
1/30

Bill Demirkapi January 7, 2022

Unpacking CVE-2021-40444: A Deep Technical Analysis
of an Office RCE Exploit

billdemirkapi.me/unpacking-cve-2021-40444-microsoft-office-rce/

Security Research

Bill Demirkapi

Jan 7, 2022 • 22 min read

https://billdemirkapi.me/unpacking-cve-2021-40444-microsoft-office-rce/
https://billdemirkapi.me/tag/security-research/
https://billdemirkapi.me/author/bill/
https://billdemirkapi.me/author/bill/

2/30

In the middle of August 2021, a special Word document was uploaded to VirusTotal by a user
from Argentina. Although it was only detected by a single antivirus engine at the time, this
sample turned out to be exploiting a zero day vulnerability in Microsoft Office to gain remote
code execution.

Three weeks later, Microsoft published an advisory after being notified of the exploit by
researchers from Mandiant and EXPMON. It took Microsoft nearly a month from the time the
exploit was first uploaded to VirusTotal to publish a patch for the zero day.

In this blog post, I will be sharing my in-depth analysis of the several vulnerabilities abused
by the attackers, how the exploit was patched, and how to port the exploit for a generic
Internet Explorer environment.

First Look

https://www.virustotal.com/gui/file/3bddb2e1a85a9e06b9f9021ad301fdcde33e197225ae1676b8c6d0b416193ecf/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444

3/30

A day after Microsoft published their advisory, I saw a tweet from the malware collection
group @vxunderground offering a malicious payload for CVE-2021-40444 to blue/red teams.

I reached out to receive a copy, because why not? My curiosity has generally lead me in the
right direction for my life and I was interested in seeing a Microsoft Word exploit that had
been found in the wild.

With the payload in hand, one of the first steps I took was placing it into an isolated virtual
machine with basic dynamic analysis tooling. Specifically, one of my favorite network
monitoring utilities is Fiddler, a freemium tool that allows you to intercept web requests
(including encrypted HTTPS traffic).

After I opened the malicious Word document, Fiddler immediately captured strange HTTP
requests to the domain, "hidusi[.]com". For some reason, the Word document was making a
request to "http://hidusi[.]com/e8c76295a5f9acb7/side.html".

https://twitter.com/vxunderground
https://www.telerik.com/fiddler/fiddler-classic

4/30

At this point, the "hidusi[.]com" domain was already taken down. Fortunately, the "side.html"
file being requested was included with the sample that was shared with me.

Unfortunately, the HTML file was largely filled with obfuscated JavaScript. Although I could
immediately decrypt this JavaScript and go from there, this is generally a bad idea to do at
an early stage because we have no understanding of the exploit.

Reproduction

Whenever I encounter a new vulnerability that I want to reverse engineer, my first goal is
always to produce a minimal reproduction example of the exploit to ensure I have a working
test environment and a basic understanding of how the exploit works. Having a reproduction
case is critical to reverse engineering how the bug works, because it allows for dynamic
analysis.

Since the original "hidusi[.]com" domain was down, we needed to host our version of
side.html. Hosting a file is easy, but how do we make the Word document use our domain
instead? It was time to find where the URL to side.html was hidden inside the Word
document.

Raw Bytes of "A Letter before court 4.docx"

5/30

Extracted Contents of "A Letter before court 4.docx"
Did you know that Office documents are just ZIP files? As we can see from the bytes of the
malicious document, the first few bytes are simply the magic value in the ZIP header.

Once I extracted the document as a ZIP, finding the URL was relatively easy. I performed a
string search across every file the document contained for the domain "hidusi[.]com".

Hidusi[.]com found under word/_rels/document.xml.rels
Sure enough, I found one match inside the file "word/_rels/document.xml.rels". This file is
responsible for defining relationships associated with embedded objects in the document.

OLE objects are part of Microsoft's proprietary Object Linking and Embedding technology,
which allows external documents, such as an Excel spreadsheet, to be embedded within a
Word document.

Strange Target for OLE Object
The relationship that contained the malicious URL was an external OLE object with a strange
"Target" attribute containing the "mhtml" protocol. Let's unpack what's going on in this value.

1. In red, we see the URL Protocol "mhtml".
2. In green, we see the malicious URL our proxy caught.
3. In blue, we see an interesting "!x-usc" suffix appended to the malicious URL.
4. In purple, we see the same malicious URL repeated.

Let's investigate each piece one-by-one.

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding

6/30

Reproduction: What's "MHTML"?

A useful tool I've discovered in past research is URLProtocolView from Nirsoft. At a high
level, URLProtocolView allows you to list and enumerate the URL protocols installed on your
machine.

The MHTML Protocol in URLProtocolView
The MHTML protocol used in the Target attribute was a Pluggable Protocol Handler, similar
to HTTP. The inetcomm.dll module was responsible for handling requests to this protocol.

The HTTP* Protocols in URLProtocolView
Unlike MHTML however, the HTTP protocol is handled by the urlmon.dll module.

https://www.nirsoft.net/utils/url_protocol_view.html

7/30

When I was researching past exploits involving the MHTML protocol, I came across an
interesting article all the way back from 2011 about CVE-2011-0096. In this case, a Google
engineer publicly disclosed an exploit that they suspected malicious actors attributed to
China had already discovered. Similar to this vulnerability, CVE-2021-0096 was only found to
be used in "very targeted" attacks.

When I was researching implementations of exploits for CVE-2011-0096, I came across an
exploit-db release that included an approach for abusing the vulnerability through a Word
document. Specifically, in part #5 and #6 of the exploit, this author discovered that CVE-
2011-0096 could be abused to launch executables on the local machine and read the
contents of the local filesystem. The interesting part here is that this 2011 vulnerability
involved abusing the MHTML URL protocol and that it allowed for remote code execution via
a Word document, similar to the case with CVE-2021-4044.

Reproduction: What about the "X-USC" in the Target?

Going back to our strange Target attribute, what is the "!x-usc:" portion for?

I found a blog post from 2018 by @insertScript which discovered that the x-usc directive was
used to reference an external link. In fact, the example URL given by the author still works on
the latest version of Internet Explorer (IE). If you enter "mhtml:http://google.com/whatever!x-
usc:http://bing.com" into your IE URL bar while monitoring network requests, there will be
both a request to Google and Bing, due to the "x-usc" directive.

In the context of CVE-2021-40444, I was unable to discover a definitive answer for why the
same URL was repeated after an "x-usc" directive. As we'll see in upcoming sections, the
JavaScript in side.html is executed regardless of whether or not the attribute contains the "x-
usc" suffix. It is possible that due to some potential race conditions, this suffix was added to
execute the exploit twice to ensure successful payload delivery.

Reproduction: Attempting to Create my Own Payload

https://www.exploit-db.com/exploits/16071
https://www.exploit-db.com/exploits/16071
http://10.10.0.46/mhtml:http://google.com/whatever!x-usc:http://bing.com
https://twitter.com/insertScript

8/30

Now that we know how the remote side.html page is triggered by the Word document, it was
time to try and create our own. Although we could proceed by hosting the same side.html
payload the attackers used in their exploit, it is important to produce a minimal reproduction
example first.

Instead of hosting the second-stage side.html payload, I opted to write a barebone HTML
page that would indicate JavaScript execution was successful. This way, we can understand
how JavaScript is executed by the Word document before reverse engineering what the
attacker's JavaScript does.

Test Payload to Prove JS Execution
In the example above, I created an HTML page that simply made an XMLHttpRequest to a
non-existent domain. If the JavaScript is executed, we should be able to see a request to
"icanseethisrequestonthenetwork.com" inside of Fiddler.

Before testing in the actual Word document, I verified as a sanity check that this page does
make the web request inside of Internet Explorer. Although the code may seem simple
enough to where it would "obviously work", performing simple sanity checks like these on
fundamental assumptions you make can greatly save you time debugging future issues. For
example, if you don't verify a fundamental assumption and continue with reverse
engineering, you could spend hours debugging the wrong issue when in fact you were
missing a basic mistake.

Modified Relationship with Barebone Payload

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

9/30

Network Requests After Executing Modified Document
Once I patched the original Word document with my modified relationship XML, I launched it
inside my VM with the Fiddler proxy running. I was seeing requests to the send_request.html
payload! But... there were no requests to "icanseethisonthenetwork.com". We have
demonstrated a flaw in our fundamental assumption that whatever HTML page we point the
MHTML protocol towards will be executed.

How do you debug an issue like this? One approach would be to go in blind and try to
reverse engineer the internals of the HTML engine to see why JavaScript wasn't being
executed. The reason this is not a great idea is because often these codebases can be
massive, and it would be like finding a needle in a haystack.

What can we do instead? Create a minimally viable reproduction case where the JavaScript
of the HTML is executed. We know that the attacker's payload must have worked in their
attack. What if instead of writing our own payload first, we tried to host their payload instead?

10/30

Network Requests After Executing with Side.html Payload
I uploaded the attacker’s original "side.html" payload to my server and replaced the
relationship in the Word document with that URL. When I executed this modified document in
my VM, I saw something extremely promising- requests for "ministry.cab". This means that
the attacker's JavaScript inside side.html was executed!

We have an MVP payload that gets executed by the Word document, now what? Although
we could ignore our earlier problem with our own payload and try to figure out what the CAB
file is used for directly, we'd be skipping a crucial step of the exploit. We want to understand
CVE-2021-40444, not just reproduce it.

With this MVP, we can now try to debug and reverse engineer the question, "Why does the
working payload result in JavaScript execution, but not our own sample?".

Reproduction: Reverse Engineering Microsoft’s HTML Engine

The primary module responsible for processing HTML in Windows is MSHTML.DLL, the
"Microsoft HTML Viewer". This binary alone is 22 MB, because it contains almost everything
from rendering HTML to executing JavaScript. For example, Microsoft has their own
JavaScript engine in this binary used in Internet Explorer (and Word).

Given this massive size, blindly reversing is a terrible approach. What I like to do instead is
use ProcMon to trace the execution of the successful (document with side.html) and failing
payload (document with barebone HTML), then compare their results. I executed the
attacker payload document and my own sample document while monitoring Microsoft Word
with ProcMon.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

11/30

Microsoft Word Loading JScript9.dll in Success Case
With the number of operations an application like Microsoft Office makes, it can be difficult to
sift through the noise. The best approach I have for this problem is to use my context to find
relevant operations. In this case, since we were looking into the execution of JavaScript, I
looked for operations involving the word “script”.

You might think, what can we do with relevant operations? An insanely useful feature of
ProcMon is the ability to see the caller stack for a given operation. This lets you see what
executed the operation.

Stack

Trace of JScript9.dll Module Load

12/30

IDA Pro Breakpoint on PostManExecute
It looked like the PostManExecute function was primary responsible for triggering the
complete execution of our payload. Using IDA Pro, I set a breakpoint on this function and
opened both the successful/failing payloads.

I found that when the success payload was launched, PostManExecute would be called, and
the page would be loaded. On the failure case however, PostManExecute was not called and
thus the page was never executed. Now we needed to figure out why is PostManExecute
being invoked for the attacker’s payload but not ours?

Partial Stack Trace of JScript9.dll Module Load
Going back to the call stack, what’s interesting is that PostManExecute seems to be the
result of a callback that is being invoked in an asynchronous thread.

X-Refs to CDwnChan::OnMethodCall from Call Stack
Looking at the cross references for the function called right after the asynchronous
dispatcher, CDwnChan::OnMethodCall, I found that it seemed to be queued in another
function called CDwnChan::Signal.

Asynchronous Execution of CDwnChan::OnMethodCall inside CDwnChan::Signal

13/30

X-Refs to CDwnChan::Signal
CDwnChan::Signal seemed to be using the function "_GWPostMethodCallEx" to queue the
CDwnChan::OnMethodCall to be executed in the asynchronous thread we saw.
Unfortunately, this Signal function is called from many places, and it would be a waste of time
to try to statically reverse engineer every reference.

X-Refs to Asynchronous Queue'ing Function __GWPostMethodCallEx
What can we do instead? Looking at the X-Refs for _GWPostMethodCallEx, it seemed like it
was used to queue almost everything related to HTML processing. What if we hooked this
function and compared the different methods that were queued between the success and
failure path?

14/30

Whenever __GWPostMethodCallEx was called, I recorded the method being queued for
asynchronous execution and the call stack. The diagram above demonstrates the methods
that were queued during the execution of the successful payload and the failing payload.
Strangely in the failure path, the processing of the HTML page was terminated
(CDwnBindData::TerminateOnApt) before the page was ever executed.

Callstack for CDwnBindData::TerminateOnApt
Why was the Terminate function being queued before the OnMethodCall function in the
failure path? The call stacks for the Terminate function matched between the success and
failure paths. Let’s reverse engineer those functions.

15/30

Partial Pseudocode of CDwnBindData::Read
When I debugged the CDwnBindData::Read function, which called the Terminate function, I
found that a call to CDwnStm::Read was working in the success path but returning an error
in the failure path. This is what terminated the page execution for our sample payload!

The third argument to CDwnStm::Read was supposed to be the number of bytes the client
should try to read from the server. For some reason, the client was expecting 4096 bytes and
my barebone HTML file was not that big.

As a sanity check, I added a bunch of useless padding to the end of my HTML file to make
its size 4096+ bytes. Let’s see our network requests with this modified payload.

Modified Barebone HTML with Padding to 4096 bytes

Network Requests of Barebone Word Document
We had now found and fixed the issue with our barebone HTML page! But our work isn't over
yet. We wouldn’t be great reverse engineers if we didn’t investigate why the client was
expecting 4096 bytes in the first place.

Partial Pseudocode of CHtmPre::GetReadRequestSize
I traced back the origin of the expected size to a call in CHtmPre::Read to
CHtmPre::GetReadRequestSize. Stepping through this function in a debugger, I found that a
field at offset 136 of the CHtmPre class represented the request size the client should

16/30

expect. How can we find out why this value is 4096? Something had to write to it at some
point.

Partial Pseudocode of CHtmPre Constructor
Since we were looking at a class function of the CHtmPre class, I set a breakpoint on the
constructor for this class. When the debugger reached the constructor, I placed a write
memory breakpoint for the field offset we saw (+ 136).

Partial Pseudocode of CEncodeReader Constructor when the Write Breakpoint Hit
The breakpoint hit! And not so far away either. The 4096 value was being set inside of
another object constructor, CEncodeReader::CEncodeReader. This constructor was
instantiated by the CHtmPre constructor we just hooked. Where did the 4096 come from
then? It was hardcoded into the CHtmPre constructor!

Partial Pseudocode of CHtmPre Constructor, Highlighting Hardcoded 4096 Value
What was happening was that when the CHtmPre instance was constructed, it had a default
read size of 4096 bytes. The client was reading the bytes from the HTTP response before
this field was updated with the real response size. Since our barebone payload was just a
small HTML page under 4096 bytes, the client thought that the server hadn’t sent the
required response and thus terminated the execution.

The reason the attacker's payload worked is because it was above 4096 bytes in size. We
just found a bug still present in Microsoft’s HTML processor!

Reproduction: Fixing the Attacker's Payload

17/30

Network Requests After Executing with Side.html Payload
We figured out how to make sure our payload executes. If you recall to an earlier section of
this blog post, we saw that a request to a "ministry.cab" file was being made by the attacker's
side.html payload. Fortunately for us, the attacker’s sample came with the CAB file the
server was originally serving.

This CAB file was interesting. It had a single file named "../msword.inf", suggesting a relative
path escape attack. This INF file was a PE binary for the attacker’s Cobalt Strike beacon. I
replaced this file with a simple DLL that opened Calculator for testing. Unfortunately, when I
uploaded this CAB file to my server, I saw a successful request to it but no Calculator.

Operations involving msword.inf from CAB file

18/30

Call stack of msword.inf Operation
I monitored Word with ProcMon once again to try and see what was happening with the CAB
file. I filtered for "msword.inf" and found interesting operations where Word was writing it to
the VM user's %TEMP% directory. The "VerifyTrust" function name in the call stack
suggested that the INF file was written to the TEMP directory while it was trying to verify its
signature.

Let's step through these functions to figure out what's going on.

Partial Pseudocode of Cwvt::VerifyTrust
After stepping through Cwvt::VerifyTrust with a debugger, I found that the function attempted
to verify the signature of files contained within the CAB file. Specifically, if the CAB file
included an INF file, it would extract it to disk and try to verify its digital signature.

19/30

What was happening was that the extraction process didn't have any security measures,
allowing for an attacker to use relative path escapes to get out of the temporary directory that
was generated for the CAB file.

The attackers were using a zero-day with ActiveX controls:

1. The attacker’s JavaScript (side.html) would attempt to execute the CAB file as an
ActiveX control.

2. This triggered Microsoft’s security controls to verify that the CAB file was signed and
safe to execute.

3. Unfortunately, Microsoft handled this CAB file without care and although the signature
verification fails, it allowed an attacker to extract the INF file to another location with
relative path escapes.

If there was a user-writable directory where if you could put a malicious INF file, it would
execute your malware, then they could have stopped here with their exploit. This isn’t a
possibility though, so they needed some way to execute the INF file as a PE binary.

Strange control.exe Execution with INF File in Command Line

Strange rundll32.exe Execution with INF File in Command Line
Going back to ProcMon, I tried to see why the INF file wasn’t being executed. It looks like
they were using another exploit to trigger execution of "control.exe".

".cpl" Used as a URL Protocol
The attackers were triggering the execution of a Control Panel Item. The command line for
control.exe suggested they were using the ".cpl" file extension as a URL protocol and then
used relative path escapes to trigger the INF file.

Why wasn’t my Calculator DLL being executed then? Entirely my mistake! I was executing
the Word document from a nested directory, but the attackers were only spraying a few
relative path escapes that never reached my user directory. This makes sense because this

20/30

document is intended to be executed from a victim's Downloads folder, whereas I was
hosting the file inside of a nested Documents directory.

I placed the Word document in my Downloads folder and… voila:

Calculator being Executed by Word Document

Reversing the Attacker's Payload

We have a working exploit! Now the next step to understanding the attack is to reverse
engineer the attacker’s malicious JavaScript. If you recall, it was somewhat obfuscated. As
someone with experience with JavaScript obfuscators, it didn’t seem like the attacker’s did
too much, however.

Common JavaScript String Obfuscation Technique seen in Attacker's Code

21/30

A common pattern I see with attempts at string obfuscation in JavaScript is an array
containing a bunch of strings and the rest of the code referencing strings through an
unknown function which referenced that array.

In this case, we can see a string array named "a0_0x127f" which is referenced inside of the
global function "a0_0x15ec". Looking at the rest of the JavaScript, we can see that several
parts of it call this unknown function with an numerical index, suggesting that this function is
used to retrieve a deobfuscated version of the string.

String Deobfuscation Script
This approach to string obfuscation is relatively easy to get past. I wrote a small script to find
all calls to the encryption function, resolve what the string was, and replace the entire call
with the real string. Instead of worrying about the mechanics of the deobfuscation function,
we can just call into it like the real code does to retrieve the deobfuscated string.

Before String Deobfuscation

22/30

After String Deobfuscation
This worked extremely well and we now have a relatively deobfuscated version of their
script. The rest of the deobfuscation was just combining strings, getting rid of "indirect" calls
to objects, and naming variables given their context. I can’t cover each step in detail because
there were a lot of minor steps for this last part, but there was nothing especially notable. I
tried naming the variables the best I could given the context around them and commented
out what I thought was happening.

Let’s review what the script does.

23/30

Part #1 of Deobfuscated JavaScript: Create and Destroy an IFrame
In this first part, the attacker's created an iframe element, retrieved the ActiveX scripting
interface for that iframe, and destroyed the iframe. Although the iframe has been destroyed,
the ActiveX interface is still live and can be used to execute arbitrary HTML/JavaScript.

24/30

Part #2 of Deobfuscated JavaScript: Create Nested ActiveX HTML Documents
In this next part, the attackers used the destroyed iframe's ActiveX interface to create three
nested HTML documents. I am not entirely sure what the purpose of these nested
documents serves, because if the attackers only used the original ActiveX interface without
any nesting, the exploit works fine.

Part #3 of Deobfuscated JavaScript: Create ActiveX Control and Trigger INF File
This final section is what performs the primary exploits.

25/30

The attackers make a request to the exploit CAB file ("ministry.cab") with an
XMLHttpRequest. Next, the attackers create a new ActiveX Control object inside of the third
nested HTML document created in the last step. The class ID and version of this ActiveX
control are arbitrary and can be changed, but the important piece is that the ActiveX Control
points at the previously requested CAB file. URLMON will automatically verify the signature
of the ActiveX Control CAB file, which is when the malicious INF file is extracted into the
user's temporary directory.

To trigger their malicious INF payload, the attackers use the ".cpl" file extension as a URL
Protocol with a relative path escape in a new HTML document. This causes control.exe to
start rundll32.exe, passing the INF file as the Control Panel Item to execute.

The fully deobfuscated and commented HTML/JS payload can be found here.

Overview of the Attack

We covered a significant amount in the previous sections, let's summarize the attack from
start to finish:

1. A victim opens the malicious Word document.
2. Word loads the attacker's HTML page as an OLE object and executes the contained

JavaScript.
3. An IFrame is created and destroyed, but a reference to its ActiveX scripting surface

remains.
4. The CAB file is invoked by creating an ActiveX control for it.
5. While the CAB file's signature is verified, the contained INF file is written to the user's

Temp directory.
6. Finally, the INF is invoked by using the ".cpl" extension as a URL protocol, using

relative path escapes to reach the temporary directory.

https://gist.github.com/D4stiny/1692ded337b67bfbeea10f2269af81fe

26/30

Reversing Microsoft's Patch

When Microsoft released its advisory for this bug on September 7th, they had no patch! To
save face, they claimed Windows Defender was a mitigation, but that was just a detection for
the attacker's exploit. The underlying vulnerability was untouched.

It took them nearly a month from when the first known sample was uploaded to VirusTotal
(August 19th) to finally fix the issue on September 14th with a Patch Tuesday update. Let’s
take a look at the major changes in this patch.

A popular practice by security researchers is to find the differences in binaries that used to
contain vulnerabilities with the patched binary equivalent. I updated my system but saved
several DLL files from my unpatched machine. There are a couple of tools that are great for
finding assembly-level differences between two similar binaries.

1. BinDiff by Zynamics
2. Diaphora by Joxean Koret

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora

27/30

I went with Diaphora because it is more advanced than BinDiff and allows for easy pseudo-
code level comparisons. The primary binaries I diff'd were:

1. IEFRAME.dll - This is what executed the URL protocol for ".cpl".
2. URLMON.dll - This is what had the CAB file extraction exploit.

Reversing Microsoft's Patch: IEFRAME

Once I diff’d the updated and unpatched binary, I found ~1000 total differences, but only ~30
major changes. One function that had heavy changes and was associated with the CPL
exploit was _AttemptShellExecuteForHlinkNavigate.

Pseudocode Diff of _AttemptShellExecuteForHlinkNavigate
In the old version of IEFRAME, this function simply used ShellExecuteW to open the URL
protocol with no verification. This is why the CPL file extension was processed as a URL
protocol.

In the new version, they added a significant number of checks for the URL protocol. Let’s
compare the differences.

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutew

28/30

Patched _AttemptShellExecuteForHlinkNavigate Pseudocode

New IsValidSchemeName Function
In the patched version of _AttemptShellExecuteForHlinkNavigate, the primary addition that
prevents the use of file extensions as URL Protocols is the call to IsValidSchemeName.

This function takes the URL Protocol that is being used (i.e ".cpl") and verifies that all
characters in it are alphanumerical. For example, this exploit used the CPL file extension to
trigger the INF file. With this patch, ".cpl" would fail the IsValidSchemeName function
because it contains a period which is non-alphanumerical.

An important factor to note is that this patch for using file extensions as URL Protocols only
applies to MSHTML. File extensions are still exposed for use in other attacks against
ShellExecute, which is why I wouldn't be surprised if we saw similar techniques in future
vulnerabilities.

Reversing Microsoft's Patch: URLMON

29/30

I performed the same patch diffing on URLMON and found a major change in catDirAndFile.
This function was used during extraction to generate the output path for the INF file.

Patched catDirAndFile

Pseudocode
The patch for the CAB extraction exploit was extremely simple. All Microsoft did was replace
any instance of a forward slash with a backslash. This prevents the INF extraction exploit of
the CAB file because backslashes are ignored for relative path escapes.

Abusing CVE-2021-40444 in Internet Explorer

Although Microsoft's advisory covers an attack scenario where this vulnerability is abused in
Microsoft Office, could we exploit this bug in another context?

Since Microsoft Office uses the same engine Internet Explorer uses to display web pages,
could CVE-2021-40444 be abused to gain remote code execution from a malicious page
opened in IE? When I tried to visit the same payload used in the Word document, the exploit
did not work "out of the box", specifically due to an error with the pop up blocker.

IE blocks .cpl popup
Although the CAB extraction exploit was successfully triggered, the attempt to launch the
payload failed because Internet Explorer considered the ".cpl" exploit to be creating a pop
up.

Fortunately, we can port the .cpl exploit to get around this pop up blocker relatively easily.
Instead of creating a new page, we can simply redirect the current page to the ".cpl" URL.

30/30

function redirect() {
 //
 // Redirect current window without creating new one,
 // evading the IE pop up blocker.
 //
 window.location = ".cpl:../../../AppData/Local/Temp/Low/msword.inf";
 document.getElementById("status").innerHTML = "Done";
}

//
// Trigger in 500ms to give time for the .cab file to extract.
//
setTimeout(function() {
 redirect()
}, 500);

With the small addition of the redirect, CVE-2021-40444 works without issue in Internet
Explorer. The complete code for this ported HTML/JS payload can be found here.

Conclusion

CVE-2021-40444 is in fact compromised of several vulnerabilities as we investigated in this
blog post. Not only was there the initial step of extracting a malicious file to a predictable
location through the CAB file exploit, but there was also the fact that URL Protocols could be
file extensions.

In the latest patch, Word still executes pages with JavaScript if you use the MHTML protocol.
What’s frightening to me is that the entire attack surface of Internet Explorer is exposed to
attackers through Microsoft Word. That is a lot of legacy code. Time will tell what other
vulnerabilities attacker's will abuse in Internet Explorer through Microsoft Office.

https://gist.github.com/D4stiny/4fd437bad4233856a7cebd42fb3057e5

