
1/11

Timo Kreuzer - Yarden Shafir - Satoshi Tanda - Blair Foster December 28, 2021

Falcon Hardware Enhanced Exploit Detection
crowdstrike.com/blog/introducing-falcon-hardware-enhanced-exploit-detection/

Falcon adds a new feature that uses Intel hardware capabilities to detect complex
attack techniques that are notoriously hard to detect.
CrowdStrike’s new Hardware Enhanced Exploit Detection feature delivers memory
safety protections for a large number of customers on older PCs that lack modern in-
built protections.
Once activated, the new feature detects exploits by analyzing suspicious operations
associated with exploit techniques, such as shellcode injection, return-oriented
programming and others, strengthening CrowdStrike’s existing layered protection
against sophisticated adversaries and threats throughout the attack chain.

CrowdStrike’s goal is to stop breaches — and we do that better than any cybersecurity
company in the world. As attackers advance their tactics and techniques, we continually
refine our tools and capabilities to stay ahead of them. We recently added a new feature to
the CrowdStrike Falcon® sensor: Hardware Enhanced Exploit Detection, which uses
hardware capabilities to detect complex attack techniques that are notoriously hard for

https://www.crowdstrike.com/blog/introducing-falcon-hardware-enhanced-exploit-detection/


2/11

software alone to detect and prevent. With the release of version 6.27 of the Falcon sensor,
this feature is now available on systems with Intel CPUs, sixth generation or newer, running
Windows 10 RS4 or later.

Falcon Hardware Enhanced Exploit Detection leverages a CPU feature developed by Intel
called Intel Processor Trace (Intel PT) that delivers extensive telemetry useful for the
detection and prevention of code reuse exploits. Intel PT records code execution on the
processor and is often used for performance diagnosis and analysis. Intel PT allows the CPU
to continuously write information about the currently executing code into a memory buffer,
which can be used to reconstruct the exact control flow. The primary usage scenario is to
trace an executable while it runs, store the trace on the disk and afterward analyze it to
reproduce the exact sequence of instructions that has been executed. The program behavior
visibility provided by this feature makes it useful for security exploit detection and
investigation as well.

If Intel PT  is enabled and supported by the machine, the Falcon sensor will enable execution
tracing for a selected set of programs. Whenever the program executes a critical system
service (like creating a new process), the sensor will analyze the captured trace to look for
suspicious operations. This innovative approach to exploit detection is already proving
valuable and has detected several return-oriented programming-based (ROP) exploit chains
triggered by vulnerabilities such as CVE-2019-17026, which targets FireFox.

To fully understand this feature, it’s important to first understand the attacker’s technique,
which is often the first step in an attack chain leading to a breach. This chain involves a
series of actions perpetrated by an adversary or malicious software and can include some or
all of the following: initial access, execution, gaining persistence, privilege escalation,
defense evasion, credential access, network discovery, lateral movement, collection,
command and control, and exfiltration.

The Falcon sensor provides visibility into many of these steps, using machine learning and
artificial intelligence along with indicators of attack (IOAs) to correlate certain attacker
behaviors to detections. This allows Falcon to interrupt the attack chain at multiple points to
prevent further actions, before any damage is done. The earlier in the chain this can be
achieved, the better.

Exploits to Gain Initial Access

One of the early mechanisms used by adversaries for initial access is exploiting
vulnerabilities in software to achieve execution of malicious code. There are countless ways
of achieving this, usually starting by making a vulnerable application or service process a
maliciously crafted input, like a file or network packet, that triggers a bug, like a buffer
overflow or use-after-free, which through one or more exploitation techniques eventually

https://www.crowdstrike.com/cybersecurity-101/lateral-movement/


3/11

leads to code execution controlled by the attacker. Some of these techniques are shellcode
injection, return-oriented programming, call-oriented programming, counterfeit object-
oriented programming and jump-oriented programming.

Shellcode Injection

This technique places the malicious code (aka “shell code”) into a stack or heap buffer and
then uses a software bug to overwrite a function’s return address or a function pointer to
point to the malicious code. As soon as the function returns, or the overwritten function
pointer is used, the shell code is executed. Since the widespread introduction of Data
Execution Prevention (DEP), which prevents the CPU from executing instructions on the
stack and heap by marking it as non-executable (NX), this technique requires the attacker to
first change the memory protection on the injected shell code to remove the NX protection.
Therefore, it requires at least one more exploit technique to modify the memory protection.
This has led to code-reuse attacks, which execute small pieces of code from the program
itself or its libraries. The most well-known variant of these attack methods is return-oriented
programming, or ROP.

Return-oriented Programming (ROP)

This technique bypasses DEP by getting rid of shellcodes entirely and reusing existing code
from the executable or loaded DLLs. Instead of placing the malicious code directly into
memory, a stack buffer is filled with the addresses of ROP “gadgets” — small pieces of code
that consist of a few instructions followed by a return instruction. The attacker then abuses a
software bug to overwrite a function’s return address to point to the first ROP gadget, which
consists of instructions to adjust the stack pointer so that it points to the buffer containing the
addresses of the following ROP gadgets, which can be on the stack or on the heap. Each
gadget will execute a few instructions and then “return” to the next gadget address on the
stack. By chaining appropriate ROP gadgets, an attacker can craft a chain of instructions
that lead to the desired operation like bypassing DEP, loading a DLL or starting a new
process. If the ROP chain is carefully crafted, it can even clean up the traces of the stack
manipulation — like pivoting the stack pointer to a heap address — before executing the final
operation, so that it becomes difficult to detect by just analyzing the call stack.

For example, here’s a simple demonstration of ROP. Function Foo() calls function Bar(),
pushing the return address on the stack. Function Bar() contains a vulnerability that allows
an attacker to take control of the stack and overwrite the return address, placing the address
of a malicious shellcode there instead. Once the function returns, the malicious return
address is called and the shellcode executes:



4/11

Other Code-reuse Attacks

There are a few other techniques that attackers can use instead of or in combination with
ROP:



5/11

Call-oriented programming (COP): This technique is similar to ROP, but instead of
overwriting the return address on the stack, it overwrites a function pointer. This can be
useful to initialize an exploit, as it can be easier to leverage a buffer overflow to
overwrite a function pointer on the stack or on the heap than to overwrite the return
address on the stack without destroying the stack cookie.
Counterfeit object-oriented programming (COOP): This technique uses a C++
object with virtual methods to redirect the flow of execution. Instead of modifying a
function pointer directly, a v-table pointer in an object is overwritten.
Jump-oriented programming (JOP): This technique uses an indirect jmp instruction
in the software to redirect execution to an attacker-controlled location. Instead of
chaining return addresses, JOP usually uses a table of addresses of JOP gadgets
together with a so-called “dispatcher gadget”: a small piece of code that increments a
register value to point to the next address in the jump table and then does an indirect
jump to that address. The JOP gadget in turn executes a few instructions and then
does an indirect jump back to the dispatcher gadget.

Existing Countermeasures

Different mechanisms exist to prevent or detect these exploits, including stack cookies,
control flow integrity, call stack analysis and Intel CET. Unfortunately, many of these
approaches have limitations reducing their effectiveness, as we discuss next.

Stack Cookies

A stack cookie is a value that is placed on the stack, between the local variables and the
return address. The compiler will generate code that initializes the stack cookie on function
entry by XORing a magic value with the current stack pointer, and subsequently checks the
value before returning to the caller and crashes the process if the value doesn’t match the
expected one. This mechanism is typically only added to functions that use stack buffers,
which could suffer from a buffer overflow bug, preventing it from being abused to overwrite
the return address.

Control Flow Integrity (CFI)

Control flow integrity describes a family of mechanisms that attempt to protect indirect calls
(e.g., from function pointers or virtual methods) from being manipulated. This is done by
inserting compiler-generated code that validates that the target of an indirect call is a
legitimate call target.

On Windows, this protection mechanism is called Control Flow Guard (CFG). To validate the
call target, a bitmap is used, which is generated by the kernel from metadata in the images of
all loaded DLLs and executables and mapped into the address space of every process that
supports it. Each bit represents 8 bytes of code, resulting in a huge bitmap. Unfortunately,



6/11

CFG needs to be enabled with a compiler flag and it isn’t widely adopted yet. It cannot be
enforced on DLLs that were compiled without CFG, and for processes that have it disabled,
it’s automatically disabled for all system DLLs as well, even though they support it.

Windows 11 has an improved mechanism called Extreme Flow Guard (XFG). Here the
compiler inserts a 64-bit hash of the function signature before each function. For each
indirect function call, the compiler generates instructions that load both the function pointer
and the hash of the function to be called into registers followed by a call to a dispatch
function that first validates whether the hash matches the one stored before the target
function, before jumping to the target. The current implementation in the pre-release of
Windows 11 is rather useless, though, because a hash mismatch (as well as an unaligned
target address) simply leads to a fallback to bitmap-based CFG.

Call Stack Analysis

While all previously described mitigations are implemented through the operating system,
security software has its own ways of detecting such techniques. For example, security
software can intercept certain system functions and analyze the call stack for signs of
manipulation, like a stack frame outside of the actual stack or return addresses on the stack
that do not match any call instructions.

This is typically a sign of a ROP exploit. But more sophisticated exploits are able to restore
the stack into a sane state before calling any system services, making it almost impossible to
detect the exploitation just by looking at the stack, after the exploitation has taken place.

Intel CET

Since “Tiger Lake,” Intel CPUs support a feature called Control-Flow Enforcement
Technology (Intel CET). It provides two features to protect from code-reuse attacks: indirect
branch tracking (IBT) and shadow stack (SS). IBT adds the ENDBR instruction, which marks
legitimate targets of indirect calls and jumps, disallowing indirect jumps and calls to any other
instruction. Shadow stack, which is inaccessible to user mode, automatically stores copies of
return addresses from the normal stack and detects mismatches of the return value between
the normal stack and shadow stack. It is supported by Windows 10 RS5.

CrowdStrike’s Alternate Approach

While a number of viable solutions exist, they are either limited in their protection (stack
cookies, stack analysis) or require support from the compiler and OS, and in the case of Intel
CET, require a modern PC refresh. It can be expected that unprotected software will be
around for many years to come.

To address the issue now for existing software, an alternate approach is needed. To address
this, we investigated the use of Intel Processor Trace to implement a software solution.



7/11

Intel Processor Trace

Intel Processor Trace, or Intel PT, is a CPU feature present on Intel CPUs since the fifth
generation (“Broadwell”). It allows the CPU to continuously write information about the
currently executing code into a memory buffer, which can be used to reconstruct the exact
control flow. The primary usage scenario is to trace an executable while it runs, store the
trace on the disk and afterward analyze it to reproduce the exact sequence of instructions
that has been executed. In this scenario, the analysis doesn’t need to be extremely fast, but
the capture of the trace still needs to be efficient to not excessively slow down the process’
execution.

To achieve this, the CPU writes the trace using packets that are extremely optimized for size,
resulting in an overhead of only a few percent.

To minimize the amount of data to write, the CPU doesn’t store any information that can be
reproduced from the executable code, which is expected to be available for analysis.

For example, the CPU will only write a packet when execution is going to a location that
cannot be determined from the instruction being executed. This means execution of direct
jumps and calls, which have target addresses hardcoded in the binary, will not cause a
packet to be generated. Indirect calls and jumps, as well as returns, which cannot be derived
from the executable code, will result in a packet that specifies the target address of the
instruction.

Another operation that results in packet generation is a conditional jump. For such a jump,
the target is already encoded in the executable, so the only information needed is whether
the branch was taken or not, which can be represented by a single bit. To achieve this, the
CPU will write a packet type called Taken Not Taken (TNT) packets into the buffer, which will
store multiple bits, each representing a single conditional jump.

Another optimization is not writing the full target address of an indirect jump, but only the
lowest bytes of the target address, since the top bytes usually remain the same. This usually
reduces a packet from 9 bytes to 5 bytes or even 3.

Configuration

Intel PT is configured using model-specific registers (MSRs). These registers exist per CPU
core and thus affect tracing on a per-CPU basis. To capture the trace of an application, it is
necessary to collect the trace on a per-thread level. To achieve this, the operating system
needs to save and restore these MSRs on each thread-context switch. This is done by using
the XSAVES and XRSTORS instructions, which allow the operating system kernel to save
and restore different register sets. These are extended versions of older XSAVE and
XRSTOR, which only allowed to save and restore generic user-mode available registers and
could thus be executed in user mode. The S suffix in the new instructions indicates



8/11

“Supervisor” mode (or kernel mode), allows to save and restore the privileged CPU state and
can only be executed by the kernel. Starting from the sixth generation, Intel CPUs
(“Skylake”) can save and restore the Intel PT state MSRs with these instructions.
Additionally, the OS needs to support this. Windows 10 implements this since RS4.

Using Intel PT to Detect Exploitation

Being able to capture the execution trace of an application, security software that runs in the
kernel now has the ability to look for code reuse attacks by parsing the captured trace
packets together with the executed instructions in the address space of the application.
Being able to decode the instructions relies on them still being present when the packets are
being analyzed. This is almost always the case, when the number of analyzed instructions
doesn’t get too large.

While it is generally desirable to keep the number of instructions in the buffer low to reduce
the analysis cost, it also has to be large enough to fully cover larger library functions, like
CreateProcess, which execute a large amount of instructions before switching to kernel
mode, so that the exploit that led to the call to it is still in the buffer when the kernel mode
service is finally called.

In its analysis, security software can now check for different suspicious operations, like
returns not matching calls, suspicious stack pointer loads, excessive use of indirect calls and
jumps, and more.

With the release of version 6.27, the CrowdStrike Falcon sensor has a new feature called
Hardware Enhanced Exploit Detection, which leverages Intel PT in the way described above.

If the feature is enabled and supported by the machine, the sensor will enable execution
tracing for a selected set of programs. Whenever the program executes a critical system
service (like creating a new process), the sensor will analyze the captured trace to look for
suspicious operations. Due to the requirements mentioned above, the feature is only
available on systems with Intel CPUs of the sixth generation or newer, running Windows 10
RS4 or later.

Operation

For each process that is selected for trace analysis, each thread will be configured to enable
tracing of all user mode code. A trace buffer is allocated for each thread (32 KB has been
shown to be sufficient), and the MSRs are configured in the context of the thread. Windows
will save and restore the configuration MSRs on each thread context switch, thus making
sure the trace buffer will only contain the traces from this thread.

Kernel mode callbacks with configurable pre-filtering decide when an analysis is due and
then run the analyzer, again in the context of the thread that is performing the operation.



9/11

The analyzer decodes the packets written in the trace buffer and decodes instructions as
needed to reproduce the control flow.

To efficiently decode the trace, the analyzer uses a custom PT packet decoder that is
optimized for the required operations it needs to perform. Additionally, it uses a highly
optimized instruction decoder, which is able to decode tens of millions of instructions per
second. This allows the analyzer to decode and validate a trace buffer that is large enough to
cover calls to functions like CreateProcess in a few milliseconds. A typical analysis
processes around 130,000 instructions in around 5 milliseconds. Obviously, this is still an
overhead that can result in slowdown of the application if done too often. Therefore, analysis
needs to be triggered only rarely, like when a new process is created or a new dll is loaded.
Pre-filtering based on the invoked system call and the parameters of the events helps reduce
the number of analysis operations and configurable size of the analyzed buffer, and as a
result, can reduce the analysis duration.

One method of analysis is maintaining a “shadow stack,” which records the addresses of call
instructions and subsequently validates the targets of return instructions to match them. 

Whenever a call instruction is decoded, the analyzer will add an entry to the shadow stack,
and whenever a ret is decoded, the analyzer will pop an entry from the shadow stack and
compare it with the target IP that was captured in the trace buffer. Mismatches are recorded.

Since the trace will start at an arbitrary location (e.g., from deep within a call chain), the
shadow stack might not be built or might be already empty when a return is found. As a
fallback, when no entries are present in the shadow stack — thus the legitimate return
address is unknown to the analyzer — it checks whether the target address is after a call
instruction.

When an application is exploited using ROP and a system call was invoked as a result of a
ROP chain, the execution trace would contain a number of returns that don’t match the
recording from a shadow stack and in the majority of cases also don’t return to an address
found immediately after a call instruction. Additional indicators of exploitation are sequences
of short gadgets followed by a ret and unusual stack pointer-modifying operations.

Whenever the analyzer encounters one of these, it is considered a potential ROP gadget.
During the analysis, data is collected, and then evaluated afterward to decide whether a
ROP attack is likely based on the data.

False Positive Mitigation

As already mentioned, the binary code that the trace has recorded executing is usually still in
memory. There can be cases, though, when it is not. For example, JIT code might have been
deallocated or overwritten after it was executed, but before the analysis happens. This can
lead to being unable to follow the execution trace, or even misinterpretation of it. There are



10/11

mitigations in the analyzer that will detect such scenarios and avoid accumulating false
positives. Additionally, the analyzer collects telemetry data about decoding failures, allowing
config to selectively disregard the results.

Detection

As of Falcon sensor version 6.27, we have added a new detection
(SuspiciousExecutionTrace) and a telemetry event (PtTelemetry) that accompanies it. Early
analysis shows that this approach to exploit detection will prove fruitful as we have been able
to demonstrate detection efficacy on a number of ROP-based exploit chains triggered by
vulnerabilities such as CVE-2019-17026, which targets FireFox.

(Click to enlarge)

Summary

In our mission to stop breaches, CrowdStrike strives to continually expand our suite of exploit
detection and prevention capabilities. Many CPU features, such as Intel PT, are underutilized
and can be efficiently leveraged to detect and prevent exploits, and we will continue to invest
in these CPU technologies to bring innovative capabilities to the Falcon sensor. It is essential
to mention that CrowdStrike Falcon takes a layered approach to protecting customers
against exploits and advanced threats by using machine learning (on sensor and in the
cloud) and behavior-based detection using IOAs. Customers who run the Falcon sensor on
virtual machines or other configurations that do not support Falcon Hardware-Enhanced
Exploit Detection are still fully protected by Falcon’s layered approach to securing customer
environments.

https://www.crowdstrike.com/wp-content/uploads/2021/12/Picture1-16.png


11/11

Additional Resources

Visit the product website to learn how the powerful CrowdStrike Falcon platform
provides comprehensive protection across your organization, workers, data and
identities.
Get a full-featured free trial of CrowdStrike Falcon Prevent™ and learn how true next-
gen AV performs against today’s most sophisticated threats.

https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/resources/free-trials/try-falcon-prevent/

