
1/9

Extracting Cobalt Strike Beacon Configurations
elastic.github.io/security-research/intelligence/2022/01/03.extracting-cobalt-strike-beacon/article/

Cobalt Strike

https://elastic.github.io/security-research/intelligence/2022/01/03.extracting-cobalt-strike-beacon/article/
https://elastic.github.io/security-research/tags/#cobalt-strike

2/9

3/9

2022-01-19

Please check out our previous post on how to collect Cobalt Strike beacon implants. We’ll build on
that information to extract the configurations from the beacons.

In this post, we’ll walk through manually analyzing a Cobalt Strike C2 configuration from a binary
beacon payload using the excellent Cobalt Strike Configuration Extractor (CSCE). We’ll also cover
enabling some newer features of the Elastic Stack that will allow you to do this at scale across all your
monitored endpoints, by extracting the beacons from memory.

Shout Out

The team at Blackberry has a tremendous handbook called “Finding Beacons in the Dark”
(registration required) that dives extensively into Cobalt Strike beacon configurations. We’ll discuss a
few fields in the configurations here, but if you’re interested in learning about how beacons function,
we strongly recommend checking that resource out.

Cobalt Strike Configuration Extractor¶

The Cobalt Strike Configuration Extractor (CSCE) by Stroz Friedberg is a “python library and set of
scripts to extract and parse configurations from Cobalt Strike beacons”.

To use the CSCE, we’ll create a Python virtual environment, activate it, and install the CSCE Python
package.

Setting up the Cobalt Strike Configuration Extractor
Next, we can run the CSCE on the beacon payload we extracted from memory to see if there’s any
interesting information stored we can collect (we’ll add the --pretty flag to make the output easier
to read as a JSON document).

Viewing the atomic indicators of the CS beacon configuration

https://elastic.github.io/security-research/intelligence/2022/01/02.collecting-cobalt-strike-beacons/article/
https://github.com/strozfriedberg/cobaltstrike-config-extractor
https://www.blackberry.com/us/en/forms/enterprise/ebook-beacons-in-the-dark
https://github.com/strozfriedberg/cobaltstrike-config-extractor

4/9

(csce) $ csce --pretty beacon.exe

{
 "beacontype": [
 "HTTPS"
],
 "sleeptime": 45000,
 "jitter": 37,
 "maxgetsize": 1403644,
 "spawnto": "GNEtW6h/g4dQzm0dOkL5NA==",
 "license_id": 334850267,
 "cfg_caution": false,
 "kill_date": "2021-12-24",
 "server": {
 "hostname": "clevelandclinic[.]cloud",
 "port": 443,
 "publickey": "MIGfMA0GCSqGSIb3DQEBAQUAA4G...
...truncated...

Immediately, we can see that the beacon uses HTTPS to communicate and that the domain is
clevelandclinic[.]cloud . This gives us an atomic indicator that we can do some analysis on.

Looking at the Malleable Command and Control documentation, we can get a description of the
configuration variables.

As an example, we can see that the sleeptime is 450000 milliseconds, which changes the default
beacon check in from every 60-seconds to 450-seconds, or 7 ½ minutes. Additionally, we see a jitter
of 37 meaning that there is a random jitter of 37% of 450000 milliseconds (166,500
milliseconds), so the beacon check-in could be between 283,000 and 450,000 milliseconds (4.7 -
7.5 minutes).

Additionally, the publickey field is used by the Cobalt Strike Team Server to encrypt
communications between the server and the beacon. This is different from normal TLS certificates
used when accessing the C2 domain with a browser or data-transfer libraries, like cURL . This field is
of note because the Team Server uses the same publickey for each beacon, so this field is valuable in
clustering beacons with their perspective Team Server because threat actors often use the same
Team Server for multiple campaigns, so this data from the configuration can be used to link threat
actors to multiple campaigns and infrastructure.

Continuing to look at the configuration output, we can see another interesting section around the
process-inject nested field, stub :

Viewing the process-inject.stub field

https://www.cobaltstrike.com/help-malleable-c2

5/9

(csce) $ csce --pretty beacon.exe

...truncated...
 "process-inject": {
 "allocator": "NtMapViewOfSection",
 "execute": [
 "CreateThread 'ntdll!RtlUserThreadStart'",
 "CreateThread",
 "NtQueueApcThread-s",
 "CreateRemoteThread",
 "RtlCreateUserThread"
],
 "min_alloc": 17500,
 "startrwx": false,
 "stub": "IiuPJ9vfuo3dVZ7son6mSA==",
 "transform-x86": [
 "prepend '\\x90\\x90'"
],
...

The stub field contains the Base64 encoded MD5 file hash of the Cobalt Strike Java archive. To
convert this, we can again use CyberChef, this time add the “From Base64” and “To Hex” recipes.

Now that we have the MD5 value of the Java archive (222b8f27dbdfba8ddd559eeca27ea648), we
can check that against online databases like VirusTotal to get additional information, specifically, the
SHA256 hash (7af9c759ac78da920395debb443b9007fdf51fa66a48f0fbdaafb30b00a8a858).

https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true)To_Hex('None',0)),%20ensure%20you%0Achange%20the%20%22Delimiter%22%20to%20%22None%22%20in%20the%20%22To%20Hex%22%20recip

6/9

Finally, we can verify the SHA256 hash with CobaltStrike to identify the version of the Java archive by
going to https://verify.cobaltstrike.com and searching for the hash.

Now we know that this beacon was created using a licensed version of Cobalt Strike 4.4.

Another field from the configuration that is helpful in clustering activity is the license_id field.

https://verify.cobaltstrike.com/

7/9

Viewing Cobalt Strike watermark
This is commonly referred to as the Watermark and is a 9-digit value that is unique per license. While
this value can be modified, it can still be used in conjunction with the process-inject.stub and
publickey fields (discussed above) to cluster infrastructure and activity groups.

These are just a few fields that can be used to identify and cluster activities using configurations
extracted from the Cobalt Strike beacon. If you’re interested in a very in-depth analysis of the
configuration, we recommend you check out the Finding Beacons in the Dark Cobalt Strike handbook
by the team at Blackberry.

Putting Analysis to Action¶

To test out our analyst playbook for collecting Cobalt Strike beacon payloads, their configurations, and
metadata contained within; we can apply those to more data to identify clusters of activity.

https://www.blackberry.com/us/en/forms/enterprise/ebook-beacons-in-the-dark

8/9

In the above illustration, we can cluster threat actors based on their shared uses of the beacon
payload public key, which as we described above, is unique per Team Server. This would allow us to
group multiple beacon payload hashes, infrastructure, and campaigns to a single Threat Actor.

As always, using the atomic indicators extracted from the beacon payload configurations
(clevelandclinic[.]cloud in our example) allow you to identify additional shared infrastructure,
target verticals, and threat actor capabilities.

This time at full speed¶

All of the steps that we’ve highlighted in this release, as well as the previous release, can be
automated and written into Elasticsearch using the Cobalt Strike Beacon Extraction project.

Summary¶

In this post, we highlighted new features in the Elastic Stack that can be used to collect Cobalt Strike
Malleable C2 beacon payloads. Additionally, we covered the processes to build Fleet policies to
extract beacon payloads from memory and their configurations.

These Fleet policies and processes enable security analysts to collect Cobalt Strike beacon payloads
and their configurations to identify threat actor controlled infrastructure and cluster activity.

Artifacts¶

Observable Type Note

697fddfc5195828777622236f2b133c0a24a6d0dc539ae7da41798c4456a3f89 SHA256 Cobalt
Strike
Malleable
C2
beacon
payload

https://elastic.github.io/security-research/intelligence/2022/01/02.collecting-cobalt-strike-beacons/article/
https://elastic.github.io/security-research/tools/cobalt-strike-extractor/

9/9

Observable Type Note

7475a6c08fa90e7af36fd7aa76be6e06b9e887bc0a6501914688a87a43ac7ac4 SHA256 Cobalt
Strike
Malleable
C2
beacon
payload

f9b38c422a89d73ebdab7c142c8920690ee3a746fc4eea9175d745183c946fc5 SHA256 Cobalt
Strike
Malleable
C2
beacon
payload

clevelandclinic[.]cloud domain-
name

Cobalt
Strike
Malleable
C2
domain

104[.]197[.]142[.]19 ipv4-
addr

Cobalt
Strike
Malleable
C2 IP
address

192[.]64[.]119[.]19 ipv4-
addr

Cobalt
Strike
Malleable
C2 IP
address

Artifacts¶

Artifacts are also available for download in both ECS and STIX format in a combined zip bundle.

Download indicators.zip

Last update: January 31, 2022
Created: January 19, 2022

https://elastic.github.io/security-research/intelligence/2022/01/03.extracting-cobalt-strike-beacon/indicators.zip

