
1/5

January 4, 2022

Extracting Indicators from a Packed Mirai Sample
forensicitguy.github.io/extracting-indicators-from-packed-mirai/

By Tony Lambert
Posted 2022-01-04 Updated 2022-03-28 4 min read

Packing is really commonly used by adversary to stump analysis, so in this post I’m going to
look at a sample that is really easy to unpack and get indicators from. In this case the
sample is Mirai packed with UPX. If you want to follow along at home, the sample is in
MalwareBazaar here:

https://bazaar.abuse.ch/sample/ef11393108bed5f3753d054514b2dddb1a534f3623244ab48
5c0ed6e2d5ded9e/

Why Just Indicators?

Malware analysis should serve a purpose. In my dayjob on the Red Canary Intelligence
team I sometimes have to assess malware for indicators as parts of incidents. Not every
adventure ends in assembly code and not every adventure requires a 50-page report.

Identifying UPX Packing

For this Mirai sample, it’s easy to detect the UPX packing with Detect It Easy .

remnux@remnux:~/cases/mirai$ diec
mirai.elf
filetype: ELF32
arch: 386
mode: 32-bit
endianess: LE
type: EXEC
 packer: UPX(3.96)[NRV,brute]

To verify it’s packed with standard UPX, we can look for UPX! (55 50 58 21) in the first
few bytes:

https://forensicitguy.github.io/extracting-indicators-from-packed-mirai/
https://twitter.com/ForensicITGuy
https://bazaar.abuse.ch/sample/ef11393108bed5f3753d054514b2dddb1a534f3623244ab485c0ed6e2d5ded9e/

2/5

remnux@remnux:~/cases/mirai$ hexdump -C mirai.elf | head
00000000 7f 45 4c 46 01 01 01 03 00 00 00 00 00 00 00 00
|.ELF............|
00000010 02 00 03 00 01 00 00 00 08 ba 04 08 34 00 00 00
|............4...|
00000020 00 00 00 00 00 00 00 00 34 00 20 00 03 00 28 00 |........4.
...(.|
00000030 00 00 00 00 01 00 00 00 00 00 00 00 00 80 04 08
|................|
00000040 00 80 04 08 e6 42 00 00 e6 42 00 00 05 00 00 00
|.....B...B......|
00000050 00 10 00 00 01 00 00 00 00 00 00 00 00 d0 04 08
|................|
00000060 00 d0 04 08 00 00 00 00 20 3c 00 00 06 00 00 00 |........
<......|
00000070 00 10 00 00 51 e5 74 64 00 00 00 00 00 00 00 00
|....Q.td........|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00
|................|
00000090 04 00 00 00 4c 15 8d 50 55 50 58 21 ec 08 0d 0c
|....L..PUPX!....|

Also, we can verify with YARA:

remnux@remnux:~/cases/mirai$ yara-rules -s mirai.elf
UPXProtectorv10x2 mirai.elf
0x3a2a:$a0: EB 0E 90 90 90 90 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83 EE FC
11 DB

It’s not unheard of for adversaries to overwrite artifacts of UPX packing or use custom
packers, so when you find a sample with standard UPX it’s always time for celebration!

Unpacking The Sample

In this case it’s simple to unpack the sample. We’re using upx on REMnux, but we also
need to remember that the command will overwrite the original executable. First, we need
to create a backup copy.

3/5

remnux@remnux:~/cases/mirai$ cp mirai.elf mirai.elf.bak

remnux@remnux:~/cases/mirai$ upx -d mirai.elf
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2020
UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd
2020

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 30908 <- 17376 56.22% linux/i386 mirai.elf

Unpacked 1 file.

We can verify the result is executable with file and then get our hashes to look up in VT
or other sources.

4/5

remnux@remnux:~/cases/mirai$ file mirai.elf
mirai.elf: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically
linked, stripped

remnux@remnux:~/cases/mirai$ diec mirai.elf
filetype: ELF32
arch: 386
mode: 32-bit
endianess: LE
type: EXEC

remnux@remnux:~/cases/mirai$ md5sum mirai.elf
3c246e3a6c146dd823268920918c9b48 mirai.elf

Looking for Indicators

The quick and easy triage for indicators can happen with strings . Remember, by default
it just looks for ASCII and not Unicode, so you need two passes.

remnux@remnux:~/cases/mirai$ strings mirai.elf > mirai-strings.txt
remnux@remnux:~/cases/mirai$ strings -eL mirai.elf >> mirai-
strings.txt

Examining the strings output, we can find a couple interesting things:

35.197.127[.]250

/dev/null

5/5

From here, we can pivot on that IP address as an indicator to see where it leads. We can
also possibly look for sandbox reports or execute the malware in a controlled environment.
To save some time, I looked into a Joe Sandbox report for the sample. The report included
the IP address above plus a few more to try and pivot around. Depending on the
requirements for your incident you might also look for obfuscated strings using Ghidra or
other tools, but we don’t need to for this case.

Thanks for reading!

https://www.joesandbox.com/analysis/547170/0/html

