
1/26

December 27, 2021

A Deep Dive into DoubleFeature, Equation Group’s Post-
Exploitation Dashboard

research.checkpoint.com/2021/a-deep-dive-into-doublefeature-equation-groups-post-exploitation-dashboard/

December 27, 2021
Earlier this year, Check Point Research published the story of “Jian” — an exploit used by
Chinese threat actor APT31 which was “heavily inspired by” an almost-identical exploit used
by the Equation Group, made publicly known by the Shadow Brokers leak. The spicy part of
the story was that Jian had been roaming in the wild and abusing Equation Group ingenuity
to compromise systems before it was cool — as early as 2014, a full two years before the
Shadow Brokers leaks made the original exploit public. Evidently, the authors of Jian had
acquired early access to it some other way.

While this discovery had undoubtedly added an extra tinge of paranoia to an already
complicated affair, we were still left with some questions of our own. Chief among those
questions was, “how come that little nugget was still just lying there for us to find, a full 4
years after the fact?”. In information security terms, 4 years is an eternity. What else would
we find, if we dug deep enough? Have the Russians actually had access to these tools back
in 2013? The Iranians in 2006? The Babylonians in 700 BC?

https://research.checkpoint.com/2021/a-deep-dive-into-doublefeature-equation-groups-post-exploitation-dashboard/
https://research.checkpoint.com/2021/the-story-of-jian/

2/26

First of all, we are glad to say the answer is (probably) no. Best that we can tell, APT31’s
apparent early access to the leaked exploit was the exception, not the rule. This makes for a
less exciting headline, but should help all of us sleep better at night. During our research, we
combed over the DanderSpritz framework — a major part of the “Lost in Translation” leak —
in excruciating technical detail; and we present our findings here, with a pedagogical focus
on its DoubleFeature logging tool which provides a unique view into the rest of the
framework.

What is DanderSpritz?

DanderSpritz is a full-featured post-exploitation framework used by the Equation Group. This
framework was usually leveraged after exploiting a machine and deploying the PeddleCheap
“implant”. DanderSpritz is very modular and contains a wide variety of tools for persistence,
reconnaissance, lateral movement, bypassing Antivirus engines, and other such shady
activities. It was leaked by The Shadow Brokers on April 14th, 2017 as part of the “Lost in
Translation” leak.

DanderSpritz Structure and Execution Flow

DanderSpritz logic can be found effectively split in two inside the directory tree of the “Lost in
Translation” leak:

leak root
----(...)
----windows
--------bin
--------exploits
--------fuzzbunch
--------implants
--------payloads
--------resources
--------specials
--------touches
----(...)

The core functionality of DanderSpritz is contained in the file DszLpCore.exe , which can
be found at windows/bin . The framework’s plugins and complex components, including
DoubleFeature which we will later discuss in detail, can be found under
windows/resources . fuzzbunch , implants , and the other directories under windows

contain modules separate from DanderSpritz which are used for exploitation itself, taking
control of victim systems, initial data gathering and so on; these are all beyond the scope of
this publication.

The basic logical unit inside DanderSpritz is what we dub a “plugin”. These reside in
windows/resources ; there are about a dozen of them and they have a very specific

directory structure, seen in the diagram below (though some of these subdirectories are

https://en.wikipedia.org/wiki/The_Shadow_Brokers
https://www.bleepingcomputer.com/news/security/shadow-brokers-release-new-files-revealing-windows-exploits-swift-attacks/
https://github.com/x0rz/EQGRP_Lost_in_Translation

3/26

optional).

There are also some other directories under windows\\resources that are not plugins
(and therefore do not have this structure), and instead contain miscellaneous auxiliary scripts
(such as validation scripts to verify the affiliation of victim machines).

plugin root
----aliases
----commands
----modules
--------descriptions
--------files-dsz
------------x86
----------------<module_name>
----------------<module_name>
----------------(...)
------------x64
----------------<module_name>
----------------<module_name>
----------------(...)
------------(...)
----payloads
--------descriptions
----pylp
----pyscripts
----scripts
----tools
----uploads
----version

Aliases and Commands – These both contain XML files that declare support for
“aliases” and “commands”, respectively, which serve a similar function. When a user of
the DanderSpritz framework issues a shell command (in the general sense of the word
– in the same way that a Bash user would run ls , top and so on), DanderSpritz will
iterate over every plugin, check these XMLs and verify whether they declare support for
the shell command the user typed. If the command appears under Aliases it will be
simply mapped to an existing script; a Command will typically, under the hood, invoke
the inner logic of the plugin in some way. This effectively means that a user of
DanderSpritz can run many different shell commands to achieve various results without
being aware that behind the scenes, the same plugin handled the execution of all these
requests. Under Commands (but not Aliases), additionally to the XML, there is an
XSL file which specifies a format for the command’s output as returned to the
DanderSpritz user (XSL is a markup language for specifying presentation style for XML
data — it is to XML as CSS is to HTML).

4/26

Modules – Most of the plugin logic is contained in this directory. As can be inferred
from the name, the logic is further divided into smaller “modules” of functionality. The
descriptions subdirectory contains an XML file which is a sort of “manifest”. It

details what scripts and binaries should be run on the victim machine and on the “LP”
(“Listening Post” — an attacker-controlled machine remotely monitoring the victim). It
also lists the plugin’s dependencies on other modules, its interface data, what
computing architectures it supports, and whether it should run on the victim machine or
on the LP. A few plugins also contain a payloads directory with a similar function.
PyLp – Contains XML files for formatting incoming information exfiltrated from the

victim machine. For every “message type” (kind of exfiltrated information), an XML
specifies a Python script that formats the data for convenient display. This formatting
script resides in the PyScripts directory.
PyScripts – All the miscellaneous Python scripts used by the framework are in this

directory.
Scripts – This directory also contains miscellaneous scripts, written in some sigil-

heavy scripting language that might have seemed reasonable to use before Python’s
rise to prominence.
Tools – A grab-bag of self-contained material (PEs, DLLs, scripts, JARs, text files,

…) which the authors figured they’d rather just include and invoke as-is.
Uploads – stand-alone binaries which are pushed to the victim system by the plugin.
Version – contains an XML file containing the plugin version.

Below we detail the typical control flow when a plugin alias or command is invoked.

1. The DanderSpritz user types a shell command in the DanderSpritz user interface which
is, behind the scenes, implemented using that specific plugin.

5/26

Figure 1: The User Interface of DanderSpritz and its shell commands.

1. DanderSpritz’s main logic iterates over the resources directory, looking at one plugin
directory after the other. For each plugin directory, DanderSpritz looks at the aliases
subdirectory and the commands subdirectory, and scrutinizes the XML file within,
looking for a declared exported functionality matching the shell command. The match is
found, and the matched XML element specifies a path inside the plugin’s pyscripts
directory.

2. DanderSpritz computes the fully qualified path of the invoked script (by appending the
path specified in the matched XML element to the path of the plugin’s pyscripts
directory) and executes the file. This is where the user interface of the invoked shell
command is displayed, and the plugin can be said to be properly running. (Ideally, this
Python script is just UI and glue, while the core functionality that interacts with the
victim machine resides in a separate remote component; but this appealing abstraction
is broken somewhat in the DoubleFeature plugin which we will dig into later.)

6/26

3. Now the attacker gets to stare at the UI of the tool they invoked for as long as they like.
Eventually, they will probably want to invoke some functionality through this UI.
Depending on the functionality chosen, the Python UI constructs a Remote Procedure
Call (taken from raw hardcoded data inside the Python — no XMLs here). It sends this
RPC to the DanderSpritz component on the victim machine. This component on the
victim side then executes the call and returns a result. In this way, RPCs are used as
the API which the component on the LP accesses to perform actions on the victim
machine (such as collecting screenshots or recording voice). This API is decoupled
from the way these actions are actually implemented on the victim component side.

4. The RPC returns with the precious information required by the attacker (or maybe just
a terse “action accomplished”). The Python UI consults the XML in the Plugin’s PyLP
directory that matches the result’s message type. This XML specifies how to display the
returned information on the LP end, and the UI does so.

7/26

Figure 2: Example of XML files (both LP and Target) of a specific command.

Focus on DoubleFeature

8/26

To better understand the above structure and flow, we focused our research on a component
of DanderSpritz named Doublefeature (or Df for short). According to its own internal
documentation, this plugin “Generates a log & report about the types of tools that could be
deployed on the target”; a lot of the framework tools, in their own internal documentation,
make the chilling claim that DoubleFeature is the only way to confirm their existence on a
compromised system. After some pause, we figured that at least this means DoubleFeature
could be used as a sort of Rosetta Stone for better understanding DanderSpritz modules,
and systems compromised by them. DoubleFeature effectively, well, doubles as a diagnostic
tool for victim machines carrying DanderSpritz — It’s an incident response team’s pipe
dream.

Figure 3: Code of strangeland.py referring to the fact that the only way to confirm is with DF.

In a perfect world, we wouldn’t need to explain anything about the inner workings of
DoubleFeature under the hood. After all, we just went through a whole section on how
DanderSpritz plugins in general work under the hood; and DoubleFeature is one such plugin;
therefore, everything above about RPC calls whose return values are formatted per an XSL
specification should still hold — right?

Unfortunately, because of DoubleFeature’s unique function as a logging module, it collects a
large amount of data of various types. RPC return values and XSL markup are just not suited
to transfer and display information on this scale. An unexpected corner use case emerged,
an ad-hoc solution was created specifically for it, and the “pretty and elegant framework for
everything” vision was quietly taken to the backyard and shot. It’s a tale as old as time.

https://strangeland.py/

9/26

Figure 4: DoubleFeature main menu

DoubleFeature’s PyScripts directory contains its Python UI interface (doublefeature.py) —
but when the attacker chooses an option from the UI menu, behind the scenes instead of
simply issuing an RPC, the script transmogrifies a “template” DLL,
DoubleFeatureDll.dll.unfinalized , that resides in the plugin’s uploads directory.

The Python invokes the external tool AddResource.exe , found in the plugin’s tools
directory, to implant a resource into the already-compiled DLL and make it ready to detonate,
under a new name: DoubleFeatureDll.dll.configured . The exact command run is:

*local run -redirect command "
<g_dfconfiguretool> cmpf 6 1104 <configureddllpath> <g_dfrscfile>"*"

The flags used by the command are explained below.

c (compressed) – Zlib compress the data
m (munge) = Obfuscate the resource by XORing with pseudo-random bytes. The

bytes are generated by running a PRNG (a 32-bit LCG, if you insist) and using the
execution timestamp as the seed; to allow recovery, the seed is prepended to the
obfuscated resource.
p (place) = Place the resource into a homebrew resource directory (more detail about

this later).
f (finalize) = Finalize the proprietary resource directory.
6 = Type of resource (in this case, the enum value 6 translates to RT_STRING , a

string-table entry)
1104 = Name of the resource.

After the main plugin DLL **is endowed with this new resource, the Python UI uses the
DanderSpritz dllload shell command to load it on the victim machine:

https://doublefeature.py/
https://en.wikipedia.org/wiki/Linear_congruential_generator

10/26

dllload -ordinal 1 -library <configuredDllPath>

Once the DLL on the victim side finishes running and writing the report to the log file on the
victim machine, the Python UI exfiltrates the log file back to the attacker machine using the
following DanderSpritz shell command:

foreground get <log_file_name> -name DFReport

While (as mentioned above) most output of DanderSpritz commands is viewed according to
XSL specifications, the output of DoubleFeature is too large and varied for this approach to
be feasible. Instead, the attacker typically views the log file using a specialized program
written for this purpose — DoubleFeatureReader.exe , which can be available in the
plugin’s tools directory.

DoubleFeature writes all its log data to a debug log file named ~yh56816.tmp ; this artifact
was covered in Kaspersky’s 2015 report on the remote access tool dubbed “EquationDrug”
(more on that below). This log file is encrypted using the AES algorithm. Unless the user
changes the key manually, the default one used is badc0deb33ff00d (possibly to spite
vegan developers).

Main DLL of DoubleFeature

When the patched DLL (DoubleFeatureDll.dll.configured) is first loaded on the
victim machine, it looks for a resource named “106” in a homebrew resource directory. This
directory resides in the “.text” section right after the actual code, and the DLL is able to find it
by searching for a distinct magic value. The homebrew resource directory has the following
structure:

Resource_Directory_struct:
word word_0
word num_of_resources
Resource_data[] resource_array

 dword resource_directory_size
 dword magic_hash

Resource_data:
word resource_type
word resource_num
dword offset_from_directory_start
dword resource_size

This resource (which is distinct from the resource earlier grafted onto the DLL by invoking
AddResource.exe) is encrypted at rest, and in order to be used, it must be decrypted and

decompressed. The (equivalent Python of the) logic is below.

https://securelist.com/inside-the-equationdrug-espionage-platform/69203/

11/26

def decrypt_decompress_resource(buf, seed):
output = bytearray(b'')
for i in range(len(buf)):
 seed = (0xDD483B8F - (0x6033A96D * seed) % (2**32)) % (2**32)
 cur_xor_key = seed >> 8
 output.append((cur_xor_key & 0xff) ^ (buf[i] & 0xff))

 uncompressed_resource = zlib.decompress(output[4:])
return uncompressed_resource

Resource 106, once decompressed, is a driver called hidsvc.sys. It is loaded into the kernel
by invoking the EpMe exploit of CVE-2017-0005 (this is the very same exploit that had its
logic find its way into the Jian exploit somehow). After the driver is loaded, the DLL begins
communicating with it using DeviceIoControl s. The most interesting IOControlCode
supported by the driver is 0x85892408, which allows user-mode code to directly invoke
kernel functions by simply specifying the function name and the arguments. The driver
expects incoming messages with this code to be bundled with the following struct:

ControlCode_input_buffer:
dword export_func_hash
dword num_of_arguments_bufs
dword [0x20*num] arguments_buf

Most arguments are self-explanatory, given the purpose of this control code. The one detail
that bears explanation is the export_func_hash – the function name is not passed
explicitly, but instead a checksum of it. Upon receiving the struct, the driver iterates over
every exported function of ntoskernl.exe computes the resulting checksum and
compares the result with the provided export_func_hash . Once a match is found, the
driver concludes it has found the correct function. This is a standard method to obfuscate
API calls, seen in many other pieces of malware.

The checksum computation logic can be seen below.

def checksum(name, len):
val = 0
for i in range(1, len+1):
 temp = (0x1A6B8613 * i) % (2**32)
 val = val ^ (temp * ord(name[i-1]) % (2**32))
return val

Some sample checksum values:

12/26

ZwQueryInformationProcess 0x62A0A841
ZwQueryObject 0xB7241E54
ZwOpenEvent 0xDE2837FA
ZwSetEvent 0x662E22E1
ZwOpenKey 0xA20F6388
ZwFsControlFile 0x407CC9F5
ZwQueryVolumeInformationFile 0x161C4B69
ZwQueryInformationFile 0xC0E4A30A
ZwSetInformationFile 0x535ACCEA
ZwReadFile 0xB8075119
ZwWriteFile 0xBAE70F4B
ZwClose 0x69023181
ZwCreateFile 0x01862336
ZwQueryDirectoryFile 0x41483801
ZwQuerySystemInformation 0x178B07C8
ZwCreateKey 0x01862336
ZwDeleteKey 0x2C9F7CA8
ZwQueryKey 0xBDD598E2
ZwEnumerateKey 0x8D3E3E7A
ZwSetValueKey 0x90A71127
ZwEnumerateValueKey 0x040F9817
ZwQueryValueKey 0xF655B34B
ZwDeleteValueKey 0x2A1BF746
ZwWaitForSingleObject 0x86324d14

This isn’t the only aspect of DoubleFeature (and other Equation Group tools) to make life
difficult for forensic analysts. The strings used in DoubleFeature are decrypted — that alone
is very standard — but they are decrypted on-demand per function, which is somewhat more
frustrating than usual, and they are re-encrypted once function execution completes, which is
much more frustrating than usual. DoubleFeature also supports additional obfuscation
methods, such as a simple substitution cipher:

def deobfuscate_strings(enc_strings):
for enc_string in enc_strings:
 replace_buffer = [0x37, 0x3B, 0x5D, 0x4B, 0x45, 0x44, 0x3C, 0x5C,

0x7B, 0x4F,
 0x74, 0x41, 0x7D, 0x7E, 0x35, 0x46, 0x23, 0x2B, 0x72, 0x71,
 0x40, 0x78, 0x4C, 0x55, 0x39, 0x56, 0x30, 0x5F, 0x50, 0x2C,
 0x29, 0x2D, 0x79, 0x59, 0x3A, 0x57, 0x53, 0x69, 0x77, 0x63,
 0x26, 0x70, 0x2A, 0x76, 0x60, 0x3D, 0x33, 0x31, 0x22, 0x47,
 0x49, 0x4E, 0x75, 0x58, 0x34, 0x68, 0x6B, 0x20, 0x67, 0x32,
 0x27, 0x65, 0x51, 0x28, 0x5B, 0x2E, 0x7C, 0x6F, 0x24, 0x4A,
 0x3E, 0x64, 0x73, 0x6D, 0x7A, 0x3F, 0x6A, 0x54, 0x62, 0x42,
 0x6C, 0x48, 0x2F, 0x25, 0x43, 0x52, 0x21, 0x66, 0x38, 0x5A,
 0x61, 0x5E, 0x36, 0x4D, 0x6E, 0x00]

 dec_string = ''
 for i in range(len(enc_string)):
 cur_place = ord(enc_string[i]) - 0x20
 dec_string += chr (replace_b

uffer[cur_place])
 print(dec_string)

13/26

And a stream cipher based on a simple homebrew linear PRNG:

def decrypt(seed, buffer, mask, first_hex_seed, second_hex_seed):
outut = ''
for i in range(len(buffer)):
 seed = (((first_hex_seed * seed) % (2 ** 32)) + second_hex_seed) % (2

** 32)
 cur_xor_key = ((seed >> 16)) | mask
 output += chr ((cur_xor_key & 0xff) ^ buffer[i])
return output

As mentioned above, by virtue of its function, DoubleFeature is a unique source of
knowledge pertaining to Equation Group tools — after all, the entire logging module depends
on an ability to query these tools on a victim system and verify which are present. Below we
list some of the tools probed by the logging module, some of which were unknown.

Apart from resources 106 and 1104, which are actively used in the DLL’s execution flow, the
main DLL’s homebrew resource directory also contains the following resources:

Resource 1004 – UnitedRake Restart DLL.
Resource 1005 – UnitedRake Shutdown DLL.
Resource 1006 – StraitBiZarre Restart DLL.
Resource 200 – Hashes of known boot managers that are being compared to BCD
partition data.
Resource 1007 – Upgrade KillSuit module DLL — references to it can be found in the
code, but it can no longer be physically found in the directory. Possibly it existed in
earlier versions of the DLL and was removed later.

Plugins Monitored by DoubleFeature

UnitedRake

UnitedRake (UR) is a remote access tool that can be used to target Windows machines. It is
an extensible and modular framework that is provided with a large number of plugins that
perform different information collection functions. This is the tool that Kaspersky dubbed
“EquationDrug” in their original report, published before the Shadow Brokers leak. The leak
also included the UnitedRake manual, which contained the configuration, commands, and
modules of this tool. DoubleFeature supports many management functions related to
UnitedRake such as Shutdown, TipOff, KickStart and Enabling/Disabling logging.

We came across the following indicators of UnitedRake:

MSNDSRV.sys – Kernel mode stage 0 and rootkit. Implements an NDIS driver for
filtering the network traffic. Until UR version 4.0.
ATMDKDRV.sys – Network-sniffer/patcher. Since UR version 4.1.

https://securelist.com/inside-the-equationdrug-espionage-platform/69203/

14/26

“Software\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}\TypeLib” or
“\Registry\Machine\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-
83B57ADD2209}\TypeLib” – contains the GUID of UR, the special key registry key.
“\Registry\Machine\System\CurrentControlSet\Control\Session Manager\MemSubSys\
{95FFB832-8B00-6E10-444B-DC67CAE0118A-F6D58114}” – KillSuit Logging data
related registry key.
“Global\64322D88-0CEA-4ce0-8562-67345B70C655” – File Mapping created in TipOff
command.
“*Global*6F27089A-3482-4109-8F5B-CB3143A1AB9A” and “*Global*667FBF02-
F406-4C0A-BA65-893747A0D372” – Events created in UR Shutdown.
{A0CCDC61-7623-A425-7002-DB81F353945F-5A8ECFAD} – UnitedRake 3/4 Config
Data and Transport Info CLSID
{30F3976F-90F0-B438-D324-07E031C7507E-981BE0DD} – UnitedRake Plugins Info
CLSID
{95FFB832-8B00-6E10-444B-DC67CAE0118A-F6D58114} – UnitedRake Logging data
CLSID
{01C482BA-BD31-4874-A08B-A93EA5BCE511} – UnitedRake’s mutex name.

StraitBizarre

StraitBizarre (SBZ) is an implant used for stealthy data exfiltration which is performed over
FriezeRamp – a custom network protocol that is similar to IPSEC. It’s a cross-platform
project, and different versions exist supporting Windows, Linux and mobile platforms (e.g.
DROPOUTJEEP for iPhone, and there’s even TOTEGHOSTLY for Windows Mobile).

15/26

Figure 5: StraitBizzare information. Source: Der Spiegel

We came across the following indicators of StraitBizarre inside DoubleFeature:

{1B8C5912-8BE4-11D1-B8D3-F5B42019CAED} – SBZ CLSID for GUID, version and
Special Status Keys.

KillSuit

KillSuit (KiSu) (“GrayFish” in the original Kaspersky report) is an unusual plugin in that once
deployed on the victim machine, its entire mission is running other plugins, providing a
framework for persistence and evasion. Some (not all) DanderSpritz plugins can be either
run individually, or be invoked through KillSuit. Its design is such that every instance of
KillSuit running on the victim side can host a single tool (such as MistyVeal, below); and so, it
can easily happen that a victim machine will have several instances of KillSuit installed on it,
each hosting a different post-exploitation tool. The data for each KillSuit instance, including
all its modules, is kept encrypted in registry entries. This is something unique to KillSuit and
is not a feature of DanderSpritz plugins in general.

16/26

DoubleFeature logs a great amount of data pertaining to KillSuit. In fact, there is also some
dead code inside DoubleFeature that allows deleting, upgrading and pushing module
updates into running KillSuit instances (we agree with the decision to deprecate this code;
after all, DoubleFeature is supposed to be used for logging, and we’ll soon see this
functionality in the KillSuit Python UI, where it belongs). While “KillSuit” is the name used
inside DoubleFeature and in the outer-layer DanderSpritz CLI that the attacker will actually
invoke, actually the Plugin folder name used internally is DecibalMinute (DeMi for short). The
Python UI logic can mainly be found inside 3 scripts that, unsurprisingly, reside in the plugin’s
pyscripts directory.

“Mcl_Cmd_DiBa_Tasking.py” – handles KiSu installation, uninstallation and
upgrades. As a parameter, this script accepts the type of persistence mechanism to
use; there are 4 types of persistence, helpfully named “Default”, “Launcher”, “SoTi” and
“JuVi”. We elaborate on their internal workings a bit further below. Under the hood, the
Python UI implements this via an RPC call (RPC_INFO_INSTALL).
“Mcl_Cmd_KisuComms_Tasking.py” – used to establish a connection with a running
instance of KillSuit on the victim end, and provides functionality for dynamically loading
and unloading modules/drivers.
“_KiSu_BH_enable.py” – One of KillSuit’s internal drivers is called “BroughtHotShot”,
or BH for short. This script does not enable it, but checks whether it is enabled (via
DanderSpritz commands available -command kisu_install -isloaded and
available -command kisu_install -load). If you want to enable the driver, you

need to do KiSu_BH_enable.py on , and disabling it is KiSu_BH_enable.py off .
“Mcl_Cmd_KiSuFullList_Tasking.py” – Produces a list of current KiSu installations on
the target machine. Behind the scenes, this is done by invoking the kisu_list
DanderSpritz command, and then for every returned installation, retrieving its
configuration via the DanderSpritz command kisu_config -instance id -
checksum . This configuration contains various technical details such as the KillSuit
version, the installation’s registry key and value, the loaders for the kernel and user
modules, the directory of the encrypted virtual filesystem used to keep the hosted
plugin’s modules, the legitimate driver that’d been victimized by injecting the hosted
plugin into it, and the flags used internally when launching KillSuit on the victim.

Every KillSuit instance has an internal record of an “ID” of the tool hosted inside the instance,
which is universally the same per tool. We found referenced inside DoubleFeature to the
following possible instances:

PC (PeddleCheap) – 0x7A43E1FA – provides an interactive shell and some feature for
long-term persistence. Also serves as a post-exploitation tool in itself, and can install
other KillSuit instances on a compromised host.
UR (UnitedRake) – 0x91FD378 – see above
STLA (StrangeLand) / GROK – 0x1A0F5582 – these are both keyloggers. Their
encrypted logs are stored inside files with names of the form tm154*.da .

17/26

SNUN (SnuffleUnicorn) – 0x23A4732A
WRWA (WraithWrath) – 0x502BB710
SLSH (SleepySheriff) – 0x32A7032D
WORA (WoozyRamble) – 0x68A40E49
TTSU (TiltTsunami) – 0x8F1D6511
SOKN (SoberKnave) – 0x8F1D6510 – This tool has functionality for data exfiltration
through unused/disabled WiFi cards. It is used in Air-Gapped targets.
MAGR (MagicGrain) – 0x437E52E8
DODA (DoubleDare) – 0x1C9D4A8A
SAAN (SavageAngel) – 0x9D801C63
MOAN (MorbidAngel) – 0x9D801C62
DEWH (DementiaWheel) – 0xAE37690B – Hacking tool also known as “Fanny”.
CHMU (ChinMusic) – 0x39B2DA17
MAMO (MagicMonkey) – 0x2D473AB3
MABE (MagicBean) – 0x8675309 – used for WiFi Man In The Middle

DiveBar

DiveBar (DiBa) is DoubleFeature’s name for the part of KillSuit responsible for persistence
methods (such as “KSLA” (KillSuit loader), “SolarTime”, “JustVisiting” and “DoctorOcopus”.

The different persistence methods, which we mentioned above by name, are:

KSLA (Launcher) – Simply installs a new driver on the victim system and uses it for
persistence. This worked up until Microsoft introduced Driver Signing Enforcement
(DSE), which does not allow unsigned drivers to run. This method is not supported in
Windows Vista and later.
JustVisiting (JuVi) – In order to bypass DSE, this persistence mechanism abuses a
known vulnerability in the signed driver ElbyCDIO.sys, which is a part of the software
“CloneCD” by RedFox. The vulnerable driver is made to be loaded, and exploited, on
system startup. The elevated privileges obtained in this way are then used to add
DiveBar’s persistence driver to LSAExtensionConfig/interfaces. This method is only
compatible with Windows 8.
SolarTime (SoTi) – An advanced persistence mechanism that works by modifying one
of the victim system’s VBRs. More details about this method can be found in this report
by F-Secure. Only compatible with NTFS filesystems with FVEBOOT and a certain
boot sector format. SoTi compares the hash of the boot sector to a list of “known good”
hashes, which are listed below.

https://securelist.com/a-fanny-equation-i-am-your-father-stuxnet/68787/
https://blog.f-secure.com/is-killsuit-lying-in-wait/

18/26

C454045E1299C5AD5E2932A7B0016D7A
C1544A2220F5DD61A62C697D9A2C5B77
05422319E7821018401F477B3621F8E2
4C85F9D2D0B02E0B3BDFC34D0F63B414
0023DE8F74BF9F932AFC9E288082E660
58B9130DEEFF83F1185C372595CD4607
B4A78F824A7F0FA688DF729F2AEF7F7F
DCE6AAAD1574BC72A25DC4551D52A2C1

As mentioned above, KillSuit keeps inside the victim registry something called a “module
store”. Traditionally the registry has been used in malware to store simple configuration data,
as per the registry’s legitimate purpose; but as years have passed, more and more malware
has gotten bold in using the registry to store arbitrary data. Here the registry is made to
swallow a whole Virtual File System containing the module store, which is generated by
concatenating two words chosen pseudo-randomly from two hard-coded dictionaries (the
creation time of the victim’s root directory is used as the seed). The list of possible values for
the first word is reproduced below:

19/26

Account
Acct
Adapter
App
Audit
Boot
Class
Correction
Debug
Dir
Directory
Domain
Driver
Event
Font
Hardware
Hiber
Host
Language
Legacy
Locale
Logon
Manufacturer
Media
Net
Network
OEM
Power
Prefetch
Privilege
Process
Remote
Scheduler
Security
Server
Shared
Shutdown
Startup
Task
Trust
Uninstall
User
Win16
Win32

And the possible values for the second word:

20/26

Cache
Cfg
Config
Data
Database
Db
Exts
Flags
Hierarchy
History
Info
Libs
List
Logs
Mappings
Maps
Mgmt
Mon
Monitor
Performance
Plugins
Policy
Profile
Records
Registry
Settings
Setup
Support
Usage

Looking at the architecture of “GrayFish” as reported by Kaspersky, we are left with the
impression that it is one and the same as KillSuit:

21/26

Figure 6: Architecture of GrayFish. Source: Kaspersky

The resources in the diagram are in a one-to-one correspondence with the DiveBar
resources:

102 – fvexpy.sys – F7F382A0C610177431B27B93C4C87AC1

103 – mpdkg32.dll – 0182DBF3E594581A87992F80C762C099

104 – BroughtHotShot driver – drmkflt.sys – 9C6D1ED1F5E22BF609BCF5CA6E587DEC /
D3DF8781249F2C404C4935CA9FFB1155

107 – New VBR (for SolarTime)

110 – mpdkg64.dll – F01525C9EF763C49E28CEC6C2F6F6C60

114 – Elby loader – fhsvcapi.dll – 6156E50571571B233019C4EBB472899D

115 – Elby driver – AAA8999A169E39FB8B48AE49CD6AC30A

DiveBar does not limit itself to abusing ElbyCDIO.sys; it also searches for vulnerable benign
drivers already present on the victim’s machine to be used as a “launcher” for the hosted
plugin’s code. Internally, such a benign driver that is chosen by DiveBar to launch KillSuit

22/26

instance is called a “thunk” (this might be the place to mention that according to the Merriam-
Webster dictionary, the only meaning of the word “thunk” is as a present-tense verb meaning
“to produce a flat hollow sound”; the author of the original PE file format caused enough
suffering by using this mysterious word as a description for an opaque digital object, and we
are sad to see this practice repeated here). For every KillSuit instance, DoubleFeature
reports the thunk exploited dll used to load its kernel-mode module, which is called the KML
(Kernel Module Launcher) for short. A similar report is made for the User Mode Launcher
(UML).

FlewAvenue

FlewAvenue(FlAv) is an IPv4 driver that provides covert network access for other tools. It
provides different networking faculties such as DNS queries and ICMP echo (“ping”).

We came across the following indicators of FlewAvenue:

“ntevt.sys ” – The name of this tool’s driver.

DuneMessiah

DoubleFeature diagnostics only provide very minimal information regarding this tool. For this
tool, DoubleFeature reports a pseudorandomly-generated “Event Name” that the instance on
the victim machine uses internally, as well a number of “registered KillSuit instances”.

CritterFrenzy

DoubleFeature reports only the bare minimum of information about this plugin as well. From
the information we can see DoubleFeature collects regarding this tool, it seems to be another
instance of KillSuit that probably has been used in the past and its ID was 333.

We came across the following indicators of CritterFrenzy:

“MPDKH32” – The name of this tool.

MistyVeal

MistyVeal (MV) is a “validator” implant, meaning that it is used to verify that the targeted
system is indeed an authentic victim and not a research environment. It is implemented as
an Internet Explorer Browser Helper Object (these are typically used for extending IE
functionality; for example, Adobe’s Acrobat plugin for IE is a Browser Helper Object).
MistyVeal was also part of the Equation Group’s original “Double Fantasy” implant, a
precursor of UnitedRake. You can read more about it and the connection to Regin in a report
by EpicTurla.

“nethdlr.sys” – The name of this tool’s driver.

https://www.epicturla.com/previous-works/hitb2020-voltron-sta

23/26

We came across the following indicators of MistyVeal:

{B812789D-6FDF-97AB-834B-9F4376B2C8E1} – MV CLSID for GUID and version.

DiceDealer

DiceDealer (DD), mentioned in the leaked UnitedRake manual, is a parsing tool for the
logging data produced by all installations and uninstallations performed by DiveBar (this is
relevant to UnitedRake because DiveBar is typically used to install it). If you are looking to
manually parse DiceDealer log files, the easiest method is to copy the log file into the same
directory where the DiceDealerReader tool is located. The reader is dependent on several of
the files within that directory and will fail to parse the log if they are not present.

PeddleCheap

PeddleCheap ****(PC) is among the first tools to be run on a victim machine, and can be
used to bootstrap a complete DanderSpritz installation. PeddleCheap has minimal
functionality allowing attackers to connect to the victim machine and remotely install and
configure implants that allow further post-exploitation functionality, including a full install of
the DanderSpritz framework. PeddleCheap is usually injected into lsass.exe by several
methods, including the DOUBLEPULSAR backdoor.

Figure 7: PeddleCheap User Interface.

We came across the following indicators of PeddleCheap:

{A682FEC0-333F-B16A-4EE6-24CC2BAF1185} – PC CLSID for GUID and version.

Control flow of DoubleFeature’s Rootkit

The rootkit used by DoubleFeature (hidsvc.sys) performs the following actions when it is
loaded:

It creates an unnamed device object but registers IRP dispatch functions.
It dispatches IOCTL requests.
It specializes in run-time patching of Windows kernel code.
It runs kernel APIs for the user-mode module.

24/26

The rootkit is patched by the user-mode DLL before being loaded into memory — this is
done to insert the PID of the user-mode process so that the rootkit knows which process to
hide. The rootkit then attaches to this accomplice user-mode process via
KeAttachProcess .

The rootkit finds the dynamic addresses of API functions using HalAllocateCommonBuffer or
MmIsAddressValid (the addresses for these functions are earlier obtained by invoking
MmGetSystemRoutineAddress). It uses encrypted stack strings which are decrypted on a
need-to-use basis and encrypted again immediately after they are used, similarly to the
method used in the user-mode component of DoubleFeature that we described earlier.

In order to avoid detection, the rootkit also takes care to create its own driver objects as
stealthily as possible. First, instead of creating the object directly, the rootkit creates a handle
to Device\\NULL , then hijacks its FileHandle by inserting its own device object with the
name driver\\msvss . Then, it uses this FileObject to send a IRP_MJ_Create request in
order to obtain a handle to the newly created driver object. Second, the rootkit calls
ObMakeTemporaryObject and removes the name of the object from its parent object

manager directory, effectively unlinking it from the structs that the OS uses internally to keep
track of loaded drivers. Because of the way Windows OS handles drivers, this has the effect
of keeping the driver running in the background while diagnostic tools and researchers will
fail to find the driver.

The IRP_MJ_DEVICE_CONTROL handler function of the new device contains the different
IoControl codes that can be sent from the user-mode DLL (such as 0x8589240c for
truncating a file, and 0x85892408 for executing an API call in kernel mode and sending the
output back to the user-mode process).

Conclusion

Sometimes, the world of high-tier APT tools and the world of ordinary malware can seem like
two parallel universes. Cybercriminals periodically produce the umpteenth Cryptolocker
clone or, at most, another modular jack-of-all-trades Emotet wannabe; in the meanwhile,
nation-state actors tend to clandestine, gigantic codebases, sporting a huge gamut of
features that have been cultivated over decades due to practical need. For those of us with
our heads deep enough up the cybercrime industry’s nether regions, many of the features
described above — rootkits, dedicated components to thoroughly vet victims, whole systems
dedicated to logging the stages of post-exploitation — are, largely, abstract theory. The
cybercrime industry’s DoubleFeature is typically an HTTP GET request containing
&OS=win10 , encrypted by some homebrew variant of RC4. The gap can really not be

overstated.

It’s not often that we get such a candid glimpse into tools of this degree of sophistication, as
the Shadow Brokers leak allowed us. The DanderSpritz-tier projects of the world are
naturally covered by a shroud of secrecy — even, as we’ve seen, from fellow APT actors,

25/26

who can maybe at best get their hands on a rival tool once in a blue moon, as happened with
EpRom which led to the creation of Jian. As an industry, it turns out we too are still slowly
chewing on the 4-year-old leak that revealed DanderSpritz to us, and gaining new insights.
On the defenders’ side, we have the duty to study these marvels of infosec engineering
carefully and apply the lessons learned — before lower-tier, run-of-the-mill attackers do the
same.

Appendix 1: Table of Command-Line Argument Supported by
DoubleFeature Main DLL

Option Arguments Relevant
command
in the
menu

Description

-n/-m Registry key name Check if a registry
key exists or not.

-o – Returns
DuneMessiah
information

-p filename Changes the log file
name.

-q Hash, ID/Name Deletes KillSuit
module.

-s ‘u’/’s’ Shutdowns
UnitedRake or
StraitBizarre

-t IP, port TipOffs UnitedRake

-u Hash, ID/Name Upgrades KillSuit
module

-v Hash, ID/Name Downloads KillSuit
module

-x filename Truncates file on
victim’s computer

-g IP:port Checks FlewAvenue
feature compatibility

-h ‘u’/’s’ Stops FA in UR or
SBZ

26/26

-i k = KillSuit m = Manual Instances p =
Processes info q = Modules Data s =
StraitBiZarre u = UnitedRake c= CritterFrenzy
d = DiveBar e = Loaded Drivers f =
FlewAvenue g = Special Implant i = Implant
Independet

 Gives information
about the tool given
as an argument

-j 0/1 Get DiceDealer logs
– DiveBar
information on the
victim’s computer.

-k ‘u’/’s’ KickStarts UR or
SBZ

-l – DFQuery Query information
as in ‘i’ command
but on several tools
on one command.

-f – Toggles FlewAvenue
mode – as a
network sniffer or as
a memory patcher. It
does this by
changing the
“config2” SubKey.

-a new AES key Replaces the AES
key for encrypting
the logs.

-b/-e registry key Deletes DiveBar
registry key

-c – –

-d on/off Enable/Disable UR
logging

