Inside the code: How the Log4Shell exploit works

news.sophos.com/en-us/2021/12/17/inside-the-code-how-the-log4shell-exploit-works/

December 17, 2021

The critical vulnerability in Apache’s Log4j Ja;/a—based logging utility (CVE-2021-44228) has
been called the “most critical vulnerability of the last decade.” Also known as Log4Shell, the
flaw has forced the developers of many software products to push out updates or mitigations
to customers. And Log4j’s maintainers have published two new versions since the bug was
discovered—the second completely eliminating the feature that made the exploit possible in
the first place.

As we previously noted, Log4Shell is an exploit of Log4j’s “message substitution” feature—
which allowed for programmatic modification of event logs by inserting strings that call for
external content. The code that supported this feature allowed for “lookups” using the Java
Naming and Directory Interface (JNDI) URLs.

This feature inadvertently made it possible for an attacker to insert text with embedded
malicious JNDI URLs into requests to software using Log4j—URLSs that resulted in remote
code being loaded and executed by the logger. To understand better how dangerous exploits
of this feature are, we’ll walk through the code that makes it possible.

How Log4j logging works

1/10

https://news.sophos.com/en-us/2021/12/17/inside-the-code-how-the-log4shell-exploit-works/
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/
https://logging.apache.org/log4j/2.x/manual/lookups.html

Log4j outputs logging events using TTCCLayout: time, thread, category and context
information. By default, it uses the_following_pattern:

%r [%t] %-5p %C %X - %m%n

Here, %r outputs the time elapsed in milliseconds since the program was started; %t is the
thread, %p is priority of the event, %c is the category, %X is the nested diagnostic context
associated with the thread generating the event, and %m is for application-supplied
messages associated with the event. It’s this final field where our vulnerability comes into

play.

The vulnerability can be exploited when the “logger.error()” function is called with a message
parameter that includes a JNDI URL (“jndi:dns://”, “indi:ldap://”, or any of the other JNDI
defined interfaces discussed in our previous post). When that URL is passed, a JNDI
“lookup” will be called which can lead to remote code execution.

To replicate the vulnerability, we looked at_one of the many proofs of concept that have been
published, which replicates how many applications interact with Log4j. In the code

for logger/src/main/javal/logger/App.java in this PoC, we can see that it calls logger.error()
with a message parameter:

package logger;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.logger;

public class App {
private static final Logger logger = LogManager.getLogger (App.class);
public static void main(String[] args) {
String msg = (args.length > 0 ? args [0] : "");
logger.error(msg);

}

For debugging purposes, we changed the message to a test URL that uses DNS with JNDI
(built with the Interactsh tool) to pass it as a parameter to the “logger.error()” function and
stepped through the program:

2/10

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html
http://www.javavillage.in/log4j-configuration.php
https://.com/greymd/CVE-2021-44228
https://news.sophos.com/wp-content/uploads/2021/12/1.png

tractLogger” class with crafted

We can see that after calling “logger.error()” method fi
URL, another method is called which is “logMessage”:
' tiveTh (throwable == null

e.getThrowable()
throwable;
logMessageSafely(fqen, level, marker, effectiveThrowabl
i logMessage(Sstring fqcn, Level level, Marker marker, S lier<?> messageSupplier,
Throwable throwable) {
L Util.getMessage(messageSupplier, m Factory);
= (throwable == &5 messag)

i.Abstrac

eTh

.getThrowable()
org.apache.logging.log4j.sp

string message, fgcm = "

effectiveThrowabl
"org.apache.logging.log4j.spi.AbstractlLogger”, level =

throwable;
logMessageSafely(fqen, level, marker,
evel level, Marker marker,

faqcn,
le = nu
ageFactory.newMessage(message), throwable); fgcn

i logMessage(string
String message) {

Throwable throwable) {
logMessageSafely(fqcn, level, marker, mess
i logMessage(ng fgcn, Level level, Marker marker,

ge a tory.newMessage (message) ;
level, marker, msg, msg.getThrowable());

ge
logMessageSafely(fqc
String message,

i logMessage(string facn, Level level, r marker,
Object... params) {
= sage tory.newMessage(message, params);
msg, msg.getThrowable());
String message,

qcn, level, marker,
Marker marker,

age
logMessageSafely(f
Level level,

facn,

String

tory.newMessage(message, po);

logMessage(
.getThrowable());

Object pe) {
msg, m

logMessageSafely(fqcn, level, marker,

Object p7, 0bj

st message,
p2, p3, p4, p5, p6, p7, p8, p9);

e newMessage(
Object p4, Object p5,
getParameterized().set(message, p@, pl,

message
y#newMessage (String
[/ Cc6LT36W2viceE interactsh.com}

= "§{jndi:dns

= newMessage (string message) |{ message
sableSimple e result = getSimple();
1t.set(message) ;

message

ect message) {
= getObject();

Next, it calls “processLogEvent” from “LoggerConfig” class, to log the event:

https://news.sophos.com/wp-content/uploads/2021/12/2.png
https://news.sophos.com/wp-content/uploads/2021/12/3.png

predicate

redicate) { event = M
f (!isFil
processLogEven , pre a t erConfig$ rconfigPredicate$1@149 "ALL"

Then it calls the “append” method from “AbstractOutputStreamAppender” class, which
appends the message to the log:

getName() + for appender + getName(), event, ex);

Where the badness happens

This in turns, calls “directEncodeEvent” method:

e putStreamManage r@é3

nt.isEnd0fBatch()) {

The directEncodeEvent method in turn calls the “getLayout().Encode” method, which formats
the log message and adds the provided parameter— which is in this case the test exploit
URL:

t; layout = PatternL

4/10

https://news.sophos.com/wp-content/uploads/2021/12/4-e1639672299192.png
https://news.sophos.com/wp-content/uploads/2021/12/5.png
https://news.sophos.com/wp-content/uploads/2021/12/6.png
https://news.sophos.com/wp-content/uploads/2021/12/7-e1639675319676.png

It then creates a new “StringBuilder” Object:

event

stractLogger”

g toSerializable(LogEvent event) {
Serializer.toSerializable(event);

id serialize(nt event, StringBuilder stringBuilder

erializer. toSerLahzable(event stringBuilder);

B

LogEvent event, ByteB
Serializer2)) {

encode(event destination);

ufferl

tuText((Ser;ahzerZ) eventSerializer, event, getStringBuilder()); eventSerializer = PatternLayout$PatternSerializer@9 "o
ingB oder = getStringBuilderEncoder();
r.encode(text, destlnatlon)

trimToMaxSize(text);

serializer,

StringBuilder calls the “format” method from “MessagePatternConvert” class and parses the
supplied URL, it looks for ‘$’ and {’ to identify the URL:

DS - 0 3 ips = false
i= .;(lrklnqﬁmdw length(} - 1; i++) { offset = 39, workingBuilder = StringBuilder@62 "84:07:53.978 [main] ERROR logger.App - $
charAt(l) '$ vorkingBuilder.charAt(i + 1) REDIR

.substring{offset, workingBuilder.length());

=17

&& (EﬂdMat[hLEn =p an cher.isMatch(chars, pos, offset, bufEnd)) !=8) {

nestedVarCount++;
pos += endMatchLen;
continue;

}
isMatch(chars, pos, offset, bufEnd); endMatchLen = 1, suffixMatcher = StrMatc tringMatche

1

endMatchLen = suffix
if (endMatchLen == 8) { chLen =
poS++;

} else {

f (nestedvarCount == 0) { ne
string varNameExpr
lT (substitutionIr
Stri
substitute(event, bufN.
varNameExpr = buf e. toString();

latchLen, pos - startPos - startMatchLen); varNameExpr = "j

StringBuilder(varNameExpr);
e.length());

pos += endMatchLen; = R rhlan = 1
StrMatcher$StringMatcher@d5 "org.apache.logging.log4j.core. lookup.StrMatchersSt.

int endPos = pos

string varName = varNa
String varDefaultvalue

) { valueDelimiterMatcher = StrMatcher$StringMatcher@5 "org.apache.logging.log4].core.lookup.:

if (valueDelimiterMatcher
char r varNameExpr.toCharArray();
valueDelimiterMatchLen
r (int 1 = @; 1 < varNameExprChars.length; i++) {

arNameExprChars.length) !'= 8) {

Then it calls for “resolveVariable” method from “StrSubstitutor” class which will identify the

Variables, it can be any of the following:

https://news.sophos.com/wp-content/uploads/2021/12/8-e1639675373458.png
https://news.sophos.com/wp-content/uploads/2021/12/9-e1639675420403.png
https://news.sophos.com/wp-content/uploads/2021/12/10-e1639675483330.png

{date, java, marker, ctx, lower, upper, jndi, main, jvmrunargs, sys, env, log4j}

The code then calls the “lookup” method from the “Interpolator” class which will check the
service associated with the variable (in this case, “jndi”):

event
var

@0verride
String lookup(LogEvent event, String var) { event = MutablelLogEvent@23, var = "jndi:dns:

ewcsmggdppb

0s = var.indexOf(PREFIX SEPARATOR); prefixPos = 4, var
H prefixPos = 4
= var.substring(@, prefixPos).tolLowerCase(Locale.U p "jndi", "j
var.substring(prefixPos + 1); name = “dns:/ t 5m b.interactsh.com", var
pMap.get{prefix); strLookupMap = HashMap@l2l size=12, prefix = "jndi"

String value = 5
if (lookup !=) {
value = event == ? lookup.lookup(name) lookup.lookup(event, name);

X

if (value !=) o
return value;

}

var = var.substring(prefixPos

Finding “jndi”, it calls the “lookup” method from the “jndiManager” class, which evaluates the
value of the JNDI resource:

@Plugin(name = "jndi", category = StrLookup.CATEGORY)
IndiLookup AbstractLookup {

LOGGER = StatusL .getLogger();
LOOKUP = MarkerMan r.getMarker("LOOKUP") ;

String CONTAINER_JNDI_RESOURCE_PATH PREFIX = "java:comp/env/";

event
key

@override
string lookup(LogEvent event,
if (key == '

wyyyyyb.interactsh.com

} R
String jndiName = convertJndiName(key); jndiNam 2 EE teract ", key "dns://c6tt36w2viceo g
In - jndiManager = JndiManager.getD 1 "Ind jer [context=javax. ing.Init nte

.tostring(jndiManager.lookup(jndiName),); jndiManager = JndiManager@134 "JndiManager [coﬁtext:javax‘nar"mg‘I\utiaIContext@l'az:

p INDI resource [{}].", jndiName, e};

jndiName

After that, it calls for “getURLOrDefaultInitCtx” from “IntialContext” class. This is where it
creates the request that will be sent to the JNDI interface to retrieve context, depending on
the URL provided. This is where the exploit begins to kick in. In this case, the URL is for

https://news.sophos.com/wp-content/uploads/2021/12/11-e1639675821351.png
https://news.sophos.com/wp-content/uploads/2021/12/12-e1639676035606.png

DNS:

ing name) name = "dns:

yBuilder()) {

In the case of a DNS URL, as this fires, we can see a DNS query to the provided URL with
Wireshark:

(This is a test URL, and not actually malicious)

If URL is ‘jndi:ldap://’ it calls another method from “IdapURLConext” class to check if URL
has “queryComponents”:

After that it calls “lookup” method in “IdapURLContext” class, “name” variable here contains
the Idap URL.:

3:18:085 —-A58@] CONNECT conn=7 from="127.9.0.1:38814" to="127.0.8.1:1389"
85 AM mull
p3:18:85 -850@8] BIND REQUEST conn=7 op=8 msgID=1 version=3 dn="" authType="SIMPLE"
AH null
§3:18:085 -A50@] BIND RESULT conn=7 op=8 msglD=1 resultCode=8 etime=0.0864

Then “flushBuffer” method will be called from “OutputStreamManager” class, here ‘buf’
contains the data returned from LDAP server, in this case the “mmm....” string we see below:

7/10

https://news.sophos.com/wp-content/uploads/2021/12/13-e1639676092464.png
https://news.sophos.com/wp-content/uploads/2021/12/14.png
https://news.sophos.com/wp-content/uploads/2021/12/15.png
https://news.sophos.com/wp-content/uploads/2021/12/16.png
https://news.sophos.com/wp-content/uploads/2021/12/18.png

Looking at the packet capture in Wireshark, we see the request has the following bytes:

2a7a

a5

2896

B8a8 [&F

aabe [

Bace gl

aada ps

Beed gl

aafe pEE

alee el

alle pbd

8126 |l

8138 ekl

a148 [

A158 [N

8168 [

8178 pbd 2
@188 [28 2
8198 e 28
8lad el 28 2

Y

This is the serialized data and this will be displayed by the client as we can see below which
shows that the vulnerability was exploited, notice the “[main] ERROR logger .App” string in
the message followed by data:

.985 [main] ERROR L
"m
m"
MM
m* # m
n" ‘mm"

m m m m
mim# ##"m mim#
m"#" W # m"#"
#mm "m 7 # UE#mm'm
& # F
'mm" T 'mm"

The fix is in

All of this was possible because in all versions of Log4j 2 up to version 2.14 (excluding
security release 2.12.2), JNDI support was not restricted in terms of what names could be
resolved. Some protocols were unsafe or can allow remote code execution. Log4j 2.15.0

8/10

https://news.sophos.com/wp-content/uploads/2021/12/19.png
https://news.sophos.com/wp-content/uploads/2021/12/l4j-20.png
https://news.sophos.com/wp-content/uploads/2021/12/l4j-21.png

restricted JNDI to only LDAP lookups, and those lookups are limited to connecting to Java
primitive objects on the local host by default.

But the fix in version 2.15.0 left the vulnerability partially unresolved—for implementations
with “certain non-default” layout patterns for Log4j, including those with context lookups
(such as “$${ctx:loginld}’) or a Thread Context Map pattern (“%X”, “%mdc”, or “%MDC”), it
was still possible to craft malicious input data using a JNDI Lookup pattern resulting in a
denial of service (DOS) attack. In the latest releases, all lookups have been disabled by
default. This shuts the JNDI feature down entirely, but it secures Log4j against remote
exploitation.

Conclusion

Log4j is a very popular logging framework, and used by a significant number of popular
software products, cloud services and other applications. The vulnerabilities in versions prior
to 2.15.0 make it possible for a malicious actor to retrieve data from an affected application
or its underlying operating system, or to execute Java code that runs with the permissions
given to the Java runtime (Java.exe on Windows systems). This code can execute
commands and scripts against the local operating system, which can in turn download
additional malicious code and provide a route for elevation of privilege and persistent remote
access.

While version 2.15.0 of Log4j, pushed out at the time the vulnerability became public, fixes
these issues, it still leaves systems vulnerable in some cases to denial of service attacks and
exploits (fixed at least partially by 2.16.0). On December 18, a third new version, 2.17.0, was
released to prevent recursive attacks that could cause a denial of service). Organizations
should evaluate what versions of Log4j are in their internally developed applications, and
patch to the most recent versions (2.12.2 for Java 7 and 2.17.0 for Java 8), and apply
software patches from vendors as they become available.

Sophos provides coverage for network behaviors and payloads associated with this
vulnerability, as detailed below:

AV:

e Troj/JavaDI-AAN

e Troj/Java-AIN

o Troj/BatDI-GR

e Mal/JavaKC-B

o XMRig Miner (PUA)
e Troj/Bckdr-RYB

e Troj/PSDI-LR

o Mal/ShellDI-A

e Linux/DDoS-DT

9/10

https://logging.apache.org/log4j/2.x/manual/lookups.html

Linux/DDoS-DS
Linux/Miner-ADG
Linux/Miner-ZS
Linux/Miner-WuU
Linux/Rootkt-M

IPS:
Sophos Firewall:

SIDs : 2306426, 2306427, 2306428, 58722, 58723, 58724, 58725, 58726, 58727,
58728, 58729, 58730, 58731, 58732, 58733, 58734, 58735, 58736, 58737, 58738,
58739, 58740, 58741, 58742, 58743, 58744, 58751, 58784, 58785, 58786, 58787,
58788, 58789, 58790, 58795

Sophos Endpoint

SIDs: 2306426, 2306427, 2306428, 2306438, 2306439, 2306440, 2306441

Sophos SG UTM

SIDs: 58722, 58723, 58724, 58725, 58726, 58727, 58728, 58729, 58730, 58731,
58732, 58733, 58734, 58735, 58736, 58737, 58738, 58739, 58740, 58741, 58742,
58743, 58744, 58751, 58784, 58785, 58786, 58787, 58788, 58789, 58790, 58795

10/10

