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Introduction

In February 2021, the company Dbappsecurity discovered a sample in the wild that exploited
a zero-day vulnerability on Windows 10 x64.

The vulnerability, CVE-2021-1732, is a win32k window object type confusion leading to an
OOB (out-of-bounds) write which can be used to create arbitrary memory read and write
capabilities within the Windows kernel (local Elevation of Privilege (EoP)). Memory
exploitation generally requires a read, write, and execute primitive to bypass modern exploit
mitigations such as DEP, ASLR and CFG on hardened operating systems such as Windows

https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/technical-analysis-of-cve-2021-1732/
https://www.mcafee.com/blogs/author/eoin-carroll/
https://ti.dbappsecurity.com.cn/blog/index.php/2021/02/10/windows-kernel-zero-day-exploit-is-used-by-bitter-apt-in-targeted-attack/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1732
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10. A data-only attack requires only a read and write primitive as it does not seek to execute
malicious code in memory, but rather manipulates data structures used by the operating
system to its advantage (i.e., to achieve elevated privileges).

Kernel exploits are usually the most sophisticated attack as they interact directly with the
Windows kernel. When such attacks are successful, they are critical because they provide
high privileges to the attacker, which can be used to increase the impact of the overall exploit
chain. In this case the exploit is a Local Privilege Escalation (LPE) that targets 64-bit
Windows 10 version 1909. The original sample discovered was compiled in May 2020 and
reported to Microsoft in December 2020. While searching for additional findings we went
through a public exploit published in March of 2021 by a researcher. Having this code
publicly available may raise the potential for additional threat attackers. While we have not
found clear evidence demonstrating malicious use of the proof-of-concept (POC), we did
discover some variants being tested and uploaded to VirusTotal.

In this blog post, McAfee Advanced Threat Research (ATR) performed a deep dive into the
analysis of the vulnerability, to identify the primitives for detection and protection. The exploit
is novel in its use of a new win32k arbitrary kernel memory read primitive using the
GetMenuBarInfo API, which to the best of our knowledge had not been previously known
publicly.

CVE-2021-1732 Deep Dive

Exploitation of CVE-2021-1732 can be divided into six stages with the end goal of escalating
a process’ privileges to System. The following diagram shows the stages.

Figure 1 – Six stages of CVE-2021-1732
Before we dive into the details, we must give some background to win32k exploitation
primitives which are used in the exploitation of CVE-2021-1732.

Win32K Background

Win32k is a Graphical (GUI) component of the Microsoft Windows Subsystem, most of which
exists in the kernel for performance reasons. It is used for graphical print of the Windows OS
desktop. However, due to the win32k architecture, the kernel component of win32k still
needs to be able to make calls to user mode through user-mode callback functions to
facilitate window creation and management.

https://threatpost.com/memory-corruption-mitigations-doing-their-job/124728/
https://github.com/KaLendsi/CVE-2021-1732-Exploit
https://zhuanlan.zhihu.com/p/356149984
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Kernel user-mode callbacks have been well researched as far back as 2008 and 2010, with
a very comprehensive analysis in 2011 by Mandt. A win32k kernel function such as
xxxCreateWindowEx will make a callback function such as
xxxClientAllocWindowClassExtraBytes through the user process PEB KernelCallbackTable.

When the user-mode callback has completed, NtCallbackReturn executes and passes the
expected return parameter back to the kernel. Due to the stateless nature of these callbacks,
many vulnerabilities have been discovered related to the locking mechanisms on the objects
leading to use-after-free (UAF) exploitation.

Win32k has been one of the most exploited components in the Windows kernel accounting
for 63% of vulnerabilities from 2010 to 2018, due to its large attack surface of syscalls
relative to ntdll syscalls. Win32k vulnerabilities are generally turned into data-only attacks
using a read/write kernel primitive by using a desktop object known as a tagWND data
structure.

There are two aspects to data-only attacks:

1. Discovering a vulnerability.
2. Leveraging existing or new read/write primitives using specific OS APIs on object fields

such as tagWND.cbWndExtra.

The tagWND data structure has two fields which make it a prime target for reading/writing
within kernel memory; tagWND.cbWndExtra and tagWND.ExtraBytes. When a window is
created using CreateWindowEx, it is possible to request additional bytes of memory directly
after the tagWND object in memory through the cbWndExtra field in the WNDCLASSEXA
structure when registering the window class.

The number of extra bytes is controlled by the cbWndExtra field, and the allocated additional
memory address is located at the ExtraBytes field. The read/write primitive is created as
follows:

1. Discover a vulnerability such as a UAF, which will allow you to write to a tagWND
object in memory called WND0.

2. Allocate another tagWND object called WND1 near the previously corrupted WND0 in
memory.

3. Overwrite WND0.cbWndExtra to a large value such as 0xFFFFFFF.
4. Call an API such as SetWindowLongPtr on WND0 which will write OOB to fields within

WND1.

Win32k kernel user-mode callbacks have been exploited many times by leveraging tagWND
read/write capabilities within the Windows kernel for escalation of privileges such as CVE-
2014-4113, CVE-2015-0057, MS15-061, CVE-2016-7255 and CVE-2019-0808.

http://www.uninformed.org/?v=10&a=2&t=sumry
https://j00ru.vexillium.org/2010/09/kernel-exploitation-r0-to-r3-transitions-via-keusermodecallback/
http://mista.nu/research/mandt-win32k-paper.pdf
http://www.irongeek.com/i.php?page=videos/derbycon8/track-4-01-state-of-win32k-security-revisiting-insecure-design-vishal-chauhan
https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-wndclassexa
https://www.trendmicro.com/en_us/research/14/j/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113.html
https://research.nccgroup.com/2015/07/08/exploiting-the-win32kxxxenablewndsbarrows-use-after-free-cve-2015-0057-bug-on-both-32-bit-and-64-bit/
https://www.nccgroup.com/ae/our-research/exploiting-ms15-061-use-after-free-windows-kernel-vulnerability/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/digging-windows-kernel-privilege-escalation-vulnerability-cve-2016-7255/
https://blog.exodusintel.com/2019/05/17/windows-within-windows/
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Win32k Exploit Primitives

Several primitives have been observed in the CVE-2021-1732 exploit used by the attackers;
additionally, it is worth mentioning that some of them are new and not previously seen in the
wild.

Prior to Windows RS4 it was trivial to leak tagWND kernel addresses using multiple
techniques, such as calling HMValidateHandle to copy tagWND objects from the kernel to
user desktop heap. The latest version of Windows 10 has been hardened against such trivial
techniques.

However, using the spmenu kernel address leak technique and relative tagWND desktop
heap offsets, once a vulnerability is discovered to overwrite a tagWND.cbWndExtra field, it is
possible to achieve kernel read/write capabilities without leaking the actual tagWND kernel
addresses. The spmenu technique in this exploit was used here and here, but we are not
aware of the GetMenuBarInfo API ever being used before in a win32k exploit.

The following diagram shows the primitives used in CVE-2021-1732.

Figure 2 – CVE-2021-1732 Primitives

Existing Windows OS Mitigations

https://blog.exodusintel.com/2019/05/17/windows-within-windows/
https://bromiumlabs.wordpress.com/2016/11/08/thoughts-on-the-recent-ntsetwindowlongptr-vulnerability/
https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf
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Great work has been done to harden the security of win32k against EoP attacks with new
and improved mitigations by the Microsoft OSR team, Mandt, Google Project Zero, Schenk
and Dabah.  These mitigations include:

1. Type isolation (all same type objects tagWND being used).
2. Win32k filtering (limited to Edge browser and not process wide but since this research

there have been many improvements on win32k API filtering capabilities such as the
addition of _stub_UserSetWindowLong and _stub_UserSetWindowLongPtr
_stub_UserGetMenuBarInfo in win32k.sys).

3. Fragmenting kernel desktop heap and removal of kernel addresses in the user desktop
heap (can use relative offsets within user and desktop heaps described later in the
blog).

4. Removal of data type symbols from win32k drivers (obfuscation rather than mitigation).

In the context of a malicious process exploiting CVE-2021-1732, the above mitigations
provide no protection. However, it does not impact Google Chrome as it disallows win32k
calls (Windows 8 and higher), or Microsoft Edge as it applies win32k filtering on the relevant
APIs.

Triggering the Vulnerability and Patch Analysis

When a window is created using CreateWindowEx API, a tagWND object is created by the
Windows operating system. This window, as explained above, can be created with a
parameter to allocate extra memory using cbWndExtra.

During the windows creation process (CreateWindowEx API) a callback named
xxxClientAllocWindowClassExtraBytes is triggered to allocate space in the user mode
desktop heap for the tagWND.ExtraBytes (offset 0x128) per the tagWND.cbWndExtra (offset
0xc8) value size (see figure 3 and 4 below for WND1).

Figure 3 – WND1 Kernel tagWND – User mode copy located at offset 0x28 

http://mista.nu/research/mandt-win32k-paper.pdf
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://improsec.com/tech-blog/hardening-windows-10-with-zero-day-exploit-mitigations-under-the-microscope
https://www.ragestorm.net/Win32k%20Smash%20the%20Ref.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D1%20COMMSEC%20-%20Saif%20Elsherei%20and%20Ian%20Kronquist%20-%20The%20Life%20&%20Death%20of%20Kernel%20Object%20Abuse.pdf
https://improsec.com/tech-blog/win32k-system-call-filtering-deep-dive
https://www.offensive-security.com/vulndev/development-of-a-new-windows-10-kaslr-bypass-in-one-windbg-command/
https://docs.google.com/document/d/1gJDlk-9xkh6_8M_awrczWCaUuyr0Zd2TKjNBCiPO_G4/edit#heading=h.xgjl2srtytjt
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Figure 4 – WND1 User Mode tagWND
The location of this memory is stored as a user mode memory pointer to the desktop heap
and placed at tagWND.ExtraBytes. It is then possible to convert the normal window to a
console window using NtUserConsoleControl which will convert that user mode pointer at
tagWND.ExtraBytes to an offset value which points into the kernel desktop heap (see figure
5 below for WND0). It is this change in value at tagWND.ExtraBytes (window type confusion)
that can be exploited for an OOB write during the xxxClientAllocWindowClassExtraBytes
callback window.

Figure 5 – WND0 User Mode tagWND 

Figure 6 – Triggering the type confusion vulnerability within win32kfull!xxxCreateWindowEx
Per figure 6 above the following steps are required to trigger the vulnerability:

1. Get a pointer to the HMValidateHandle inline function within user32.dll.
2. Hook xxxClientAllocWindowClassExtraBytes within the PEB KernelCallBack table.
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3. Create multiple windows (we will just use the first two WND0 and WND1 created),
using the CreateWindowEx API, so that two windows are created in close memory
proximity.

4. Call HMValidateHandle on WND0 and WND1 which will copy their objects from the
kernel desktop heap to user desktop heap. At tagWND+0x8 an offset is stored into the
desktop heap; this offset is the same for the user and kernel desktop heaps. The
exploit uses these offset values to calculate the relative distance between WND0 and
WND1 in the kernel desktop heap which is needed later for reading and writing OOB.
Per table 1 below, by using these offsets there is no requirement to leak the actual
WND0 and WND1 kernel addresses since read and writes can be done relative to the
offsets (user and kernel desktop heaps have the same offsets).

Table 1 – User and Kernel Desktop heaps have the same offsets
5. WND0 is then converted to a console window by calling NtUserConsoleControl which
converts WND0.ExtraBytes from a user desktop heap pointer to an offset within the kernel
desktop heap. This is needed later so that WND0 can write OOB to WND1.

6. Create malicious window WND_Malicious using the CreateWindowEx API

During the window creation the callback xxxClientAllocWindowClassExtraBytes
API is executed to request user mode to allocate memory for
WND_Malicious.cbWndExtra and pass the user desktop heap pointer back to the
kernel function win32kfull!xxxCreateWindowEx.
xxxClientAllocWindowClassExtraBytes has now been hooked and we do the
following before returning to win32kfull!xxxCreateWindowEx:

Call NtUserConsoleControl to convert WND_Malicious to a console window
so converting its WND_Malicious.cbWndExtra from a user desktop heap
pointer to an offset within the kernel desktop heap.
Finally call NtCallbackReturn which completes the callback and returns a
single value to xxxClientAllocWindowClassExtraBytes. Instead of passing
the user desktop heap pointer as expected by
xxxClientAllocWindowClassExtraBytes back to the kernel we pass the value
at WND0+0x08 which is the kernel desktop heap offset to WND0 per figure
7 below. Now anytime we call SetWindowLongW on WND_Malicious we will
be writing to WND0.
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Figure 7 – WND_Malicious

Patch Analysis

The vulnerability lies in the fact that win32kfull!xxxCreateWindowEx does not check whether
the window type has changed between the time it initiates the
xxxClientAllocWindowClassExtraBytes and gets the response from NtCallbackReturn.

When we call NtUserConsoleControl with WND_Malicious in the hook above,
xxxConsoleControl checks if tagWND+0xE8 flag has been set to 0x800 to indicate a console
window per figure  below. As WND_Malicious was created as a normal window,
xxxConsoleControl allocates memory at an offset within the kernel desktop heap and then
frees the user desktop heap pointer existing at WND_Malicious.ExtraBytes (0ffset 0x128). It
then places the offset to this new allocation in the kernel heap at WND_Malicious.ExtraBytes
(0ffset 0x128) and sets the tagWND+0xE8 flag to 0x800 to indicate it’s a console window.
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After returning from the callback when we issued NtCallbackReturn above,
xxxCreateWindowEx does not check that the window type has changed and places the
WND0+0x08 at WND_Malicious.ExtraBytes per figure 9 below. The
RedirectFieldpExtraBytes checks the WND_Malicious.ExtraBytes initialized value but it is too
late as WND0+0x08 has already been written to WND_Malicious.ExtraBytes (offset 0x128).

Figure 9 – win32kfull!xxxCreateWindowEx (vulnerable version)
The patched win32kfull.sys has updated xxxCreateWindowEx to now check the ExtraBytes
initialized value before writing the returned value from user mode to tagWND. ExtraBytes
(offset 0x128) per figure 10 below.

Figure 10 – win32kfull!xxxCreateWindowEx (patched version)
Figure 11 below shows that tagWND. ExtraBytes is initialized to zero within
xxxCreateWindowEx during normal window creation.

Figure 11 – tagWND. ExtraBytes initialization for normal
window
Figure 12 below shows that tagWND. ExtraBytes is initialized to the new offset value in the
kernel desktop heap within xxxConsoleControl during console window creation.
RedirectFieldpExtraBytes simply checks this initialized value to determine if the window type
has changed. In addition, Microsoft have also added telemetry for detecting changes to the
window type flag in the patched version.
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Figure 12 – tagWND.

ExtraBytes initialization for console window

tagWND OOB Write

The vulnerability within the xxxCreateWindowEx API allowed the WND_Malicious.ExtraBytes
field be to set to a value of WND0 offset within the kernel desktop heap. Now any time
SetWindowLongW is called on WND_Malicious it will write to WND0. By supplying an offset
of 0xc8, the function will overwrite the WND0.cbWndExtra field to a large value of
0XFFFFFFF per figures 13 and 14 below.

This means it can write beyond its tagWND structure and ExtraBytes in kernel memory to
fields within WND1. In addition, WND0.ExtraBytes is also overwritten with the offset to itself
so calls to SetWindowLongPtrA on WND0 will write to an offset in kernel desktop heap
relative to the start of WND0.

Figure 13 – OOB Write from WND_Malicious to WND0 
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Figure 14 – WND0 cbWndExtra overwritten with 0xFFFFFFF by WND_Malicious OOB write

Kernel Address Leak

Now that the WND0.cbWndExtra field has been set to a very large value (0xFFFFFFF),
anytime SetWindowLongPtrA is called on WND0 it will write into the adjacent WND1 in
kernel memory per figure 15 below. By writing to specific fields in WND1 we can create a
kernel address memory leak as follows:

1. Write a value of 0x400000000000000 to WND1 style field to temporarily change it to a
child window per figures 15 and 16 below.

2. Calling SetWindowLongPtrA API on WND0 with a value of -12 (GWLP_ID) now allows
the spmenu field (type tagMENU) of WND1 to be overwritten with a fake spmenu data
structure since we have changed it to be a child window per figure 15 and 17 below.

3. Per SetWindowLongPtrA API documentation, the return value will give us the original
value at the offset overwritten, i.e., the spmenu data structure pointer which is a kernel
memory address. So, we now have leaked a pointer to a spmenu (type tagMENU) data
structure in kernel memory and replaced the pointer in WND1.spmenu with a fake
spmenu data structure within user desktop heap per figure 17 below.

https://docs.microsoft.com/en-us/windows/win32/winmsg/window-styles
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowlongptra
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowlongptra


12/18

Figure 15 – OOB Write from WND0 to WND1 to Leak Kernel Address 

Figure 16 – WND1 Style field before and after writing 0x4000000000000000 

Figure 17 – spmenu kernel memory address pointer leaked and subsequently replaced by a
user mode address pointing to a fake spmenu data structure

Kernel Arbitrary Read

Using the spmenu data structure kernel pointer leaked previously we can use the layout of
this data structure and the GetMenuBarInfo API logic to turn it into an arbitrary kernel
memory read per figures 18,19 and 20 below.

https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-menubarinfo
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Figure 18 – Kernel Arbitrary Read using fake spmenu and GetMenuBarInfo 

Figure 19 – Fake spmenu data structure in user desktop heap with original spmenu leaked
kernel pointer at crafted location to enable arbitrary read using GetMenuBarInfo API 

Figure 20 – WinDbg command to show location within spmneu data structure that is
deferenced by xxGetMenuBarInfo
As you can see from the xxxGetMenuBarInfo function in figures 21 and 22 below, by placing
our leaked kernel address at the right location in our fake spmenu data structure we can
create an arbitrary kernel memory read when calling GetMenuBarInfo.
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Figure 21 – win32kfull!xxxGetMenuBarInfo 

Figure 22 – GetMenuBarInfo data structure populated return values per normal spmenu and
fake spmenu (leaks kernel address)

Kernel Arbitrary Write

An arbitrary kernel write primitive can be easily achieved now by writing our destination
address to WND1.ExtraBytes field by calling SetWindowLongPtrA on WND0 which will write
OOB to WND1 relative to the offset we specify per figure 23 below

In this case the offset is 0x128 which is ExtraBytes. Then simply calling SetWindowLongPtrA
on WND1 will write a specified value at the address placed in the WND1.ExtraBytes field.
The arbitrary write is achieved because WND1 is a normal window (has not been converted
to a console window like WND0 and WND_Malicious) and so will write to whatever address
we place in WND1.ExtraBytes.
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Figure 23– Kernel Arbitrary Write for What-Write-Where (WWW)

Data Only Attack

The arbitrary kernel read and write primitives can be combined to perform a data-only attack
to overwrite a malicious process EPROCESS token with that of PID 4 which is System for an
escalation of privilege (EoP).

The original spmenu kernel address leaked previously has a pointer to WND1 at offset 0x50
per figures 24 and 25 below. Through multiple arbitrary reads using the GetMenuBarInfo on
our fake spmenu data structure with this WND1 kernel address we can eventually read the
PID 4 System EPROCESS token.
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Figure 24 – Combining fake spmenu with GetMenuBarInfo arbitrary read to get PID 4 token 
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Figure 25– Original spmenu with

WND1 kernel address pointer at offset 0x50
By placing the destination address (malicious process EPROCESS token) at
WND1.ExtraBytes then the subsequent call to SetWindowLongPtrA will write the value (PID
4 – System EPROCESS token) to that address per figures 26 and 27 below.
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Figure 26 – EPROCESS Token swap 

Figure 27 – Overwriting WND1.ExtraBytes with address of EPROCESS token
The exploit then restores overwritten data structure values once the EoP is complete to
prevent a BSOD (Blue Screen of Death).

Conclusion

In this report, we undertook a deep analysis of CVE-2021-1732 which is a Local Privilege
Escalation on Windows 10. Windows kernel data-only attacks are difficult to defend against,
as once a vulnerability is discovered they use legitimate and trusted code through specific
APIs to manipulate data structures in kernel memory.

The win32k component has been hardened through great work by Microsoft against
read/write primitives, but there are still opportunities for exploitation due to its large attack
surface (syscalls and callbacks) and lack of win32k filtering on a process-wide basis. It would
also be great to see a system wide win32k filtering policy capability within Windows 10.

Patching is always the best solution for vulnerabilities, but a strong defense strategy such as
threat hunting is also required where patching may not be possible, and to detect variants of
vulnerabilities/exploits being used by campaigns.


