
1/14

January 6, 2022

Unpacking Emotet malware part 01
muha2xmad.github.io/unpacking/emotet-part-1/

https://muha2xmad.github.io/unpacking/emotet-part-1/

2/14

Muhammad Hasan Ali

Malware Analysis learner

3 minute read

As-salamu Alaykum

Introduction

Emotet is a Trojan that spreads through spam emails. The infection may arrive either via
malicious script, macro-enabled document files, or malicious link. 1

Download the sample: Here

MD5: CA06ACD3E1CAB1691A7670A5F23BAEF4

Virustotal VT

we can see that the malware is detected by 57 out of 68 as a trojan.

Figure(1):

In Details section VT Details

1- Different names of the sample

Figure(2):
2- Header info

https://www.darkreading.com/edge-articles/emotet-101-how-the-ransomware-works----and-why-it-s-so-darn-effective
https://app.any.run/tasks/f907a5b5-689a-472d-a2f7-1a2c4899fc96/
https://www.virustotal.com/gui/search/CA06ACD3E1CAB1691A7670A5F23BAEF4
https://www.virustotal.com/gui/file/3a9494f66babc7deb43f65f9f28c44bd9bd4b3237031d80314ae7eb3526a4d8f/details

3/14

Figure(3):

Shows compilation Timestamp which can be changed. and Shows number of sections

DiE

open DiE to get more info about the sample

Figure(4):

As we see that info about file type, Entry point, and sections. It will help us in our analysis

Entropy:

press over “Entropy” as in the previous figure(4)

4/14

Figure(5):

Shows that it has high entropy in .text section which is an indicator to be packed

PEstudio analysis

Indicators section:

Figure(6):

*Level 1 is most malicious and bigger numbers “3” are less malicious. Shows different
malicious indicators that help us in the analysis.

Sections section:

5/14

Figure(7):

The previous figure shows:

1- .text section is packed

2- .text section contains the entry point for the executable. This means that, in addition to
holding the compressed data, .text section also contains the stub code responsible for
unpacking. 2

*The section which is responsible for unpacking can vary as in UPX packing

3- .text section is executable

4- .data section is writable

Strings section:

press over blacklist to list them

https://malware.news/t/the-basics-of-packed-malware-manually-unpacking-upx-executables/35961

6/14

Figure(8):

Strings are good indicators to know what this malware is trying to do on the system

IDA analysis

To analyze the assemble code to know how to unpack and where to start the debugging

Open it in IDA: It shows that is low number of functions which another indicator that is
packed

7/14

Figure(9):

Press over “start” which located in the function as in the previous figure to get started

8/14

Figure(10):

Because Emotet malware uses a customized packer. we can try to unpack it through
dynamic analysis. Through dynamic analysis the malware does the unpacking process.
The process will need to allocate memory for the next stage.

So it’s a good assumption that we will see a call to VirtualAlloc. We need to search which
function has VirtualAlloc call. 3

If you searched you will find that call sub_417D50 is the unpacking routine

https://distributedcompute.com/2020/02/20/unpacking-emotet/

9/14

Figure(11):

This our unpacking function: sub_417D50

10/14

Figure(12):

Abnormal epilogue

First we need to clear what normal prologue and epilogue are?

The procedure prologue and epilogue are standard initialization sequences that compilers
generate for almost all of their functions.

11/14

Figure(13):

What is NOT normal here is epilogue in the last figure:

Figure(14):

You don’t push anything before ret this called abnormal.

normal epilogue is to pop EBP before ret . Here it will return ecx because it executes
the last instruction- top of the stack-.

And the real return is from this function loc_417D9A because this is 2nd top of the stack.

We need to know what is happening in this function?

12/14

Figure(15):

In the last figure we see the coming:

VirtualAlloc is moved to ECX , then
ECX is moved to dword_41C218 , then
dword_41C218 is moved to ECX

then push ECX and then ret
And the real return is from this function loc_417D9A

So we need to know the address of this function to set a Breakpoint in x64dbg by pressing
space .

Figure(16):

We know that code is packed. We search for abnormal jumps:

13/14

jmp or call Instructions to registers
Jmp to strange memory addresses (long jump)

Why searching for abnormal jumps? the address to the location of where data is being
unpacked to is stored in a register (such as ecx), and that memory address is often in an
entirely different section.

I will write an article about “indicators of packed file”. InshAllah

If we return to start function and search you will find it.

Here we see our abnormal jmp ecx :

Figure(17):

Press space to get its address: 00417F1F .

Figure(18):

How to Unpack in the next part. InshAllah

Edit: part 02

Article quote

المنازل العلیا لا تُنال إلاّ بالبلاء

References

https://muha2xmad.github.io/unpacking/emotet-part-2/

14/14

Inspired by: https://malgamy.github.io/malware-analysis/Emotet-Malware-0x01/

1- https://www.darkreading.com/edge-articles/emotet-101-how-the-ransomware-works—-
and-why-it-s-so-darn-effective

2- https://malware.news/t/the-basics-of-packed-malware-manually-unpacking-upx-
executables/35961

3- https://distributedcompute.com/2020/02/20/unpacking-emotet/

https://malgamy.github.io/malware-analysis/Emotet-Malware-0x01/
https://www.darkreading.com/edge-articles/emotet-101-how-the-ransomware-works----and-why-it-s-so-darn-effective
https://malware.news/t/the-basics-of-packed-malware-manually-unpacking-upx-executables/35961
https://distributedcompute.com/2020/02/20/unpacking-emotet/

