The 'STOP' Ransomware Variant

angle.ankura.com/post/102het9/the-stop-ransomware-variant

Vishal Thakur

In recent weeks, we have observed a spike in infections involving the STOP ransomware variant. STOP is also known as DJVU by other vendors in the industry. In this article, we've looked at the latest version circulating in the wild. We will look at some of the main characteristics of this malware variant, along with detections that can be used to prevent infection and IOCs that we were able to extract during analysis.

The STOP ransomware has been around for some time, dating back to 2019. The latest version has been found to be distributed broadly in the past few weeks. Like the ones in the past, this variant is a portable executable that uses a public key to encrypt data on the victim's machine and drops a ransom note in folder directories as it goes through the entire file system encrypting files using the Salsa20 encryption algorithm. The threat actors behind STOP have gone for a flat rate of USD \$980 to provide the decryption keys to victims and

have also offered a 'discounted' rate of USD \$490 if the victims contact them within 72 hours of the attack occurring. This tactic is consistent with what has been observed in the past for this ransomware group.

Based on the tactics and techniques used by the malware, the threat actors behind the variant are likely from the Russian region as the malware avoids encryption explicitly on systems geo-located in or near Russia.

Quick Snapshot: Class: DOS Type: PE32 Machine: X86-64 OS: Windows Entry Point: 0009D410 MD5: a2f33095ef25b4d5b061eb53a7fe6548

Figure 1: Quick Snapshot of STOP Ransomware

Mitigation

This section provides information that can be used to prevent infection by the STOP ransomware. We have included detections, IOC list, and YARA Rules that can be used to defend against this threat.

YARA Rule

This YARA Rule can be used to detect STOP Ransomware. Download the entire ruleset <u>here</u>.

```
author = "Vishal Thakur - malienist.medium.com
 date = ^2021-12-20
 version = "1"
 description = "Detects STOP Windows Ransomware"
info = "Generated from information extracted from the malware sample by manual analysis."
I rule stopRansomvareStatic
9 {
   strings
   Ebeader = { 21 54 68 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f 74 20 62 65 20 72 75 6e 20 49 6e 20 44 4f 53 20 6d 6f

Eblock1 = { 43 3a 5c 6d 6f 7a 5c 76 69 64 61 6a 2e 70 64 62 }
    $block2 = { 39 2d 39 35 39 45 39 56 39 69 39 34 3a 3c 3a 43 3a 4f 3a }
    $block3 = { 32 25 32 2f 32 39 32 4a 32 53 32 5f 32 67 32 75 32 }
$block4 = { 32 2a 33 2f 33 34 33 57 33 78 33 74 33 }
   $block5 = { 3e 20 3e 37 3e 40 3e 48 3e 4f 3e 6c 3e }
$astr1 = { 66 3a 5c 64 64 5c 76 63 74 6f 6f 6c 73 5c 63 72 74 5f 62 6c 64 5c 73 65 6c 66 5f 78 38 36 5c 63 72 74 5c 73 72
      Satr2 = { 73 66 74 62 75 66 2e 63 }
      Satr3 = { 69 6f 69 6e 69 74 2e 63 }
      Satr4 = { 73 74 64 65 6e 76 70 2e 63 }
      satz5 = { 78 38 36 5c 63 72 74 5c 73 72 63 5c 73 74 64 61 72 67 76 2c 63 }
satz6 = { 63 5c 77 5f 65 6c 76 2c 63 }
      $etz7 = { 66 5f 78 38 36 5c 63 72 74 5c 73 72 63 5c 6d 62 63 74 79 70 65 2c 63 }
      Satz8 = { 48 61 74 61 7a 75 79 69 20 6a 75 62 6f 6b 20 79 69 62 2e 20 54 75 6d 61 6a 75 73 6f 20 6e 69 6e 69 74 6f 66 75
      Satz9 - "tatatatatatatatatata
      Satr10 = { 78 38 36 5c 63 72 74 5c 73 72 63 5c 6d 62 63 74 79 70 65 2e 63 }
         filesize < 1500KB and all of them
```

Figure 2: YARA Ruleset for STOP Ransomware

Detections

The following figure has the information that can be used to create detections for this malware. Download the entire list <u>here</u>.

The following strings are from the unpacked malware, and these can be found in memory during and after the malware has been fully executed. This information can be used to create detections for EDR tools that can access and read memory and take actions based on detection rules applied.

C:\moz\vidaj.pdb "--Admin" " IsNotAutoStart" " IsNotTask" "e:\doc\my work (c++)_git\ "input != nullptr && output != nullptr" "C:\SystemID\PersonalID.txt" http://tzgl.org/fhsgtsspen6/get.php manager@mailtemp.ch helprestoremanager@airmail.cc delself.bat E:\Doc\My work (C++)_Git\Encryption\Release\encrypt_win_api.pdb e:\doc\my work (c++)_git\encryption\encryptionwinapi\Salsa20.inl C:\Build-OpenSSL-VC-32/ssl/private https://api.2ip.ua/geo.json

Figure 3: Detections

IOC List

Download the entire list here.

02e36a484cb87c6c55122369fd726a44be6cbced7ca3b83a868d005852b52130 1562ac8d688d9bfbe272835e83bb8d772fa65fc41e55bf449fa7f5e0d4e1df96 a8ba55c38281587234f510217a07325490d4a25878271273b9592a8d59d9b543 b0d41e9b8c941d207a0958b92f57083dd9b9246958bd32e2e6e90c4ee0e12419 c22fbc68473199e473afd0468542434854bf5ab8f1fbd2932c044e0ce226b307 http://api.2ip.ua:443/ http://kotob.top/dl/build2.exe http://kotob.top/dl/build2.exe	
http://tzgl.org/files/1/build3.exe	
https://api.2ip.ua/geo.json	
api.2ip.ua	
kotob.top	
tzgl.org	
1.248.122.240	
104.18.30.182	
104.18.31.182	
110.14.121.125	
116.121.62.237	
14.51.96.70	
175.126.109.15	
180.69.193.102	
183.100.39.157	
187.156.124.76	

Execution

Once the STOP ransomware executes, it attempts to make a few network connections over the Internet for various purposes, such as; geo-checking, key retrieval, and further infection by downloading different malware. First, let's look at the start of the execution of this malware.

00400410		6.1						
0049D410		51						push ecx
0049D411		50						push eax
0049D412		52						push edx
0049D413		8D	0D	18	00	00	00	<pre>lea ecx,dword ptr ds:[18]</pre>
0049D419		64	8B	01				mov eax, dword ptr [s:[ecx]
0049D41C		01	C 8					add eax,ecx
0049D41E			C 8					add eax,ecx
00490420		8B						mov eax, dword ptr ds:[eax]
00490422		53	00					
				00				push ebx
0049D423			58					mov ebx, dword ptr ds:[eax+8]
0049D426		83		0C				add eax,C
0049D429		8B	10					mov edx,dword ptr ds:[eax]
0049D42B		8D						<pre>lea ecx,dword ptr ds:[edx]</pre>
0049D42D		83	C1	0C				add ecx,C
0049D430		8B	01					mov eax, dword ptr ds:[ecx]
0049D432		56						push esi
0049D433		8B	48	18				mov ecx, dword ptr ds:[eax+18]
0049D436		83						cmp ecx.0
0049D439		74	25					je stop.49D460
0049D43B	· ·	8B						mov edx.eax
0049D43D		83		30				
				50				add edx, 30
0049D440		8B	12					mov edx, dword ptr ds:[edx]
0049D442		8B	32					mov esi, dword ptr ds:[edx]
0049D444		81	E6		00	DF	00	and esi,DF00DF
0049D44A		8B	52	0C				mov edx,dword ptr ds:[edx+C]
0049D44D		C1	E2	08				shl edx,8
0049D450		03	D6					add edx.esi
0049D452		81	C2	B5	CC	BA	CD	add edx, CDBACCB5
0049D458		85	D2					test edx.edx
0049D45A	× .	0F	84	07	00	00	00	je stop.49D467
0049D460		8B	ŏó					mov eax, dword ptr ds:[eax]
00490462	^	E9	čč	FF	EE	FF		jmp stop.49D433
00490467		E8	FD	00	00	00		call stop.490569
00490407		EO	FU	00	00	00		Car 5000.490309

Figure 5: Malware Entry-point

Upon execution, the malware copies itself to the 'C:\Users\[username]\AppData\Local\ [GUID]' directory on disk and tries to execute with escalated privileges, as shown in the figures below.

Figure 6: Malware copies itself to a different location

007EB788 028226F8 "\"C:	\stop.exe\"Admin IsNotAutoStart IsNotTask"
-------------------------	--

Figure 7: Spawning new process with elevated privileges

The malware then attempts to connect over the Internet to "<u>https://api.2ip.ua/geo.json</u>" to verify the victim's geolocation. This link leads to a Russian site (screenshot below) that provides geolocation services based on public Internet IP addresses which the malware uses to ascertain the location of its victims. The malware has a hard-coded country codes list that is checked before it continues executing on the victim's system and will avoid encrypting victims within these countries.

Figure 8: Geo-location service used by the malware

The site also offers an API-based service that the malware uses to determine the geolocation of the victim machines.

Figure 9: The specific API-based service the malware uses

The country code list can be seen in the figure below, showing the codes in memory during execution.

00000fa0	20	00	45	00	78	00	70	00	6c	00	6f	00	72	00	65	00	.E.x.p.l.o.r.e.
																	r <mark>h</mark> .t.t.p.s.:.
00000fc0	2f	00	2f	00													/./.a.p.i2.i.
																	pu.a./.g.e.o.
																	j.s.o.n. <mark>"cou</mark>
																	ntry_code":"
																	"RUBYUA
																	AZAMTJKZ
																	KGUZSYT.i.
00001030	6d	00	65	00	20	00	54	00	72	00	69	00	67	00	67	00	m.eT.r.i.g.g.

Figure 10: Country codes of locations this malware avoids

Next, the malware tries to connect to a command and control URI to get the public key for encryption. As we can see in the figure below, it sends a request to this URI with a PID created for the victim.

Figure 11: URI loaded into the Stack for processing

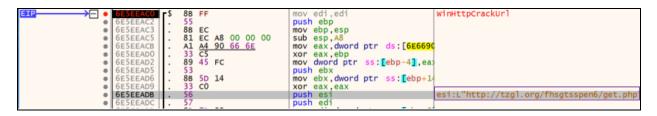


Figure 12: Connection to the C2 for public key

Once the request is successful, the malware uses the public key with the ID to encrypt the victim's data.

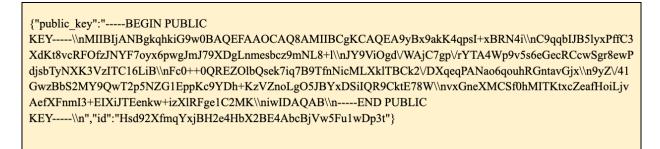


Figure 13: Public Key for encryption served by the C2

The malware uses a standard encryption sequence, calling in the functions required to encrypt data from start to finish. The complete sequence can be seen in the figure below, in the order of called functions. Encryption sequence: .text:742A03B0 advapi32.dll:\$203B0 #1F7B0 <CryptAcquireContextW> .text:7429FB50 advapi32.dll:\$1FB50 #1EF50 <CryptCreateHash> .text:7429FC90 advapi32.dll:\$1FC90 #1F090 <CryptHashData> .text:7429FAB0 advapi32.dll:\$1FAB0 #1EEB0 <CryptGetHashParam> .text:742A0000 advapi32.dll:\$20000 #1F400 <CryptDestroyHash> .text:742A0740 advapi32.dll:\$20740 #1FB40 <CryptReleaseContext> .text:753DE250 kernel32.dll:\$6E250 #5F250 <WriteFile>

Figure 14: Encryption Sequence of function calls

CSP – Cryptography Service Provider

The malware queries the Registry on the victim machine to set the CSP and CSP type. Note that type shown in the figure below is 'Type 001' which is the 'RSA Full' provider.

007EE8D8 029EBD90 "SOFTWARE\\Microsoft\\Cryptography\\Defaults\\Provider Types\\Type 001"

Figure 15: Malware query to Registry for the Type of CSP

The malware uses the Registry to set the provider type and subsequently the actual provider, which in this case happens to be RSA Full.

RegOpenKey

74BC9490		FF	mov edi,edi
748C9490 748C9492 748C9493 748C9495 748C9496 748C9498 748C9498 748C9498 748C9498 748C9441 748C94A1 748C94A4 748C94A7 748C94AC	55 88 51 6A FF FF FF FF	FF EC 00 75 18 75 14 75 10 75 0C 75 08 14 00	<pre>mov ed1,ed1 push ebp mov ebp,esp push ecx push 0 push dword ptr ss:[ebp+18] push dword ptr ss:[ebp+10] push dword ptr ss:[ebp+2] push dword ptr ss:[ebp+8] call <kernelbase.regopenkeyexinternala> pop ecx</kernelbase.regopenkeyexinternala></pre>
74BC94AD 74BC94AE	5D C2	14 00	ret 14

Figure 16: Registry functions used to determine the CSP

RegOpenKeyExA

Next, the malware queries the Registry to determine the actual CSP as can be seen in the figure below.

EBX 029D0B98 "SOFTWARE\\Microsoft\\Cryptography\\Defaults\\Provider\\Microsoft Strong Cryptographic Provider"

Figure 17: The absolute Registry path passing through the Registers

Name	Туре	Data
ab)(Default)	REG_SZ	(value not set)
abName	REG_SZ	Microsoft Strong Cryptographic Provider
ab TypeName	REG_SZ	RSA Full (Signature and Key Exchange)

Figure	18:	The	CSP	highlighted	in	the	Registry
--------	-----	-----	-----	-------------	----	-----	----------

Name	Туре	Data
ab (Default)	REG_SZ	(value not set)
ab Image Path	REG_SZ	%SystemRoot%\system32\rsaenh.dll
5 SigInFile	REG_DWORD	0x00000000 (0)
ЩТуре	REG_DWORD	0x00000001 (1)

Figure 19: DLL image path to be called for the CSP

The malware uses the public key obtained from the command and control server to start the process of encryption on the victim's system.

7130-50	0.0				
7429FB50		FF			mov edi,edi
7429FB52	55				push ebp
7429FB53	8B	EC			mov ebp.esp
7429FB55	5D				pop ebp
7429FB56	^ FF		10 2F	74	jmp dword ptr ds:[<&CryptCreateHash>]
			10 21	74	
7429FB5C	CC				int3
7429FB5D	CC				int3
7429FB5E	CC				int3
7429FB5F	CC				int3
7429FB60		FF			mov edi.edi
7429FB62	55				push ebp
7429FB63		EC			mov ebp,esp
7429FB65	83				sub esp, 34
7429FB68	A1	30 74	2E 74		mov eax, dword ptr ds: [742E7430]
7429FB6D	33	C5			xor eax,ebp
7429FB6F	89				mov dword ptr ss:[ebp-4],eax
7429FB72	8B				mov ecx, dword ptr ss:[ebp+8]
7429FB75		40 00			push esi
	56				
7429FB76	33				xor esi,esi
7429FB78	89				mov dword ptr ss:[ebp-34],esi
7429FB7B	85	C9			test ecx,ecx
7429FB7D	 OF 	85 6D	05 01	00	jne advapi32.742B00F0
74205002	67	00 00	0.0 0.4		and a dd

Figure 20: Second function to be called in the Encryption Sequence

04FDF9FC	0040EB07	return to stop.0040EB07 from ???
04FDFA00	04FDFA48	
04FDFA04	00000000	
04FDFA08	00000000	
04FDFA0C	00000001	
04FDFA10	F0000000	
04FDFA14	00540000	stop.00540000
04FDFA18	000005E4	
04FDFA1C	00162588	"BEGIN PUBLIC KEY\\\\nMIIBIJANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA8
04FDFA20	000001D9	
04FDFA24	000001D9	
04FDFA28	04FDFA48	
04FDFA2C		return to stop.00420CAB from ???
04505430	00000000	

Figure 21: Public key loaded

Once the entire encryption sequence is completed for a directory, the final step is to write a ransom note to the directory with instructions on how to pay the ransom.

753DE250	▲ FF 25 C0 0E 3E 75	jmp dword ptr ds:[<&writeFile>]
753DE256	CC	int3
753DE257		int3
	cc	
753DE258	cc	int3
753DE259	CC	int3
753DE25A	CC	int3
753DE25B	cc	int3
753DE25C		int3
	cc	
753DE25D	CC	int3
753DE25E	CC	int3
753DE25F	CC	int3
753DE260	FF 25 C4 OE 3E 75	<pre>jmp dword ptr ds:[<&writeFileEx>]</pre>
753DE266		int3
	cc	
753DE267	cc	int3
75265369	CC	1 1 1 2

Figure 22: Ransom note 'write' initiated

The figure below shows the ransom note as strings being passed onto the Stack before it is written to the disk.

```
02882CF0 UNICODE "C:\_readme.txt"
028832D0
02890DA8 ASCII "ATTENTION!/D/DDon't worry, you can return all your files!
0041475E RETURN from stop.0042D8D0 to stop.0041475E
02994D38 UNICODE "C:\_readme.txt"
0291D338 UNICODE "C:\_readme.txt"
0000085D
```

Figure 23: Ransom note loaded into the Stack

Finally, the ransom note is written as a 'txt' file to the disk. This process is repeated for all directories in which the malware encrypts data. The figure below shows the newly created ransom note "_readme.txt".

	Drive Tools	Local Disk (C:)							
	Manage								
00	ocal Disk (C:)								
^	Na	me							
		PerfLogs							
		Program Files							
		Program Files (x86)							
		ProgramData							
		SystemID							
		Users							
	- R	Windows							
		_readme.txt							

The ransom note has the instructions on how the victims can pay to get the decryption key and provides a unique ID that the victim needs to use to get the decryption key for their machine. There is also a link to a demo video showing how the decryption tool works. The note also provides a couple of email addresses for the victims to contact the ransomware group if needed.

```
ATTENTION!
Don't worry, you can return all your files!
All your files like pictures, databases, documents and other important are encrypted with strongest
encryption and unique key.
The only method of recovering files is to purchase decrypt tool and unique key for you.
This software will decrypt all your encrypted files.
What guarantees you have?
You can send one of your encrypted file from your PC and we decrypt it for free.
But we can decrypt only 1 file for free. File must not contain valuable information.
You can get and look video overview decrypt tool:
https://we.tl/t-NONb1QT9nD
Price of private key and decrypt software is $980.
Discount 50% available if you contact us first 72 hours, that's price for you is $490.
Please note that you'll never restore your data without payment.
Check your e-mail "Spam" or "Junk" folder if you don't get answer more than 6 hours.
To get this software you need write on our e-mail:
manager@mailtemp.ch
Reserve e-mail address to contact us:
helprestoremanager@airmail.cc
Your personal ID:
0361
                                              wDp3t
```

Figure 25: Ransom note with instructions on next steps

This version of the STOP ransomware variant encrypts the file and replaces the fileextensions to ".shgv", as seen in the figure below.

This PC → Local Disk (C:) → Users →
Name
3223805446946816
6599011830759424
.zip.shgv
.zip.shgv
exe.shgv
exe.shgv

Figure 26: Files successfully encrypted

Downloader Module

Aside from performing common ransomware activities, this malware also tries to download and execute other malware:

http://tzgl.org/files/1/build3.exe\$run 229b06ba702bdde53a3f4a89d9da20d47b972ddaf45b00997fa517014e4d5bec

Figure 27: Downloaded malware - Vidar Stealer

This downloaded PE is a variant of the Vidar malware family.

Vidar Stealer is malware designed to steal information, mainly distributed as spam mail or cracked versions of commercial software and keygen programs. When installed, data such as infected device information, account, and history recorded in the browser is collected and sent to a command and control server.

The group behind the development or distribution (or both) of STOP ransomware may be working with the group responsible for developing the Vidar malware.

Conclusion

STOP ransomware has been around for quite some time now. Early occurrences of infections by this ransomware can be traced back to 2019.

Compared to some other ransomware families, the execution standard is low and it's clear that this ransomware model is affiliation-leaning (working with other malware groups). We were able to link this malware to a different malware, the Vidar Stealer, which has been the case for quite some time.

The encryption is straightforward, with the threat actors not bothering to create their encryption algorithm or deploying any additional modules other than a downloader for a separate malware. The malware uses the Salsa20 algorithm for encryption. It is capable of both online and offline encryption.

This ransomware avoids infecting victims in and near Russia.

The ransomware seems to be targeted towards individuals or small businesses at best, as the asking price for the decryption key is not that high. They even offer an 'early bird' discount to top it all off.

<u>Deep Analysis of Vidar Stealer</u> - Sojun Ryu <u>YAYA ruleset for STOP Ransomware</u> - Vishal Thakur <u>Detections list for STOP Ransomware</u> - Vishal Thakur IOC list of STOP Ransomware - Vishal Thakur

© Copyright 2021. The views expressed herein are those of the author(s) and not necessarily the views of Ankura Consulting Group, LLC., its management, its subsidiaries, its affiliates, or its other professionals. Ankura is not a law firm and cannot provide legal advice.