants
http://10.10.0.46/posts/Threat%20Intelligence
http://10.10.0.46/posts/Supply%20Chain
http://10.10.0.46/posts/Binarly%20Platform
http://10.10.0.46/posts

