
1/8

Crovax January 21, 2022

Extracting Hancitor’s Configuration with Ghidra part 1
medium.com/@crovax/extracting-hancitors-configuration-with-ghidra-7963900494b5

Crovax

Dec 27, 2021

·

7 min read

Topics covered

Locate the decryption function
Determine the decryption algorithm
Build Ghidra script to decrypt the configuration file
Build yara detection rule (In part 2)

Hancitor Overview

Hancitor is an older malware loader that is known to drop additional malware on to the
system once infected (cobalt strike and some ransomware variants). The entry point is from
your typical malspam campaign, that contains a link to an office doc or already has one
embedded in the email.

The original dll is usually packed, and once unpacked, will execute the hancitor payload and
reach out to one of its hard coded c2's.

Original packed samples:

https://www.malware-traffic-analysis.net/2021/06/17/index.html

Unpacked Sample:

SHA-256

882b30e147fe5fa6c79b7c7411ce9d8035086ad2f58650f5d79aadfb2ffd34f4

Locating the decryption function

https://medium.com/@crovax/extracting-hancitors-configuration-with-ghidra-7963900494b5
https://medium.com/@crovax?source=post_page-----7963900494b5--------------------------------
https://medium.com/@crovax?source=post_page-----7963900494b5--------------------------------
https://www.malware-traffic-analysis.net/2021/06/17/index.html

2/8

Hancitor leverages the Windows native Cryptographic Service provider (CSP) context to
perform its decryption routine. Knowing that, locating the decryption function will be relatively
easy.

One way, is to load the binary into Ghidra and look at import table list for one of the
cryptographic functions (CryptDecrypt, CryptAcquireContextA etc) then follow the referenced
function from there.

Now that we have located the function leveraging the CryptDecrypt routine, we can get a
better picture of how the decryption process works. Below is the decompiled view of the
function performing the decryption routine. We’ll step through each function to determine
how the decryption logic works then start programming it out.

CryptAcquireContextA

The CryptAcquireContextA function initiates the call to the Cryptographic Service Provider
(CSP) to determine what kind of CSP to use for the CryptoAPI functions. This function is
straightforward as its role is just to initiate the CSP context for use. We can determine which
CSP is going to be used by the first ‘PUSH 0x0" instruction. Since its a null value being used,
the default selection is made (native windows cryptographic service provider).

3/8

CryptCreateHash

When the CryptCreateHash function is called, it creates the hashing object to be used in the
cryptographic routine, and determines the type of hashing algorithm to be used. Once
successful, it returns a handle to the object, for subsequent calls to the other cryptographic
functions.

To determine what hashing algorithm is being used, we can look at the ‘Algid’ value that will
be pushed on to the stack. In this case, we see the ‘PUSH CALG_SHA1’ instruction is being
used. So, we know that the hashing algorithm is SHA1.

CryptHashData

This function is going to hash the data passed to it, using the previously specified
algorithm(SHA1). But what is being hashed and how do we figure it out?

First we need to look back at the arguments being passed into the function (I have labeled it
“Decryption’) to see what data is being passed and where its located.

4/8

by looking at the arguments and their position in which they're being passed in, we need to
find out what the data is expecting and where is it located. In order to find this information we
can follow the data that is being passed into the function.

Hint: I have already labeled it 😃

As you can see, the third argument being passed is a pointer to the ‘key’ thats going to be
hashed, and the argument being passed to the right of it (8) is the key length.

so we know the following:

Key = b’\xb3\x03\x18\xaa\x0a\xd2\x77\xde’

Key length = 8 bytes

CryptDeriveKey

This next part is going to be a bit tricky. The CryptDeriveKey is going to accept a few
parameters:

5/8

hProv = handle to the cryptographic service provided being used.

Algid = algorithm for which the key is to be generated. In this case, its going to be RC4.

hHash or hBaseData = handle to the hash object that points to the data.

dwFlags = this is going to be key length that is going to be used. Which is the lower 16 bits
of the value being passed. In our case that value is 0x00280011, so we only want the lower
values or 0x0028 (we can truncate the leading zeros). So by dividing 0x28 / key length(8)
that was being passed to the CryptHashData function, we know how many bytes of the RC4
key is going to be used to decrypt the configuration data.

RC4 key: 0x28 / 8 = (5 bytes)

CryptDecrypt

This function is straightforward, it accepts the data to be decrypted, the key used, and the
length of the data as parameters. To verify, we can once again look at the arguments that are
being passed to the function.

based on the value being passed in, we can see the encrypted data length is equal to
0x2000 bytes.

6/8

Below is a graphical representation of the actions performed thus far.

Creating the Ghidra script

We now understand how the decryption process works. The next step is to create a script in
Ghidra to automate this whole process, so we can extract the build/campaign id and the c2
domains from this sample.

Note: the python script can be downloaded from my github (link here). Your cursor needs to
be pointing to the first address of the encrypted data before running the script. This is due to
the ‘currentAddress’ method.

We know we need to create a sha1 hash of the 8 byte key that’s being passed into the
Decryption function. So we can copy those bytes out of Ghidra and store them into a
variable. The next step is to get a hash (sha1) of the key and extract the first 5 bytes (Key
Hash: a956a1e6ff).

Next we need to get the encrypted data using ghidra’s getBytes function, and then perform
any necessary conversions on the hex values

https://github.com/CrovaxTheCursed/CrovaxTheCursed/tree/main/Malware_Analysis/Hancitor_Ghidra_Script

7/8

def get_encrypted_bytes():
 get_addr = currentAddress
 get_bytes = list(getBytes(get_addr, 2000))
 converted_bytes = ''
 cByte = ''
 for byte in get_bytes:
 if byte < 0:
 cByte = (0xff - abs(byte) + 1)
 else:
 cByte = byte
 converted_bytes += chr(cByte)

 return converted_bytes

We now have our key and the encrypted data we need to decrypt. The last step is to pass
these parameters to a our rc4 decryption function to perform the remaining steps.

def rc4_decrypt(key, data): x = 0 box = range(256) for i in range(256):
x = (x + box[i] + ord(key[i % len(key)])) % 256 box[i], box[x] = box[x],
box[i] x = 0 y = 0 out = [] for char in data: x = (x + 1) % 256
y = (y + box[x]) % 256 box[x], box[y] = box[y], box[x]
out.append(chr(ord(char) ^ box[(box[x] + box[y]) % 256])) return ''.join(out)

Now that we have our decrypted data, we just need to format the data we want and discard
any null bytes.

print 'Current Address:', currentAddress print 'Key
Hash:',binascii.hexlify(key_hash)get_data = get_encrypted_bytes()config =
rc4_decrypt(key_hash, get_data)build_id = config.split('\x00')[0]print 'Build_id:',
build_idfor string in config.split('\x00')[1:]: if string != '': c2 =
string breakc2_List = c2.split('|')for c2 in c2_List: if c2 != '':
print 'c2:', c2

The output should look something like this 😃

8/8

Decode_Config.py> Running…key length 8Current Address: 005c5018Key Hash:
a956a1e6ffBuild_id: 1706_apkreb6c2: http://thestaccultur.com/8/forum[.]phpc2:
http://arguendinfuld.ru/8/forum[.]phpc2: http://waxotheousch.ru/8/forum[.]php

Conclusion

By breaking down the individual functions of the decryption routine we were able to
determine how hancitor was decrypting its c2 domain configuration. We then applied the
same process in creating a Ghidra script to automatically perform the same steps statically,
to reveal the encrypted data.

In part 2, we well take a similar approach and build a yara rule to test our theory and see if
we can detect multiple hancitor variants.

As always, Don’t expect much, as I have no clue what I’m doing. 😃

