
1/27

December 16, 2021

Phorpiex botnet is back with a new Twizt: Hijacking
Hundreds of crypto transactions

research.checkpoint.com/2021/phorpiex-botnet-is-back-with-a-new-twizt-hijacking-hundreds-of-crypto-transactions/

December 16, 2021
Research by: Alexey Bukhteyev

Check Point Research (CPR) spotted the resurgence of Phorpiex, an old threat known
for its sextortion spam campaigns, crypto-jacking, cryptocurrency clipping and
ransomware spread
The new variant “Twizt” enables the botnet to operate successfully without active C&C
servers
Phorpiex crypto-clipper supports more than 30 wallets for different blockchains
In one year, Phorpiex bots hijacked 969 transactions and stole 3.64 Bitcoin, 55.87
Ether, and $55,000 in ERC20 tokens accounting for almost half a million in US dollars

Background

Phorpiex, an old threat known since 2016, was initially known as a botnet that operated
using IRC protocol (also known as Trik). In 2018-2019 Phorpiex switched to modular
architecture and the IRC bot was replaced with Tldr – a loader controlled through HTTP that

https://research.checkpoint.com/2021/phorpiex-botnet-is-back-with-a-new-twizt-hijacking-hundreds-of-crypto-transactions/
https://research.checkpoint.com/2019/in-the-footsteps-of-a-sextortion-campaign/
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://research.checkpoint.com/2019/phorpiex-breakdown/
https://research.checkpoint.com/2020/phorpiex-arsenal-part-I/

2/27

became a key part of the Phorpiex botnet infrastructure. In our 2019 Phorpiex Breakdown
 research report, we estimated over 1,000,000 computers were infected with Tldr.

Phorpiex is mostly known for its massive sextortion spam campaigns, crypto-jacking
(cryptocurrency mining infected machines), spreading ransomware, and cryptocurrency
clipping. In the summer of 2021, the activity of Phorpiex command and control servers (C&C)
dropped sharply. The C&C servers were shut down in July, and there was no activity for
about two months. On August 27 an announcement was spotted on an underground forum,
allegedly from the botnet owners, that stated they were going out of business and sold off the
source code.

Figure 1 – Phorpiex botnet sale announcement

From this announcement, we can hypothesize that the botnet was developed and controlled
by two individuals. We don’t know if the botnet was actually sold. However, less than two
weeks later, the C&C servers were back online at another IP address (185.215.113.66) of the
same sub-network and later switched to 185.215.113.84:

Figure 2 – Phorpiex C&C server IP addresses

https://research.checkpoint.com/2019/phorpiex-breakdown/
https://research.checkpoint.com/2019/in-the-footsteps-of-a-sextortion-campaign/https:/research.checkpoint.com/2019/in-the-footsteps-of-a-sextortion-campaign/
https://therecord.media/phorpiex-botnet-shuts-down-source-code-goes-up-for-sale/

3/27

Simultaneously, the C&C servers started distributing a bot that had never seen before. It was
called “Twizt” and enables the botnet to operate successfully without active C&C servers,
since it can operate in peer-to-peer mode. This means that each of the infected computers
can act as a server and send commands to other bots in a chain. As a really large number of
computers are connected to the Internet through NAT routers and don’t have an external IP
address, the Twizt bot reconfigures home routers that support UPnP and sets up port
mapping to receive incoming connections. The new bot uses its own binary protocol over
TCP or UDP with two layers of RC4-encryption. It also verifies data integrity using RSA and
RC6-256 hash function.

The emergence of such features suggests that the botnet may become even more stable
and therefore, more dangerous.

Malware prevalence and targets

In our telemetry throughout the year, we saw an almost constant number of Phorpiex victims,
which persisted even during periods of the C&C servers’ inactivity. The numbers began to
increase over the last 2 months. In 2021, Phorpiex bots were found in 96 countries. Most
Phorpiex victims are located in Ethiopia, Nigeria and India:

Figure 3 – Phorpiex victims in 2021 grouped by country

Thousands of victims, hundreds of thousands dollars lost

Aside of the new version of the bot, the methods of monetization have not changed. In our
previous research, we focused on sextortion campaigns and cryptocurrency mining. At that
time, Phorpiex’s revenues from crypto-clipping were not very significant.

So, what is crypto-clipping? Cryptocurrency clipping (or crypto-clipping) is stealing
cryptocurrency during a transaction, by substituting the original wallet address saved in the
clipboard with the attacker’s wallet address. When we browse the Internet, we use human-

https://en.wikipedia.org/wiki/Universal_Plug_and_Play

4/27

readable domain names that are easy to remember. However, in all popular blockchains
there are no analogues for domain names, and the addresses are too long to be typed
manually. For example, an address on Ethereum looks like this:

0x4f4b547309a9Ca52B154E19489cc9A3e3BD60dEf

Therefore, it’s common to use the clipboard to copy and paste such a long address. When
the victim of the crypto-clipper pastes the wallet address, they unknowingly paste the
attacker’s address instead. With the growing popularity of blockchain technology,
cryptocurrency clipping carries an increasing risk of large financial losses. Infostealers, and
remote access Trojans rely on C&C servers to get commands and send stolen data. If a
malware implements the crypto-clipping functionality, it can work successfully without any
C&C servers. Therefore, when the Phorpiex C&C servers go down there is no down time
because hundreds of thousands of bots remain installed and continue to steal victims’
money.

Shutting down the botnet’s command and control infrastructure and arresting its authors will
not protect those who are already infected with Phorpiex. Due to the nature of the blockchain
the stolen money cannot be returned if we do not know the private keys of the wallets used
by the malware.

By The Numbers

The Phorpiex crypto-clipper supports over 30 wallets for different blockchains, including
Bitcoin, Ethereum, Dogecoin, Dash, Monero, and Zilliqa. We focused only on the most
popular blockchains – Bitcoin and Ethereum.

We managed to find 60 unique Bitcoin wallets and 37 Ethereum wallets used by the
Phorpiex crypto-clipper. Many wallets have been active for several years. An outstanding
example is the Bitcoin wallet 1DYwJZfyGy5DXaqXpgzuj8shRefxQ7jCEw that first
appeared in 2018 in Phorpiex bots. The C&C servers for bots that use this wallet are offline.
However, the bots are still active. The wallet received 11 Bitcoins in more than 500
transactions:

Figure 4 – One of Phorpiex Bitcoin wallets

https://www.blockchain.com/btc/address/1DYwJZfyGy5DXaqXpgzuj8shRefxQ7jCEw

5/27

In a one-year period between November 2020 to November 2021, Phorpiex bots hijacked
969 transactions and stole 3.64 Bitcoin, 55.87 Ether, and $55,000 in ERC20 tokens. In
2021, the price of Bitcoin and Ethereum increased significantly. The value of the stolen
assets in current prices is almost half a million US dollars.

However, between April 2016 to November 2021, Phorpiex bots hijacked approximately 3000
transactions with a total value of approximately 38 Bitcoin, and 133 Ether.

Figure 5 – Number of Bitcoin and Ethereum transactions hijacked by Phorpiex bots per
month over the time

The total value of the stolen money could be even higher because we didn’t include other
blockchains in our research.

The average stolen value in hijacked transactions is not very large and decreases when the
cryptocurrency price rises. The following chart shows how the average amount hijacked
changes over time:

6/27

Figure 6 – Average hijacked Ethereum transaction

Several times Phorpiex was able to hijack large amounts transactions. The largest amount
for an intercepted Ethereum transaction was 26 ETH:

Figure 7 – The largest hijacked Ethereum transaction.

In some cases, users tried to send cryptocurrency multiple times but ended up sending it to
the cybercriminals’ wallet instead.

Phorpiex Twizt technical details

Twizt got its name from the mutex used by the first bot that appeared in the wild:

Figure 8 – New bot uses the mutex name “TWiZT”

We do not describe the initialization steps and persistence methods here because they are
almost the same as those used in the Tldr bot. We’ll focus on the distinctive features of the
new bot.

Locale checks

Some recent samples of the bot (MD5: ec96bcc50ca8fa91821e820fdfe30915) check for the
user’s default locale. The bot does not execute if the user’s default locale abbreviation is
“UKR” (Ukraine).

Figure 9 – Twizt bot checks user’s default locale

https://research.checkpoint.com/2020/phorpiex-arsenal-part-i/

7/27

This may be a sign that the botnet operators are from the Ukraine, as usually cybercriminals
avoid distributing malware in their country of origin.

Router reconfiguring using UPnP

The malware uses SSDP to discover gateway devices in the local network of the targeted
computer. It sends an “M-SEARCH” request to 239.255.255.250:1900 through UDP
transport

Figure 10 – Twizt bot discovers gateway devices in the local network using SSDP

If the targeted computer is connected to the Internet using a router with UPnP enabled, the
response contains its IP address within the local network. For example:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=120
ST: urn:schemas-upnp-org:device:InternetGatewayDevice:1
USN: uuid:17271680-1dd2-11b2-b1be-283b822841ed::urn:schemas-upnp-
org:device:InternetGatewayDevice:1
EXT:
SERVER: D-Link/Russia UPnP/1.1 MiniUPnPd/1.8
LOCATION: http ://192.168.0.1:50680/rootDesc.xml
OPT: "http ://schemas.upnp.org/upnp/1/0/"; ns=01
01-NLS: 1
BOOTID.UPNP.ORG: 1
CONFIGID.UPNP.ORG: 1337

The malware queries the local router using the supplied URL and parses the XML response.
It searches for one of these services:

urn:schemas-upnp-org:service:WANIPConnection:1
urn:schemas-upnp-org:service:WANPPPConnection:1

and extracts the “controlURL”:

https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol

8/27

<service>
 <serviceType>urn:schemas-upnp-org:service:WANIPConnection:1</serviceType>
 <serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId>
 <SCPDURL>/igd_wic.xml</SCPDURL>
 <controlURL>http ://192.168.0.1:50680/upnp/control?WANIPConnection</controlURL>
 <eventSubURL>http ://192.168.0.1:50680/upnp/event?WANIPConnection</eventSubURL>
</service>

The “controlURL” is then used to add UDP and TCP port mapping for the port used by the
malware (we observed ports 48755, 40555, 40500):

Figure 11 – Template of the request sent to configure port mapping

It enables the malware to receive incoming connections from other bots even if the infected
computer is behind a NAT router.

Crypto-clipping

Crypto-clipping is implemented differently than it was in Tldr. The Twizt bot creates a
message-only window (HWND_MESSAGE as the parent windows handle) with a random
classname. The clipboard swapping function is registered as a window procedure:

https://research.checkpoint.com/2020/phorpiex-arsenal-part-I/

9/27

Figure 12 – Creating a message-only window

The new malware version supports 35 types of wallets. Because of wide variation it has
become more difficult to identify the corresponding crypto-currencies:

10/27

Figure 13 – List of cryptocurrency wallets used by Twizt

From the Phorpiex botnet sale announcement, we learned that the crypto-clipper supports
the following blockchains and services:
LISK, POLKADOT, BITCOIN, WAVES, DASH, DOGECOIN, ETHEREUM, LITECOIN,
RIPPLE, BITTORRENT, ZCASH, TEZOS, ICON, QTUM, RAVENCOIN, NEM, NEO,
SMARTCASH, ZILLIQA, ZCASH PRIVATE, YCASH, BITCOIN CASH, COSMOS, MONERO,
CARDANO, GROESTLCOIN, STELLAR, BITCOIN GOLD, BAND PROTOCOL, PERFECT
MONEY USD, PERFECT MONEY EURO, PERFECT MONEY BTC.

11/27

Communication protocol

The Twizt bot communicates using its own binary protocol over TCP or UDP. The protocol
allows it to connect to the C&C server as well as other infected machines and get commands
from them if the main C&C server is unavailable. Early versions of the Twizt bot only had one
hard-coded IP address for the C&C server.

Later, the Twizt bot binary got an embedded list of IP-addresses for 512 nodes in its
configuration. In addition, it still received the updated list of nodes from another node or from
the C&C server.The Twizt bot has the capability to exchange encrypted messages with other
nodes.

Figure 14 – Twizt bot raw communication example

Messages use several layers of encryption for important data. Each encrypted message has
a very simple format:

The data is encrypted with the hard-coded key “twizt)”, which is the same in all the
researched samples. The decrypted message looks like this:

Figure 15 – Decrypted message from the bot

Regardless of the message direction, it has the following mandatory fields:

Murmurhash3 – The hash value is calculated for the entire decrypted message
(excluding the hash field itself). If the hash is invalid, the message is not processed by
the node.
Random number – This is likely added to make every message unique. If this field is
omitted, all encrypted messages that carry the same payload would also be the same,
and could be easily detected as malicious traffic.
NodeA SID / NodeB SID – A local or remote node unique session identifier, generated
randomly by the node.
Message Type – Determines the kind of payload carried by the message.
Flag – Unknown, can be 0 or 1.
Payload size – Cannot be less than 8.

12/27

Payload – May have different lengths and formats and may vary depending on the
Message Type field. The payload also includes a NodeA SID/NodeB SID field and the
payload data. The NodeB SID field may contain a local or remote node unique session
identifier. In the first request, this value is 0 (8 bytes). In other requests, it may take
values provided by another node or can be set to this node SID depending on the
Message Type.

These message types are supported:

00 00 00 00 – Beaconing message
01 00 00 00 – Update node list
02 00 00 00 – Node list update acknowledge
03 00 00 00 – Download and execute

Communication flow

The following diagram shows the communication flow between two nodes:

Figure 16 – Example of Twizt bots communication flow

In the picture above, “Node A” represents a local node (client); “Node B” represents a
remote node (server). After performing a full exchange cycle, the malware continues
communication with the beaconing message.

Beaconing message (Node A -> Node B)

Communication starts with a beaconing message sent by the client (the node that initiates
the connection). This type of message has the following features:

13/27

NodeA SID – Set to a pre-generated random number.
Message type – Equal to 0.
Payload size – Is always 8.

The payload contains the fields:

NodeB SID – Is 4 zero bytes.
Payload data – Is 4 zero bytes.

Figure 17 – Beaconing message example

Update node list (Node B -> Node A)

The server in reply to the first valid beaconing message usually sends this message. In the
Update node list message:

NodeA SID – Set to the value previously provided by the client
Message type – Equal to 1

The payload contains the fields:

NodeB SID – The number generated by the server
Payoad data – Contains a list of nodes
RSA trailer – 256-bytes RSA-encrypted trailer. Contains data that is not used by the
malware in this message type.

Figure 18 – Example of updated node list message

The payload data contains a list of 24-byte structures containing the node IP addresses. The
list is prepended by the number of nodes (0x10 in the example above) and 4 zero bytes.
Every entry in the list has the following format:

The Rank field shows how many seconds elapsed since the node was online. The nodes are
sorted in ascending order of rank. The C&C server (or another node) sends the client the list
of 16 nodes that were recently online.

14/27

After sending this message, the remote host also sends a message with the code 0
(beaconing message). However, the fields NodeA SID and NodeB SID swap places:

Figure 19 – Beaconing message sent after the Update node list message

Node list update acknowledge (Node A -> Node B)

After receiving the node list, the client sends the acknowledge message. Please note that
NodeB SID goes first in these messages.

In the Node list update acknowledge message:

Message type – Equal to 2.

Figure 20 – Update nodes acknowledge message example

The client then sends the Update node list message that includes its list of the top active
nodes:

Message type – Equal to 1.

Figure 21 – Update node list message sent by the client

This enables both the client and the server to exchange their lists of nodes.

Run command (Node B -> Node A)

In response to the Update node list message from the client, the server may send a
command to download and run another executable file. NodeB SID goes first in this kind of a
message.

Message type – Equal to 3.
RSA-encrypted data – 256-bytes buffer that can be decrypted with the RSA public key
from the malware configuration. This buffer is equal to the RSA trailer from the Update
node list message. The buffer contains the RC4-key and the hash value required to
verify integrity and decrypt the command body with RC4-ecnrypted URLs.

15/27

RC4-encrypted URLs – Encrypted command body that contains one or several RC4-
encrypted URLs to download the files to execute.

Figure 22 – Example of run command message

The RSA-encrypted data is decrypted using the RSA public key from the malware
configuration. The decrypted data has the following format and contains the 20-byte length
RC4-key used to decrypt the command data (the URL for in this case), and the MD6-512
hash (64 bytes) of the RC4-encryted data. The rest of the data that follows the MD6 hash is
not used.

Figure 23 – RSA-decrypted content of the Run command message

The “Unknown1” and “Unknown2” fields from the RSA-buffer have an unknown purpose
that are not used during the command parsing. The “Encrypted data length” field contains
the length of the RC4-encrypted data. After decrypting the RSA-buffer, we can also decrypt
the URL. The entire decryption flow is listed below:

16/27

Figure 24 – Decryption and integrity verification flow for the Run command message

We can’t create the RSA-encrypted data, because we don’t have the private key. However, if
we extract the RC4-key from the RSA-encrypted data received from the C&C server, we can
encrypt the fake URL using this key. The bot can successfully decrypt the fake URL, but the
command will not be executed because it verifies the message integrity using the 64-byte
MD6 hash value that is also stored in the RSA-encrypted data (see Figure 24).

Using the modified MD6-512 algorithm, Twizt calculates the 64-byte hash value from the
RC4-encrypted URLs (indicated by the red box in Figure 24) and compares it with the
reference value from the RSA-encrypted data. If the values are not equal, the command is
not executed.

Figure 25 – MD6 hash verification

17/27

An early Twizt version supported only one URL. Newer versions of the Twizt bot support
multiple URLs in the following format:

d|http ://185.215.113[.]84/alfa_|http ://185.215.113[.]84/beta_

The character “d” in the prefix likely means, “download”. At this moment, only the “download”
command is supported:

Figure 26 – Parsing the decrypted command body

Node list file

As Twizt is a peer-to-peer bot, it needs to store data about other known nodes and the
commands that it receives while distributing it further. When the malware receives an
updated list of nodes, it saves this list into a hidden configuration file “nodescfg.dat” located
in the %userprofile% directory:

Figure 27 – Nodes configuration file path

The node data is stored (not encrypted) in the 8-byte structures:

The “Last access timestamp” field is the number of seconds since 1980 to the moment
when the node was last online. It’s obtained using the NtQuerySystemTime and
RtlTimeToSecondsSince1980:

Figure 28 – Setting the last access timestamp for a node that is accessed successfully.

Here is an example of the node list file content:

18/27

Figure 29 – Node list file format

The file with the list of nodes is loaded when the malware is launched. In this way, the bot
saves a list of nodes for use after a reboot.

Command configuration file

When the Twizt bot receives a command from the C&C server or another node, it saves the
command to the file “cmdcfg.dat” located in the %userprofile% directory. The command is
saved in the same form as it was received from the server. Therefore, it includes the RSA-
encrypted header and the RC4-encrypted command data.

Figure 30 – Command configuration file format

When the malware acts as a server, it sends the data loaded from the command
configuration file unchanged. This allows the bots to exchange the commands received from
the C&C server without having the RSA private key to sign the commands.

Downloader

There are two cases when Twizt bot can download additional payloads.

The first option is using a hard-coded base URL and a list of paths. Twizt consequently tries
to download payloads using the resulting URLs. Twizt typically uses six paths. We observed
the following path combinations:

“a_”, “b_”, “c_”, “d_”, “e_”, “f”

“alpha_”, “beta_”, “gamma_”, “delta_”, “epsilon_”, “zeta_”

“1”, “2”, “3”, “4”, “5”, “6”

19/27

The malware goes over the paths and checks them one by one appended to the base URL
(“https://185[.]215.113.84/” and “https://185[.]215.113.84/twizt/” in the analyzed samples).
The delay between the checks is 1 second.The download attempts are performed in an
infinite loop in a separate thread. Twizt uses a long delay of 90 seconds between the
download cycles:

Figure 31 – Downloading payloads from URLs stored in the sample

The second case, when Twizt can download additional payloads, is when it receives the
corresponding command from the C&C server or another node. Before trying to download
the payload, the malware checks its size. The payload will not download if its size is less
than 5000 bytes.

The malware expects to receive an encrypted file, which is saved in the “%temp%” folder
under the name “%temp%\{n1}{n2}.exe”, where {n1} and {n2} are random numbers
between 10000 and 40000. Twizt uses the following User-agent header to download files:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/93.0.4577.82 Safari/537.36

Payload decryption

After the payload downloads, it is saved in the original encrypted form. The malware maps
the file data into the memory using CreateFileMapping/MapViewOfFile. The first 256 bytes
of the file is the RSA encrypted header. The payload data is decrypted using the 16-bytes
RC4 key from the header.

Let’s consider the sample with MD5 hash “9fa3010c557db8477aec95587748dc82” contains
the following RSA public key:

N =
0xa6e5d02b03a9d9613b9e5df849618cbdc20e8f208eb67d60b21977c3768d1b8ffa42314097a455ff94d9

E = 0x010001

After communicating with the C&C server the bot downloaded a file with MD5 hash
“43750aaa981077dde08d61fe2b7d1578” from the URL “https://185[.]215.113.84/xgettin“.

https://www.virustotal.com/gui/file/925153aa196572af808ee0b2653aa2302c9ffafb4992732ccc2ed633285b2655

20/27

The file starts with the RSA-encrypted header with a length of 256 bytes:

Figure 32 – Encrypted content of the file downloaded by Phorpiex

After decrypting the header using the RSA public key, it has a very simple format:

We can use the RC4 key from the header to decrypt the payload:

21/27

Figure 33 – Decryption of the file downloaded by Phorpiex

When the payload is prepared on the C&C server, the murmurhash3 128-bit value of the
non-encrypted payload is used as the RC4-key during the payload encryption. Twizt
calculates the murmurhash3 value of the decrypted payload and compares it with the RC4-
key. The malware executes the payload only if the values are the same:

Figure 34 – Integrity verification of the downloaded file

22/27

Conclusion

Until recently, Phorpiex was not considered a sophisticated botnet. All of its modules were
simple and performed the minimal number of functions. Earlier versions of the Tldr module
did not use encryption for the payloads. However, this did not prevent the botnet from
successfully achieving its goals.

Malware with the functionality of a worm or a virus can continue to spread autonomously for
a long time without any further involvement by its creators. However, in most cases the
creators need to use C&C servers to control the bots to be able to profit from the botnet. We
should note that for a botnet on the scale of Phorpiex, it is quite difficult to find reliable
hosting that does not block the C&C server. The creators are further disadvantaged if the IP
addresses of the C&C servers are added to deny-lists, thereby reducing the efficiency of
controlling the botnet. Changing the IP address of the C&C server can be very difficult.

The Phorpiex botnet uses techniques that effectively achieve its goals without C&C servers.
In our report, we showed that a cryptocurrency clipping technique for a botnet of this scale
can generate significant profits (hundreds of thousands US dollars annually), and does not
require any kind of management through C&C servers.

In the past year, Phorpiex received a significant update that transformed it into a peer-to-peer
botnet, allowing it to be managed without having a centralized infrastructure. The C&C
servers can now change their IP addresses and issue commands, hiding among the botnet
victims.

Tips to stay safe

1. When users copy and paste a crypto wallet address, always double check that the
original and pasted addresses match.

2. Before sending large amounts in crypto, first send a probe “test” transaction with
minimal amount.

3. Keep operating system updated, do not download software from unverified sources.
4. Skip the ads. If you are looking for wallets or crypto trading and swapping platforms in

the crypto space, always look at the first website in your search and not in the ad.
These may mislead you as CPR has found scammers using Google Ads to steal
crypto wallets.

5. Always double-check the URLs!

Check Point Protections

Check Point Infinity is a unified security architecture that delivers real-time threat prevention
of both known and unknown threats, simultaneously protecting the network, cloud, endpoints
and mobile and IoT devices, and provides protections against this threat.

https://blog.checkpoint.com/2021/11/04/scammers-used-google-ads-to-steal-500k-worth-of-cryptocurrency/
https://www.checkpoint.com/infinity-vision/zero-day-protection/

23/27

Threat Emulation protections:

Worm.Win.Phorpiex.gl.O
Worm.Win.Phorpiex.ZF

Anti-Bot protections:

Worm.Win32.Phorpiex.C

Worm.Win32.Phorpiex.D

Worm.Win32.Phorpiex.H

Appendix A: Indicators of Compromise

SHA256:

4151d9af5a104eea9106b18d35102f3b11134d7ba598e1fd57580a932d4596fa
d5516838dbec985f8e893bb145b364ee3f6060dec3d30967b21309041283dfd1
4b355796a710bec51e37958a39ca0fb28f462f80b15b3e42162bf47cdf0fca79
f3fd26579b32378c1115937a1aea5daa2dc4d9f11c7c69c3f6878962e31e6fdc
7d72f66070b144fdd4d0fcbe39c732d1943b5836c8da1d469da876c27775808e
143e15adc8d63526b124a401fe1182a44542fb79f22fc17c602151a839c22682
197286269fe0f8ef718beb337945c88e3b88683ff39c05137b71d7cd662c7ddd
7356a7c98588b980302a5f2340b56f75a13bdac613f7c22b62eeb4590896e506
555513aa074aca680c4962f0078f43445a0d382e78046623d53203d8436bad99
96c57e456b9cd614a632edd4563ac70cb08fc34db2c2398c2c9aaa4ed920445f
8f49d7e3596aff4c8cd3aa38d0dc6911ae77e54cc3b13210d95c9f38063317a9
1d69a55baba58f62b1448b92859a39272ba42d171f390749ca8ba9c27e74b010
313c731da99da31454ec6114d5a8ce03dcf9a24caf02270f9292ab7b9278b316
8f7bbcb3ac44aa48df92b65b7ef40c341ed80df2710668d5ac6b7207c00b581d
cf79b1db1c515944e8076170b8d8c2f72747c99e3c686b85422f8d3fd033b254
b4a5ecd4285c5431b486740ce111211df90486d4ba1fe189e5cbbcd02ec72ed3
68ca21ebaec1f7a40e25b348e8275c56b7fede56ea30ec2215c535f63d5f04da
5fae9e2f6fc2e95b5f6be3c8c0d3a76cebf18a2526913d21c67bb98be35f8247
63455c30d70fc9c2f3150dc8426fd1ea30884b12b4d5a74ba126698c680d7ee3
8d413fb17a9fb2722c36b288de4cf2564a25d11bd63673191fc9be22bffc227c
37c35d63111e22bb37ed6b22e5886b5178e3bdac3b50977a5aa029accfa5b195
3919509ed00956ca7eb30eb7717c24fcfe1da4ca6403ce68d07d5ddab43bc70c

C&C servers:

24/27

185.215.113[.]84
185.215.113[.]66
185.215.113[.]93
thaus[.]ws
gotsomefile[.]top
geauhouefheuutiiiw[.]top
aegieuueueuuruia[.]ru
toruuoooshfrohfe[.]su
gimmefile[.]top

Appendix B: Cryotcurrency wallets

Bitcoin address Transactions Total value (BTC)

1DYwJZfyGy5DXaqXpgzuj8shRefxQ7jCEw 577 11.77038853

1of6uEzx5qfStF1HrVXaZ1eE3X4ntnbsx 313 5.85069371

1EN3bbs8UdVWA3i3ixtB9jQWvPnP9us4va 158 0.84886532

19mduWVW9QphW5W2caWF84wcGVSmASRYpf 157 2.97800426

3AcMV5pSUcxMmmcMbfSkJXRKbCrF3ysUDJ 84 0.36248146

1E5ZxnNUbbGQarWjMA7tCwp3Btm38GvRkv 82 0.56571843

1FGzLF98d6Uv7P4YH7J4FF4bU599qtZNSk 71 0.78717836

1MaN4Me35n1kM6h7JVPNUQYqYgjasEQLzs 64 0.70780188

1BdhCwNFzNbWoJvxrok6V7z2af7xjJLS58 51 0.45619053

1Bn4JYKoVgQpZ73doWVFSNZBbwKj3cpJNR 48 0.31075967

13cQ2H6oszrEnvw1ZGdsPix9gUayB8tzNa 43 0.31093935

1Gx8oRKKczwdB32yiLzVx5hsjAze6g5HHw 42 0.42138444

17SBPhXtH8AxszbyEPPvFaazef6Cpup7Rg 42 0.62145355

1CUhtfNjsGMZziCVzZ4oVan9NCGriY4NDZ 42 0.2527719

1L6sJ7pmk6EGMUoTmpdbLez9dXACcirRHh 42 0.33589533

19B5G1ftgXRrD6GiTzThL9BiySVdf1HJZy 35 0.73827173

1CpQYTKfiYj8ZoXUmz1DAohjJVsDzGpgbx 33 0.83727682

18qKrmaUXaEgbYEn6yMkGKNcqkYB3mSxNv 31 1.60713638

3JHbgxWSZzvG73eeMZuTvV8LaCwPaSwH5e 30 0.04118681

25/27

1C2SvtsUu8YZVUBbha4KiBGYRW5dwtrRvd 28 0.20058421

1Kzhh4nqyjB3MAoQ5uH2Bcdz3qXWpnsMzd 26 3.39173817

1LdFFaJiM7R5f9WhUEskVCaVokVtHPHxL5 25 0.11162833

18xjALsLW57DQcXSgvGE8H9iXkXYvPjSWc 20 0.20561805

3NShfYPbqkPmPkXEgJ1SGUYgSjxt1Robhs 19 0.07829182

3PZxHk9t7qRT36R4U1imFAzMrPixLP2S5G 19 0.28756791

1GWTDV99ErrCDN6HUXsStubzZbVuhgftmN 19 0.14624533

18bzpjFfo5JQ41GzzUNRMgcE7WwQwpqFrR 18 0.12136941

19KXPyopGnfZ1dGjLpPPqbo7Jpqki9A9mW 17 0.25350157

13vFjyWgurTopaVmQfgEpiRkHLNc2JMrmL 16 0.08363811

39t2ndtRZKxHPHaprbe6kPaws4vs1nWA94 13 0.011934

18mqohvm3hNusjZ6uBYm1E3bWHgorquaMi 13 0.10253479

38i9rSGLo2KY2HJK249AykR24rVPdz75RS 12 0.04370092

14GJm9M5zaX6Zyojt5yxNZcdoouJ4WPAgT 11 0.11214492

1zWNk4zqRLxMnsjFv6rtsoQrCvcfvMvrM 11 0.13272838

1DhR14ZJtGzfdeemj49Jje6D3ZHEZQh6P3 11 0.246914

3QYPr4imJFmd3c2htT4d3pRuxkSjcXdr95 11 0.04259855

3QYAhRw1WcPMZLYP61n516JeLE2DX9yysW 10 0.07399403

1LaVtKqJatoeAHkHEgp9UF2fJEarEdZPr9 9 0.37694525

15xK9eLYeLNCQVG7uTZkJGZACQGuhk8E3H 8 0.36191407

13M4LtnAhnt6cd78JndfAdoYE4CevjPT4B 8 0.01213431

3EFYP3eiRcnjJAraEYxfVuKsUqcEmTGFot 7 0.06086802

1JPXx7iDdW6oSXA6sf2t2gGm21HyqLe2Bp 7 0.03328335

1BK8sQVskVTrC917QeaZRpUvU7z1tuCHxc 6 0.00428663

16ZWUCzuhvYzpdYJRRKvsBAKmJgcgzpqyg 6 0.0397622

14jk4w1RVV7D2JXEqCwUtMW2UTGoGbJu7N 4 0.01904673

26/27

35Sb7nDbQFXndgZZu7zYaJbwEffVY8Z4cF 4 0.00328759

1KXZqR1fjAxcv1gvdmPfN2WsWsDwM7r2R2 4 0.244389

12ZcTiGZFWydqY4rDW6FbF1ArsBbdNaPxz 3 0.00673716

1CNp1np9EVESWZ678tX6NPexCy7Cea3q9v 3 0.85662379

19pnchunjYynzeiiu1ddwfzsHrjKcDxRvY 2 0.85007827

1JWWZFUVAWvFNS2D5qwQQo4oSsseoD9kAn 2 0.04953613

3EzR2S3wTiiyokZE9bvY82FZiPA5m45SAC 2 0.00689627

1Cnk3Dc2rdMGpXDjScy9BCza2MRXJygkp8 2 0.00239953

1HewcqbrkXY5iqrDqjb4j4AHiaDeobpE6P 1 0.00030088

1EThtvDy9FXXR4A9FtVyFJBJw7sdheBYqS 1 0.0122992

3NNJW9YnKichMXTVgAhrsD65veUBCfGC9m 1 0.00033241

36LdCfaxb7KpAC7EZ6pzy2eRMsHSZghHpM 1 0.00690512

1MMic1zX21dwUEh7GQuBFhJmQPTbqGYdzM 1 0.00788566

Total 2326 38.40704253

Ethereum address ETH
Transactions

Total value
(ETH)

0xff8c5843e7abe2708037fc1acdca83b37466a299 50 16.17663323

0xff0d45f3e2ec83de3b2e069300974732ba1c5d30 48 17.69280322

0xab1b250d67d08bf73ac864ea57af8cf762a29649 46 27.87694116

0xb6d8926bf0418de68a7544c717bbb4ea198769cc 38 5.298421864

0x57af5e3e5d6cb0ca6f44d303328b4f68edaa9e39 33 8.74847878

0x2f1a943e9a5c200bc685c0f0e30e8d617b75c9e6 31 8.881011306

0xa557fe5c21325eb8f6c7d5f2004db988c8c8d8b5 16 3.704143229

0xef9e3d8c52044d949c3008d34e32104a187bd46d 14 4.146620911

0xd4f8dfd1cdba76e9ac6b3b31ef3c6c6c3d1ea1d0 10 0.814050284

0xa5228127395263575a4b4f532e4f132b14599d24 8 0.134708954

0x8b7f16faa3f835a0d3e7871a1359e45914d8c344 7 3.22462637

27/27

0x05f916216cc4ba6ac89b8093d474e2a1e6121c63 7 0.575314034

0x87f84b56fb061f51ca709f2ac3fc6e2d4b3b8f8f 6 4.22714208

0x74e4195d16e8887ebe6d6abde1aa38bc91e69976 6 0.104948174

0x373b9854c9e4511b920372f5495640cdc25d6832 5 0.28459803

0x75861ac703aabf12e51b374543f51320eeccb91d 5 0.50729028

0xa9b717e03cf8f2d792bff807588e50dcea9d0b1c 4 0.475362

0x43e44151ad4d625d367376a6fd3ea44c82718777 4 7.32426232

0xc4e6e206ddc7f83a78582fc4e5536a8ed395c5e1 4 0.194103764

0x02c48a8716f4ed9784544fc7100abfb9febd1761 4 0.564922754

0xac9a31bb9e9a3887ffc9513a93dd6da7ec648345 3 0.0574927

0x887d27da0a963bdfbc503357f2dc9837eb2c9444 3 5.168551905

0x869c893e84618da936274badf3d9e800d0572955 3 5.93558275

0xea375afbda5e11af6f93932ef2dcde2cf38768dd 3 0.16124587

0x4562b3eea33b3eb4ed2e08719a05421e06e452f4 2 5.096436059

0xcfe425756103a113807985f4b9aa3cecf637e99a 2 0.243502265

0xb2bfcee11601b6af7357a7a636b7af3240024568 1 4.652749775

0x334bd517cf36ad075b0807903624139ce99e3921 1 1.0043

Total 364 133.2762441

