
1/27

The BlackBerry Research & Intelligence Team

Threat Thursday: Jupyter Infostealer is a Master of
Disguise

blogs.blackberry.com/en/2022/01/threat-thursday-jupyter-infostealer-is-a-master-of-disguise

Summary

Jupyter infostealer is a master of deception, a highly modular malware that hides deep
within legitimate installer packages. Once executed, it can receive further malicious
components via its command-and control (C2) server to enhance its capabilities. These
components can include executables and malicious PowerShell scripts.

One of the downloads is an information stealing module, designed to scoop up victim
credentials like their computer name, user admin rights, workgroup, browser password
database, and other useful information. It also targets popular browsers such as Google
Chrome™, Microsoft Edge®, Opera, Brave, and Mozilla Firefox. Upon finding one of these
browsers installed, it gathers and exfiltrates sensitive user data stored within these
browsers, such as login data (usernames and passwords), cookies, and web data, including
“autofill” information such as the user’s name, home address, and email address.

https://blogs.blackberry.com/en/2022/01/threat-thursday-jupyter-infostealer-is-a-master-of-disguise

2/27

It also targets a large number of crypto wallets, including Atomic Wallet, MyMonero Wallet,
and Ethereum Wallet, and additionally seeks to access several Remote Access Applications
including OpenVPN and Remote Desktop Protocol (RDP).

This malware is particularly noxious, as it does not target specific organizations or business
verticals, and it does not have a set goal or agenda. It targets all victims who inadvertently
fall for its ploys.

Discovery and Execution

When Jupyter was first discovered at the end of 2020, it initially bundled itself with
legitimate executables. When executed, it revealed an obfuscated PowerShell script hidden
within. Throughout 2021, this threat group has focused its development efforts on
increasing levels of stealth and obfuscation, including loading the Dynamic-Link Library
(.DLL) of Jupyter reflectively into memory rather than writing the file to disk.

In its current form, Jupyter now tends to be bundled in large Windows® installer packages
(.MSI), often exceeding 100 MB in size. These packages are still bundled with legitimate
applications, and also signed with valid digital certificates to further hide their intentions.

On installation, the package will load and attempt to install the bundled legitimate
application. However, deep within the code of these Trojan installers resides a relatively
small, heavily obfuscated and encrypted PowerShell script that will run in the background.

Operating System

Risk & Impact

Technical Analysis

Many Faces, Many Names, Many labels

3/27

Over a short period of time, Jupyter has masqueraded as many different applications and
installers. The malware has also changed its core file extension to .MSI, and it uses
different operations to execute its obfuscated PowerShell script.

This flexibility has led various security research organizations to label the malware family
differently, based on Jupyter’s core module naming functions, or downloaded components.
Previous names include Polazert, Yellow Cockatoo, and more recently
SolarMarker/Deimos. The malware has since abandoned the Indicators of Compromise
(IoCs) that were the basis of these naming conventions, to thwart easy identification.

Infection Vector

Jupyter’s initial infection vector can vary widely. Typically, Jupyter is hosted on fake
downloader websites that masquerade as legitimate hosts. These sites typically offer a free
download for a PDF book or a simple application. These can either be visited by a victim
unintentionally, or via a link in a malicious email.

Figure 1: Jupyter samples are often signed with digital certificates to appear trustworthy

Jupyter is often bundled with freeware applications and signed with un-revoked digital
certificates as shown in Figure 1, making the download appear more legitimate.

In previous iterations, Jupyter had moved away from using Windows Portable Executables
(.EXE files) in favor of large Windows Installer Packages (.MSI). This is likely because MSI
is a file type that is less likely to be scanned by some antivirus (AV) programs, and because
large files (beyond 100 MB) are less likely to be inspected by automated sandbox routines
and other automated AV scanning solutions.

Installation

https://malpedia.caad.fkie.fraunhofer.de/details/win.solarmarker
https://otx.alienvault.com/pulse/5fcab7a1accb28c015a5717d
https://thehackernews.com/2021/08/solarmarker-infostealer-malware-once.html
https://blog.morphisec.com/new-jupyter-evasive-delivery-through-msi-installer

4/27

On execution, the Windows installer package will display an installer pop-up for the
intended legitimate application, as shown in Figure 2, while loading its data and silently
running in the background.

Figure 2: Trojanized MSI files appear to install the desired application as expected

Over the past campaign, Jupyter has used a wide range of methods to deploy itself.
Typically, the malware contains two core files – an executable and a Windows PowerShell
containing the malicious code – though it is not limited to this arrangement.

Some variants of Jupyter have also deployed a temporary file (.TMP) into the victim’s
%AppData%\Roaming\Temp\ directory, and they have dropped an additional Microsoft
PowerShell (.PS1) file, as shown in Figure 3, to generate the typical content of Jupyter’s
core malicious PowerShell script.

Figure 3: Contents of Jupyter MSI installer

5/27

PowerShell

All samples of Jupyter have heavily relied on PowerShell. The malware uses PowerShell
both to obfuscate its malicious code, and to execute that code without it ever writing itself to
disk on the victim’s machine.

It avoids writing itself to disk by loading the DLL of Jupyter reflectively into memory.
Normally, DLLs are injected into a process from a file that is written to disk. Reflective DLL
injection is a technique that forcefully injects code into a victim process from memory rather
than disk.

As the fully un-obfuscated malware does not reside on disk, it requires a persistence
mechanism to be created, such as registry keys that reload the malware when the victim
machine is started up. This makes Jupyter DLL difficult to both detect and analyze, unless
dumped from memory.

Figure 4: Breakdown of Jupyter PowerShell

Jupyter’s core PowerShell typically can be broken down into six different steps or
components, as shown in Figure 4 and the table below. Each step facilitates a specific goal,
function, or ability. Though a lot of samples of Jupyter follow the same steps, variations are
present in Jupyter’s PowerShell code, and some samples have been noted to operate in
slightly different ways to achieve the same ends.

6/27

Step Description/Functionality

Obfuscated
DLL

This is the obfuscated variable that contains the core code of Jupyter
DLL

Deobfuscated
Routine

This is the routine where the code from “Obfuscated DLL” is passed to
deobfuscate the malicious core code of Jupyter. Jupyter is often
encoded in Base64 and XOR’d.

Added to
Startup

Jupyter adds itself to startup to force re-execution of the malware, as a
persistence mechanism.

Decoy File
Creation

The malware hides itself in a commonly found directory within the
victim’s %AppData%\Roaming\ folder. It drops a random number of
“junk files” to hide the presence of one functional, malicious file. The
malware randomizes the number of junk files created, often ranging
between 100 and 300, in most variants of the PowerShell code.

DLL
Reflection

The malware executes reflectively, to prevent the DLL from being
dropped onto the user’s device.

Added to
Registry

For further persistence, the malware adds a Registry Key to the victim
machine.

Not all samples of Jupyter observed over its recent campaign have the same behavior.
Some deploy their decoy files in different directories. Others opt not to XOR their DLL’s
code, while still encoding themselves with Base64.

Decoy

To thwart analysis, one of the first actions of Jupyter’s PowerShell is to create hundreds of
randomized “junk files” as decoys, as shown in Figure 5, while leaving a single file as the
core component of the malware. These decoys are files that are created by the malware
that serve no malicious use or purpose except to hide the single malicious file within their
midst.

7/27

Figure 5: Decoy Files dropped by Jupyter

Previously observed iterations of Jupyter would drop their core .DLL to disk. Though this
ploy is still used by Jupyter, it does not deploy the DLL directly to disk anymore. The
deobfuscated version of the malware is now only loaded into memory.

With each execution of the PowerShell script, the malware will generate a new directory for
its randomized set of decoy files and core malware component. Over the course of this
recent campaign, Jupyter has deployed itself in three distinct locations on a victim device:

%AppData%\Roaming\Adobe\ [Random 15 Char directory]\
%AppData%\Roaming\Microsoft\ [Random 15 Char directory]\
%AppData%\Roaming\Nvidia\ [Random 15 Char directory]\

Persistence

On execution, Jupyter will silently run its PowerShell script. This script can be modified to
display its true intentions for analysis, as displayed in the image below.

8/27

Figure 6: Persistence-based mechanisms via registry keys

The sample used for this analysis of Jupyter creates a new directory in the folder
C:\Users\%Admin%\AppData\Roaming\Microsoft. In this example, the directory was named
kNPqHZeEjTuJAXRY, as seen in Figure 6. These locations are randomized by the malware
and a new one is generated per execution.

The malware will add an additional shortcut file to the Windows\Start Menu directory via
%AppData%\Roaming\Microsoft\Windows\Start Menu\Programs\Startup. This also uses a
randomized name derived from a variable in its PowerShell code. This shortcut is deployed
by the malware as a persistence mechanism, so it will execute the file on startup, as shown
in Figure 7.

9/27

Figure 7: Example of Jupyter sample startup shortcut

Jupyter also generates two different registry keys during the execution of its PowerShell
code. The first key is added to the victim’s machine in the following location, as seen in
Figure 7: Computer\HKEY_CURRENT_USER\SOFTWARE\Classes\%.cwvynlbszymn%

This final part of the registry key is also randomized; each time the malware is executed, it
will generate a new randomized sequence. This key points to the second registry key
generated by the malware, as shown in Figure 8.

Figure 8: RegKey added by Jupyter

The data within the second registry key added by Jupyter contains a PowerShell command
that will re-execute the malware, as shown in Figure 9. This is used as a further persistence
mechanism by the malware.

10/27

Figure 9: Core registry key re-executing Jupyter

Once located, the contents of this registry key can be further analyzed and inspected. Like
its initial PowerShell script, its intentions are to deobfuscate the malware’s main DLL and
load it reflectively into memory.

This PowerShell command, as shown in Figure 10, is a truncated version of the original
PowerShell code. Its purpose is to re-run, or execute the malware, on startup. This code is
notably smaller in size, as it omits previously achieved steps and functionality, such as
deploying the decoy files and adding registry keys.

Figure 10: PowerShell contents of registry keys

Core DLL

The core DLL related to Jupyter is .NET-compiled. Previous iterations of this DLL contained
labelled functions, and it was not obfuscated, which gave clear indications of the malware’s
intentions. In late 2021, newer iterations and versions of the malware became more
sophisticated. The malware no longer uses identifiable labels for its functions, adding
further obfuscation to its code’s contents. Despite this evolution, the functionality of this
“core module” remains largely the same.

11/27

Figure 11: Differences between versions of Jupyter

The initial functionality of this module is to establish contact with the malware’s C2
infrastructure. The malware achieves this using the .NET WebRequest provider to send
POST requests to a hard-coded IP address located within each sample of Jupyter.

During analysis, we noted that the C2 infrastructure for Jupyter appears to remain offline
until it is required. The malware continues running in the background and awaits its
infrastructure coming online. It will check for the availability of the C2 at regular intervals
until successful connection is achieved.

The request to the C2 contains RSA-encrypted data, including a hard-coded RSA key as
seen in Figure 12, that is used for future communications. Jupyter also uses Advance
Encryption Standard (AES) encryption for its communications.

AES is a commonly used symmetric block cipher. Jupyter uses this encryption standard on
its communication to prevent packet interception and inspection when communication,
deployment of modules, and exfiltration of data is occurring between the malware core
module and the C2.

12/27

Figure 12: Contents of Jupyter’s “configuration” function

If a successful connection is achieved, the core module begins its reconnaissance of the
victim’s device to locate information such as:

Machine name
Windows version
CPU architecture (x86/x64)
User’s admin rights
Workgroup
DNS
Protocol version
Machine status (idle/active)

Jupyter contains a “ping” function that will attempt to send this information, along with
following:

Version ID of the malware (version)
A unique hash derived from the victim device hardware (hwid)
A Base64 unique identifier hash per communication (uniq_hash)

Once communication has been established with its C2, Jupyter’s modular design allows the
threat to receive further malicious components to enhance its capabilities, as seen in Figure
13. These components can include executables and further malicious PowerShell scripts.

13/27

Figure 13: C2 activity and download of additional components

Versions

Each sample of Jupyter has a “Version ID” (shown in Figure 12) that is used in C2
communication. A newly discovered Version ID often signifies a change, update, or the
addition of further capabilities to the core malware module. Different variations of Jupyter
can largely be identified by characteristics of these Version IDs.

OC-1:

Powershell payload seen embedded in MSI sample as .txt file

.TXT file is dropped to the AppData folder

Command to use the payload embedded in MSI launch action

Command reads .TXT file from AppData and decodes further commands

XORed

OC-8:

Base64 at the beginning

Wscript

14/27

AppData\Adobe folder

Imports user32.dll

Get-Process

Defines two functions

Reflective loading of Base64 DLL

No XOR

OC-9:

Base64 at the beginning

 WScript

AppData\Adobe folder

Imports user32.dll

Get-Process

Defines two functions

Reflective loading of Base64 DLL

XORed

3d8:

Base64 at the beginning

Wscript

15/27

AppData\Adobe folder

Imports user32.dll, this is further hidden in a sub obfuscated PowerShell command

Get-Process

Defines two functions

Reflective loading of Base64 DLL

XORed

Table 1: Jupyter versions

Modules

Once Jupyter has finished creating persistence, it begins checking a hard-coded C2 for the
next module to download. Throughout our research, we observed a variety of different
modules served by the C2. On examining this main Jupyter module and the capabilities of
the code, it is possible to rename the obfuscated functions to estimate their name prior to
obfuscation:

Figure 14 – Original function names versus renamed functions based on capabilities

One of the downloaded components is an information-stealing module, which includes a
PowerShell script and payload. The payload is decoded by the PowerShell script and then
reflectively loaded into memory.

Infostealer Module:

16/27

This module uses several functions to extract information from various sources on a victim’s
computer. One of the functions used is the Data Protection API (DPAPI). Within this API, a
class called ProtectedData contains two wrappers: “Protect” and “Unprotect.” The
infostealing module makes use of the “Unprotect” wrapper, which is passed a byte array of
encrypted data and returns a byte array of decrypted data.

As seen in Figure 15, the Unprotect wrapper is called via the method
“a01e73a94eb4d2952c37caa645a74.”

Figure 15 – Extraction of Chrome password database and encryption key for database

The Chrome JSON configuration is stored in the local AppData directory in a file called
“Local State,” which is parsed using a class starting with “a5f8…” Within this configuration is
an entry called “os_crypt,” which has a further entry called “encrypted_key.” The
“encrypted_key” is used to encrypt saved login data.

The infostealer module uses a utility class “a01e…” to read this encrypted key, and a static
class function starting with “a671…” to call DPAPI Unprotect. As the key is prefixed with
DPAPI signature bytes, a loop runs five times to omit this. Once the “encrypted_key” is
formatted, it is then stored in a class field called “aes_key.” Further to this, a randomly
named copy of the Chrome “Login Data” file is written to the temporary directory in
Windows, which is then stored in the class field “pwds_db” and deleted from the temporary
directory.

There is no decryption of the stored Chrome login data taking place in the function shown in
Figure 15; the relevant data is read and stored into class member fields “aes_key” and
“pwds_db.” The “pwds_db” and “aes_key” values are collected and converted to Base64.
This indicates the malware authors are opting to perform credential decryption following
data exfiltration. This makes sense from an efficiency perspective, as they have everything
necessary to decrypt the login data after stealing the Chrome information.

The infostealer module targets the following browsers:

Google Chrome
Microsoft Edge
Opera

17/27

Brave
Mozilla Firefox

It also gathers the following browser data:

Login data (usernames/passwords)
Cookies
Web data (Autofill information such as names, addresses, emails)

Figure 16: Decrypting Firefox data

18/27

Figure 17: Decrpyting Chrome data

Jupyter targets the following crypto wallets:

Atomic Wallet
Guarda Wallet
SimplEOS Wallet
NEON Wallet
Wasabi Wallet
MyMonero Wallet
Jaxx Wallet
Electrum Wallet
Ethereum Wallet
Exodus Wallet
GreenAddress Wallet
Coin Wallet
Bither Wallet
Coinomi Wallet
Ledger Live Hardware wallet
Trinity Hardware wallet
Scatter Hardware wallet
Wildcard any file matching: *wallet*.dat
Wildcard any file matching: *.wallet

19/27

Remote Access Applications Targeted:

OpenVPN
Remote Desktop Protocol (RDP)

Conclusion

At the close of 2021, Jupyter saw rapid enhancements to prior iterations. This made the
newer versions of malware harder to detect, scan and prevent, leading to a rise in devices
affected by the malware.

Now that Jupyter is being bundled with legitimate, signed software, this ploy makes it
difficult to detect the threat before it has been deployed onto a victim system. As the
malware executes via DLL reflection, it gives little indication that it is running silently in the
background. Once on a victim system, Jupyter will use multiple persistence mechanisms,
and it will even install the legitimate software it’s bundled with to further deceive the victim.

To further conceal its activities, Jupyter’s C2 infrastructure tends to remain offline for large
periods of time, operating in short bursts of activity rather than constant communication.

The modular nature of the malware keeps its core-module compact. Jupyter largely focuses
on stealing information, deploying various modules to obtain passwords, credentials, and
other data. However, the malware is not just limited to these activities. Once it gains a
foothold on the system, it can download a wide variety of components, making it an
extremely dangerous piece of malware.

YARA Rule

The following YARA rule was authored by the BlackBerry Research and Intelligence Team
to catch the threat described in this document:

import "pe"
 import "dotnet"

rule Mal_Infostealer_EXE_Jupyter_Cert_36ff
 {

 meta:
 description = "Detects Jupter executables by certificate OOO Sistema (36ff)"

 author = "BlackBerry Research & Intelligence Team"
 date = "2021-10-14"

 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 condition:
 uint16(0) == 0x5a4d and

 for any i in (0 .. pe.number_of_signatures) : (

20/27

 pe.signatures[i].issuer contains "Certum Extended Validation Code Signing CA
SHA2" and
 pe.signatures[i].serial == "36:ff:67:4e:b3:05:e9:9c:35:56:5f:a3:01:d5:c4:b0" //
Serial variable must be lowercase
)
}

rule Mal_Infostealer_MSI_EXE_Jupyter_Certificate
{
 meta:
 description = "Detects Jupter by certificate"
 author = "BlackBerry Threat Research Team"
 date = "2021-11-04"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 strings:
 // MSI Installer
 $msi = { D0 CF 11 E0 A1 B1 1A E1 }

 // MSI Strings
 $a1 = "EMCO MSI Package Builder"

 // PowerShell execution strings
 $b1 = "powershell-ExecutionPolicy bypass -command \"iex([\\
[]IO.File[\\]]::ReadAllText('[CurrentUserProfileFolder]" nocase
 $b2 = "powershell-ep bypass -file \"[AppDataFolder]" nocase
 $b3 = /powershell-ep bypass -windowstyle hidden -command \"\$xp=\'\
[AppDataFolder\].{0,256}\.{0,256}\'/ nocase
 $b4 = /powershell-ep bypass -windowstyle hidden -command \"\$p=\'\
[AppDataFolder\].{0,256}\.{0,256}\'/ nocase
 $b5 = /powershell-ExecutionPolicy bypass -command \"iex\(\[\\\[\]IO.File\
[\\\]\]::ReadAllText\(\'\[CurrentUserProfileFolder\].{1,256}\..{1,256}\'\)\)/ nocase

 // Certificate Name
 $c1 = "OOO ENDI"
 $c2 = "OOO MVS"
 $c3 = "OOO LEVELAP"
 $c4 = "Soto Manufacturing SRL"
 $c5 = "Decapolis Consulting Inc."

 // Co-signers
 $f1 = "SSL.com EV Root Certification Authority RSA R2"
 $f2 = "SSL.com EV Code Signing Intermediate CA RSA R3"
 $f3 = "DigiCert Trusted G4 Code Signing RSA4096 SHA384 2021 CA1"
 $f4 = "DigiCert Trusted Root G40"

 condition:
 ($msi at 0 or uint16(0) == 0x5a4d) and
 all of ($a*) and
 1 of ($b*) and

21/27

 1 of ($c*) and
 2 of ($f*)
}

rule Mal_Infostealer_MSI_Jupyter_Embedded_PowerShell
{
 meta:
 description = "Detects Jupter by a specific PowerShell command present in the MSI
Installer"
 author = "BlackBerry Threat Research Team"
 date = "2021-10-14"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 strings:
 // MSI Installer
 $msi = { D0 CF 11 E0 A1 B1 1A E1 }

 // Embedded PowerShell Command
 $x1 = /powershell-ep bypass -windowstyle hidden -command \"\$xp=\'\
[AppDataFolder\]pd\w*\.(log|txt)\';\$xk=\'[a-zA-Z]{52}\';\$xb=\[\\\[\]System\.Convert\
[\\\]\]::FromBase64String\(\[\\\[\]System\.IO\.File\[\\\]\]::ReadAllText\(\$xp\)\);remove-item
\$xp;for\(\$i=0;\$i -lt \$xb.count;\)\[\\\{\]for\(\$j=0;\$j -lt \$xk\.length;\$j\+\+\)\[\\\{\]\$xb\[\\\
[\]\$i\[\\\]\]=\$xb\[\\\[\]\$i\[\\\]\] -bxor \$xk\[\\\[\]\$j\[\\\]\];\$i\+\+;if\(\$i -ge \$xb.count\)\[\\\
{\]\$j=\$xk\.length;\[\\\}\]\[\\\}\]\[\\\}\];\$xb=\[\\\[\]System.Text.Encoding\
[\\\]\]::UTF8\.GetString\(\$xb\);iex \$xb;/ nocase

 condition:
 $msi at 0 and
 all of ($x*)
}

rule Mal_Infostealer_PowerShell_Jupyter_Updated_Samples
{
 meta:
 description = "Detects Jupter powershell via common strings"
 author = "BlackBerry Threat Research Team"
 date = "2021-11-04"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 strings:
 $c1 = /\.[T|t][O|o][L|l][O|o][W|w][E|e][R|r]\(\)\)?;[I|i][E|e][X|x]/
 $c2 = "get-random -minimum 50000 -maximum 200000" nocase
 $c3 = "ReaDALlBYTES" nocase
 $c4 = /createshortcut\
(\$env\:appdata\+'\\m\'\+\'icr\'\+\'oso\'\+\'ft\'\+\'\\w\'\+\'ind\'\+\'ow\'\+\'s\\\'\+\'st\'\+\'art\'\+\'
me\'\+\'nu\'\+\'\\pr\'\+\'ogr\'\+\'ams\\\'\+\'st\'\+\'art\'\+\'up\'\+\'\\.{29}\.lnk\'\)/ nocase

22/27

 condition:
 all of ($c*)
}

rule Mal_Infostealer_Win32_Jupyter_Main_Module
{
 meta:
 description = "Detects Jupter main module"
 author = "BlackBerry Threat Research Team"
 date = "2021-11-23"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 strings:
 $g1 = { 68 00 74 00 74 00 70 00 3A 00 2F 00 2F 00 } // h.t.t.p.:././.
 $g2 = { 5C 00 41 00 50 00 50 00 44 00 41 00 54 00 41 00 5C 00 52 00 4F 00 41 00
4D 00 49 00 4E 00 47 } // \.A.P.P.D.A.T.A.\.R.O.A.M.I.N.G
 $g3 = { 63 00 68 00 61 00 6E 00 67 00 65 00 5F 00 73 00 74 00 61 00 74 00 75 00
73 } // c.h.a.n.g.e._.s.t.a.t.u.s
 $g4 = { 50 00 4F 00 53 00 54 } // P.O.S.T
 $g5 = { 69 00 73 00 5F 00 73 00 75 00 63 00 63 00 65 00 73 00 73 } //
i.s._.s.u.c.c.e.s.s
 $g6 = { 75 00 73 00 65 00 72 00 70 00 72 00 6F 00 66 00 69 00 6C 00 65 } //
u.s.e.r.p.r.o.f.i.l.e
 $g7 = { 44 00 45 00 53 00 4B 00 54 00 4F 00 50 00 2D } // D.E.S.K.T.O.P.-
 $g8 = { 4C 00 41 00 50 00 54 00 4F 00 50 00 2D } // L.A.P.T.O.P.-
 $g9 = { 78 00 38 00 36} // x.8.6
 $g10 = { 78 00 36 00 34 } // x.6.4
 $g11 = { 41 00 64 00 6D 00 69 00 6E } // A.d.m.i.n
 $g12 = { 56 00 69 00 73 00 74 00 61 } // V.i.s.t.a
 $g13 = { 64 00 6E 00 73 } // d.n.s
 $g14 = { 64 00 7A 00 6B 00 61 00 62 72 } // d.z.k.a.b.r
 $g15 = { 78 00 7A 00 6B 00 61 00 62 00 73 00 72 } // x.z.k.a.b.s.r
 $g16 = { 64 00 7A 00 6B 00 61 00 62 00 73 00 72 } // d.z.k.a.b.s.r

 // Version Strings
 $h1 = { 4F 00 43 00 2D } // O.C.-
 $h2 = { 4E 00 56 00 2D } // N.V.-
 $h3 = { 53 00 50 00 2D } // S.P.-
 $h4 = { 49 00 4E 00 2D } // I.N.-

 $i = "System.Net"

 condition:
 10 of ($g*) and
 1 of ($h*) and
 (pe.imports("mscoree.dll", "_CorDllMain") or $i) // DotNet
}

23/27

rule Mal_Infostealer_Win32_Jupyter_InfoStealer_Module
{
 meta:
 description = "Detects Jupter infostealer module"
 author = "BlackBerry Threat Research Team"
 date = "2021-11-08"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

 strings:
 $d1 = "WebRequest" nocase
 $d2 = "HttpWebRequest" nocase
 $d3 = "WebResponse" nocase
 $d4 = "GetResponseStream" nocase
 $d5 = "GetResponse" nocase
 $d6 = "IsInRole" nocase
 $d7 = "get_UTF8" nocase
 $d8 = "FromBase64String" nocase
 $d9 = "get_OSVersion" nocase
 $d10 = "GetFiles" nocase
 $d11 = "GetExtension" nocase
 $d12 = "get_Current" nocase
 $d13 = "GetEnumerator" nocase

 $j1 = { 6C 6F 67 69 6E 73 } // logins
 $j2 = { 43 00 6F 00 6F 00 6B 00 69 00 65 00 73 } // C.o.o.k.i.e.s
 $j3 = { 00 6C 00 6F 00 67 00 69 00 6E 00 73 00 2E 00 6A 00 73 00 6F 00 6E 00 } //
.l.o.g.i.n.s...j.s.o.n.
 $j4 = { 00 63 00 6F 00 6F 00 6B 00 69 00 65 00 73 00 2E 00 73 00 71 00 6C 00 69
00 74 00 65 00 } // .c.o.o.k.i.e.s...s.q.l.i.t.e.

 condition:
 // DotNet
 pe.imports("mscoree.dll", "_CorDllMain") and
 12 of ($d*) and
 2 of ($j*)
}

rule Mal_Infostealer_Win32_Jupyter_Download_and_Execute_Module
{
 meta:
 description = "Detects Jupter download and execute module. Research has shown it
downloading SolarDelphi / JupyterStealer."
 author = "BlackBerry Threat Research Team"
 date = "2021-11-09"
 license = "This Yara rule is provided under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0) and open to any user or organization, as
long as you use it under this license and ensure originator credit in any derivative to The
BlackBerry Research & Intelligence Team"

24/27

 strings:
 $e1 = { 68 00 74 00 74 00 70 00 3A 00 2F 00 2F 00 }
 $e2 = { 47 00 45 00 54 00 00 3D 63 00 3A 00 5C 00 77 00 69 00 6E 00 64 00 6F 00
77 00 73 00 5C 00 73 00 79 00 73 00 74 00 65 00 6D 00 33 00 32 00 5C 00 77 00 69 00
6E 00 76 00 65 00 72 00 2E 00 65 00 78 00 65 }
 $e3 = { 00 2F 00 67 00 65 00 74 00 2F 00 }
 $e4 = "FromBase64String"
 $e5 = "get_UTF8"
 $e6 = "WebResponse"
 $e7 = "GetResponse"
 $e8 = "Invoke"

 condition:
 // DotNet
 pe.imports("mscoree.dll", "_CorDllMain") and
 dotnet.version == "v4.0.30319" and
 dotnet.assembly.version.major == 0 and
 dotnet.assembly.version.minor == 0 and
 all of ($e*)
}

Indicators of Compromise (IoCs)

SHA256:

dd8e1e321ce70472f9f0681c6e2dc078e7d066d89bc63ca4ae1ac53bee8daac2
a772d35e54bcd6790ea99f8723d56872891ef5691ed502a82babc618d2e8a452
0adfbce8a09d9f977e5fe90ccefc9612d1d742d980fe8dc889e10a5778592e4d
0e673eb418c87268aa3bcb262e8e03a3f719a95a8e118ba99515c57c9aa02d38
10221ceffbc7d7e59b17b1968d0fa01c8124efa70d1d5a486e53211e4754a22d
13d34fbf591c2cbf38e60ec3c6d185546e206be61dd58923edc23c4b125ff2f0
161b6f4bc07567c0c6e2e394454a66b8aac2f73212a6cf6c0c82b9fdbdb3fcce
1e7914f799371cbc8560bc52203d3531bb20cb4f6092158c76a4842dbf85dabc
2a051324620943464749234c9b49def385b9f6dd7c30f4caa4d98b3af035bd8f
3303926a6468dab25286a65bb9f3e5883a8938e6501031b3b85e21f182d1ed0d
341881d11fd748a81c8cee584dc42392a564aeb839faf7afa136004701e656c1
38c833c34998c9f4d9266f920c0f0862d986cb434740f99175e32f3f49275eb5

C2 IP:

146.70.24[.]229
23.29.115[.]175
92.204.160[.]110
146.70.41[.]157
37.221.114[.]23
188.241.83[.]61
69.46.15[.]151

C2 Identifier/Version:

25/27

NV-5
OC-11
OC-1
OC-2
J13
J15
J16
IN-10
NV-1
NV-4
NV-6
OC-3
OC-7
OC-8
OC-9
OC-W1
SP-10
SP-13
SP-17
SP-18
SP-W2

Certificate #1:

Serial: 36 FF 67 4E B3 05 E9 9C 35 56 5F A3 01 D5 C4 B0
Name: OOO Sistema
Valid from: 01:51 PM 12/02/2020
Valid to: 01:51 PM 12/02/2021
Thumbprint: C301843CA390AED52C4C6D59EF3D125400F186FB

Certificate #2:

Serial: 5B A9 00 D7 A7 61 EE 27 C2 79 98 C8 B9 B4 FA 70
Name: OOO LEVELAP
Valid from: 11:53 AM 09/14/2021
Valid to: 11:53 AM 09/14/2022
Thumbprint: EDEBF26E6CAD49A8F48A11EFF6BFC13266FF6872

Certificate #3:

Serial: 6F E7 21 C3 DD BD 27 74 D0 3D CE A4 4A 26 A7 8A
Name: OOO ENDI
Valid from: 08:17 PM 09/29/2021
Valid to: 08:17 PM 09/29/2022
Thumbprint: BC346A6BF6B6D53A69A742A4245A43320980B1C0

Certificate #4:

Serial: 7B 44 65 51 DE 53 1A 37 D3 A0 EB FB 8F 0B 6E 01
Name: OOO MVS
Valid from: 08:19 PM 10/01/2021
Valid to: 08:19 PM 10/01/2022
Thumbprint: 691718CA7F85C0D5B89250D685EB52A808A321E5

26/27

Certificate #5:

Serial: 06 48 7A 92 B1 D9 12 B7 9F 22 91 C0 D3 82 0F 2C
Name: Soto Manufacturing SRL
Valid from: 12:00 AM 10/04/2021
Valid to: 11:59 PM 08/04/2023
Thumbprint: AEE8241A17357D5713C451406BA4D3FBDCC1E25F

Certificate #6:

Serial: 0A 54 C6 04 87 D8 38 4E DC E9 81 81 4B E7 67 CB
Name: Decapolis Consulting Inc.
Valid from: 12:00 AM 10/31/2021
Valid to: 11:59 PM 10/24/2022
Thumbprint: BB800B7DE9E457D670303AF12E1940C732CC5975

BlackBerry Assistance

If you’re battling this malware or a similar threat, you’ve come to the right place, regardless
of your existing BlackBerry relationship.

The BlackBerry Incident Response team is made up of world-class consultants dedicated to
handling response and containment services for a wide range of incidents, including
ransomware and Advanced Persistent Threat (APT) cases.

We have a global consulting team standing by to assist you providing around-the-clock
support, where required, as well as local assistance. Please contact us
here: https://www.blackberry.com/us/en/forms/cylance/handraiser/emergency-incident-
response-containment

About The BlackBerry Research & Intelligence Team

https://www.blackberry.com/us/en/services/incident-response
https://www.blackberry.com/us/en/forms/cylance/handraiser/emergency-incident-response-containment

27/27

The BlackBerry Research & Intelligence team examines emerging and persistent threats,
providing intelligence analysis for the benefit of defenders and the organizations they serve.

Back

