
1/7

@cryptax May 5, 2022

Multidex trick to unpack Android/BianLian
cryptax.medium.com/multidex-trick-to-unpack-android-bianlian-ed52eb791e56

@cryptax

Jan 14

·

5 min read

This article explains how to unpack sample sha256
5b9049c392eaf83b12b98419f14ece1b00042592b003a17e4e6f0fb466281368 which was

served from http://videofullizlesite9356[.]site/ApiServices-Files92752/Down at the beginning
of January 2022 (see this tweet). The malware poses as a Video player and appears to be a
member of the Bian Lian malware family (see former analysis 1 and 2). Although the
malware has similarities with BankBot, I believe this precise sample is not a banker malware
(it does not attempt to steal your banking credentials or steal from your bank account) but the
Bian Lian bot (bulk send of SMS, USSD calls etc).

Update Jan 17, 2022. Let’s try and clarify. Bian Lian is a “generic” bot. It may be used to steal
passwords of banking apps. Some current samples seem to be particularly interested in
stealing credentials from turkish banks.

Kudos to @U039b with whom I began this reverse engineering, and @ReBensk, .

Summary (spoiler?) for those who don’t want to read it all :)

The malware does not use DexClassLoader to unpack the payload DEX. Instead it
loads the payload as a secondary DEX through multidex support. The packer re-
implements multidex support and mainly changes names & adds asset decryption.

You can use my Java program to decrypt the asset and access the payload.

What makes this sample difficult to unpack

The most common packing mechanism consists in loading a hidden DEX with
DexClassLoader . The sample does not use DexClassLoader (nor PathClassLoader

or InMemoryDexClassLoader). Therefore, we cannot unpack by creating a hook on
DexClassLoader that dumps its first file argument.

https://cryptax.medium.com/multidex-trick-to-unpack-android-bianlian-ed52eb791e56
https://cryptax.medium.com/?source=post_page-----ed52eb791e56--------------------------------
https://cryptax.medium.com/?source=post_page-----ed52eb791e56--------------------------------
https://twitter.com/ReBensk/status/1478699273558528002?s=20
https://www.threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html
https://www.fortinet.com/blog/threat-research/new-wave-bianlian-malware
https://github.com/cryptax/misc-code/blob/master/UnpackJwi.java

2/7

Many dynamic tools fail (let me know if you find one that works): RMS times out while
trying to launch the app, House fails, and Dexcalibur fails to load the malware’s project due
to a bug.

This malware uses another mechanism to side load its payload. I’ll discuss at the end
of the article (section “So, how is the DEX loaded if not with DexClassLoader?”). But first,
let’s unpack, because actually if your goal is to analyze the payload, you don’t really need to
understand how it is loaded.

Detecting it is packed

The main activity is com.pmmynubv.nommztx.MainActivity , which is not present in the
wrapping APK but in the contained payload.

DroidLysis detects the sample is packed

Unpacking

Understanding the packing mechanism takes a little bit of time, because all strings are
obfuscated (fortunately JEB decrypts nearly all of them) and DexClassLoader — typically
to load a DEX — is not used.

The flow is the following. The manifest references com.brazzers.naughty.g as the
application. Indeed, g extends Application and can be seen as the main entry point of
the app. One of the first methods to be called is the protected method
attachBaseContext .

https://github.com/m0bilesecurity/RMS-Runtime-Mobile-Security
https://github.com/nccgroup/house
https://github.com/FrenchYeti/dexcalibur/issues/69

3/7

This is where the unpacking actually begins! For clarity, I renamed the method
“install_multidex”. Its original name was of course obfuscated to “a”. It is a bit difficult to spot
so much happens through this simple call…
From attachBaseContext , the malware calls a cascade of functions which (1) locate an
asset named G9ugwFtlG1.jwi , (2) deflates it and (3) finally decrypts it using a home-made
algorithm with hard coded key GIUh9JHGUIGIUHGokfewrofij58YV6UhYUF7gjhgv .

The strings G9ugwFtlG1, .jwi, GIUh9JHGUIGIUHGokfewrofij58YV6UhYUF7gjhgv are
found in a malware’s configuration class com.brazzers.naughty.h, but note they are all
obfuscated.

Obfuscated bot configuration strings. De-obfuscation occurs through i.a()
The obfuscation is not complex: a XOR with a fixed character, nevertheless I was happy JEB
did the work automatically for me!

4/7

Isn’t that nice? JEB automatically decrypts strings when a simple algorithm is used. JEB
doesn’t do all the work though, you still have to reverse engineer to understand the meaning:
I manually renamed obfuscated name h.a to h.PAYLOAD_EXTENSION etc.
If you want to follow the calls:

1. com.brazzers.naughty.g.attachBaseContext(Context)
2. com.brazzers.naughty.a.a(Context)
3. com.brazzers.naughty.a.a(Context, File, File…)
4. com.brazzers.naughty.b.a(Context, String…)
5. com.brazzers.naughty.b.c()
6. com.brazzers.naughty.b.a(ZipFile, ZipEntry…)
7. com.brazzers.naughty.k.a(String, InputStream, OutputStream)

We’ll see later the malware is actually following the normal flow for loading secondary
DEXes, except the names are obfuscated.

Automating the unpacking

I basically copied the malware’s unpacking code in com.brazzers.naughty.k.a , did a
little adaptation, and finally worked out a Java program that automatically unpacks the
malware (get the code here). Run the program in the directory where G9ugwFtIG1.jwi is
available (./assets/7G8Uwty), and it will unpack and create a unpacked.zip which
contains the payload DEX.

https://github.com/cryptax/misc-code/blob/master/UnpackJwi.java

5/7

Static program to unpack the asset — java UnpackJwi

$ unzip -l unpacked.zip Archive: unpacked.zip Length Date Time Name-----
---- ---------- ----- ---- 906456 2022-01-14 11:05 classes.dex---------
------- 906456 1 file

So, how is the DEX loaded if not with DexClassLoader?

The malware uses the multidex scheme to load the payload as secondary DEX. This
method has existed for a couple of years (e.g. Android/Rootnik using it in 2017), but I hadn’t
seen it for a while. In 2022, it seems we have a new packer in the wild which uses this
technique as the same packer is used here in a sample of Flubot.

The technique consists in re-writing the way applications load multiple DEX. The Android
code can be found here. The classes MultiDex and MultiDexApplication are the core
of the functionality. They implement support of APKs with multiple DEX. Everything begins in
indeed in attachBaseContext of MultiDexApplication. The malware re-implements
MultiDexApplication , MultiDex and MultiDexExtractor with little changes part

code re-organization and obfuscated names:

MultiDexApplication is found in com.brazzers.naughty.g
MultiDex is within in com.brazzers.naughty.a

and MultiDexExtractor is com.brazzers.naughty.b

The two main functional changes are :

1. . The extracted DEX will be located in a directory named hf8U6UUIwiqaGgo instead
of the standard secondary-dexes name, the extracted suffix will be .weg instead of
.zip , and some other minor details like the lock file name is changed to
T9etIiaI.uw87 instead of MultiDex.lock . The goal is obviously to complicate

reverse engineering, but also to make the files less noticeable should they be spotted
during extraction on the device.

2. . Compare the original code with the malware’s version below.

https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer
https://www.f5.com/labs/articles/threat-intelligence/flubots-authors-employ-creative-and-sophisticated-techniques-to-achieve-their-goals-in-version-50-and-beyond
https://android.googlesource.com/platform/frameworks/multidex/+/refs/heads/master/library/src/androidx/multidex
https://developer.android.com/studio/build/multidex

6/7

Original code from (not malicious!)

Malware’s version. The input is deflated and decrypted.
The next article will deal with the reverse engineering of the payload DEX.

More recent samples of January 14 (today)

Some newer samples of that malicious video application have been released today: see
Twitter. I haven’t looked in all samples yet, but at least the first one,
01658_Video_Oynatıcı.apk (sha256:
d105764cd5383acacd463517691a0a7578847a8174664fc2c1da5efd8a30719d) does not

use the same packer. It uses the common DexClassLoader method, actually the same
packing mechanism as this sample. Watch for the unpacked payload in a file named
maXclr.json .

generic_x86_64:/data/data/com.friend.bronze/app_DynamicOptDex # lsmaXclr.json
maXclr.json.prof

The payload DEX (maXclr.json) is a Bian Lian sample.

https://twitter.com/malwrhunterteam/status/1481947346619584514?s=20w
https://cryptax.medium.com/unpacking-an-android-malware-with-dexcalibur-and-jeb-59bdd905d4a7

7/7

— the Crypto Girl

