
1/11

WhisperGate :: rxOred's blog
rxored.github.io/post/analysis/whispergate/whispergate/

WhisperGate

2022-01-19

Table of content⌗

Introduction⌗

Dozens of Ukranian government sites, including Ministry of foreign affairs, Cabinet of
ministers and security council have been hit by a massive cyber attack.

Microsoft incident response team recently released samples of destructive malware used in
the campaign.

Samples⌗

virustotal filescan.io

Environment⌗

 Windows 10 guest (Virtualbox)
 Windows 10 host

https://rxored.github.io/post/analysis/whispergate/whispergate/
https://rxored.github.io/post/analysis/whispergate/whispergate/
https://www.virustotal.com/gui/file/a196c6b8ffcb97ffb276d04f354696e2391311db3841ae16c8c9f56f36a38e92
https://www.filescan.io/uploads/61e5524c0f8c757253c42839

2/11

Tools⌗

 Die
 IDA
 x32dbg
 bochs

Analysis⌗

Behavioral analysis⌗

malware needs administrative privileges to be successful.

Malware does not create any network traffic, registry modifications or file modifications

Upon restarting, device will boot into a screen displaying the following ransom note.

Static analysis⌗

The pe⌗

3/11

According to detect it easy, the file is a 32 bit PE file.

it is compiled and linked using MinGW (GCC 6.3.0) and GNU linker.

die shows entropy as 6.07208, which is high but it also says executable is not packed.

As usual, entropy in the .text section is higher than in the other sections.

4/11

strings in the binary are not encrypted. several strings shown in the above diagram gives
hints about malware’s capabilities such as disk corruption.

Also, note that it shows a bitcoin wallet and a tox ID that can be used as signatures.

- 1AVNM68gj6PGPFcJuftKATa4WLnzg8fpfv
- 8BEDC411012A33BA34F49130D0F186993C6A32DAD8976F6A5D82C1ED23054C057ECED5496F65

Executable does not have many imports. There are no APIs related to cryptography
eventhough malware claims to encrypt the files.

Reversing the pe⌗

IDA shows that PE contains two TLS callbacks. Initially suspected these were for anti-
debugging purposes but turns out to be no.

5/11

first TLS callback starts calling some function pointers if Reason is DLL_THREAD_ATTACH .

the second TLS callback simply returns if Reason is something other than
DLL_THREAD_DETACH or DLL_PROCESS_DETACH , suggesting this may be de initializing

whatever initialized by the tlscallback1 .

6/11

start function calls sub_4011b0 after setting the app type.

sub_4011b0 calls function sub_403b60 that is responsible for main functionality of the
malware.

7/11

the function copies 2048 bytes at offset boot_sector_code into the stack.

offset contains bytes of compiled x86 real mode boot sector code, along with the boot
signature 0x55AA .

8/11

Then it calls CreateFileW passing \\\\.\\PhysicalDrive0 as filename argument.
returned handle is then passed to WriteFile along with the stack buffer that contains boot
sector code. If the call is successful, it will overwrite MBR (master boot record) with a custom
boot sector.

After BIOS has done selecting the boot device it will load overwritten MBR into memory and
the CPU will start executing a parasite bootloader.

Also, note that malware does not encrypt anything.

Extracting boot sector code⌗

buffer containing boot sector code can be extracted by placing a breakpoint at the address
where it is accessed and using the show in dump feature in x32dbg.

extracted buffer can be then saved as a raw binary file for further analysis.

Reversing boot sector code⌗

9/11

cs segment register is initially initialized to 0x0, it is used to zero out ax and set up other
segment registers. then loads the ransom note into si register.

Next instruction calls print_loop , which then calls print_char after loading al with
the byte at si . And it will repeat this operation until [si] is null.

print_char uses BIOS interrupts to put a single character into the screen. A BIOS
interrupt call is a feature of BIOS that allows bootloaders and early kernels to access BIOS
services such as video memory access and low-level disk access. To use BIOS interrupts,
ah register should be initialized to the function number. parameters passed down through

registers and similar to x86 syscalls, int instruction is used to do the software interrupt
along with the BIOS service number

For instance, in the above image, malware loads Display character function number 0x0e
into ah and calls BIOS video service.

More about BIOS interrupts - Ralf Brown’s BIOS interrupt list.

After printing the ransom note, the overwritten code jumps into another label

http://www.cs.cmu.edu/~ralf/files.html

10/11

which then jumps to label corrupt_c

Two insutrctions after segment register initialization sets word at 0x7c78 to 0x0000 and
dword at 0x7c76 to 0x7c82 (‘AAAA’).

This initializes the DAP (Disk Address Packet) structure. DAP is a structure that should be
initialized in memory in order to use Logical block addressing with interrupt 0x13. This
structure is then should be passed through si register.

the layout of the structure

 Offset Size Description
 0 1 size of the packet (16 bytes)
 1 1 always 0
 2 2 number of sectors to transfer (max 127 on some BIOSes)
 4 4 transfer buffer (16 bit segment:16 bit offset) (see note #1)
 8 4 lower 32-bits of 48-bit starting LBA
 12 4 upper 16-bits of 48-bit starting LBA

source osdev

before the interrupt call int 0x13 , which is used for low-level disk access, ah register is
initialized to 0x43, BIOS function number for writing sectors to the disk.

following registers are also initialized

 al - 0x0 (close clock write)
 dl - 0x80 (hard disk)
 si - 0x7c72 (DAP)

The si register is loaded with address 0x7c72 , which must be the address of disk
address packet.

https://wiki.osdev.org/Disk_access_using_the_BIOS_(INT_13h)#LBA_in_Extended_Mode

11/11

A successful BIOS interrupt call will overwrite the first Logical Block Address of the disk with
AAAA , corrupting the C drive.

The next few instructions check whether an extended write operation is successful or not. if
cf is set (error) control flow gets redirected to loc_7c45 (failed), else, to
loc_7c5d (success).

if fails, the malware tries to overwrite the next disk drive by incrementing the value that adds
up with 0x80.

Adds 0xc7 (199) to [0x7c7a] , incrementing next LBA to be overwritten by 199.

The loop is going to continue until the hard disk is completely overwritten by AAAA s for each
200 Logical Block Address, entirely corrupting the disk.

The end⌗

It is clear that financial gain is not the motivation behind this malware. Malware is created to
do the maximum possible damage to the infeected computer.

#Spread Anarchy!

