
1/29

THREAT ANALYSIS REPORT: Inside the LockBit Arsenal -
The StealBit Exfiltration Tool

cybereason.com/blog/threat-analysis-report-inside-the-lockbit-arsenal-the-stealbit-exfiltration-tool

Written By
Cybereason Global SOC Team

December 16, 2021 | 20 minute read

https://www.cybereason.com/blog/threat-analysis-report-inside-the-lockbit-arsenal-the-stealbit-exfiltration-tool

2/29

The Cybereason Global Security Operations Center (GSOC) issues Cybereason Threat
Analysis reports to inform on impacting threats. The Threat Analysis reports investigate these
threats and provide practical recommendations for protecting against them.

In this Threat Analysis report, the GSOC investigates the StealBit malware, a data exfiltration
tool that the LockBit threat group develops and maintains. The LockBit group provides
StealBit to affiliates as part of the group’s ransomware affiliate program. Ransomware
operators use StealBit to exfiltrate data from compromised systems for double extortion
purposes.

This report provides an in-depth insight into the functionalities and architecture of StealBit as
well as the evolution of relevant configuration and implementation aspects of StealBit across
different samples. The detailed insight into how StealBit works and evolves is important for the
timely detection of ransomware attack operations that involve StealBit at the point when
malicious actors exfiltrate data before deploying ransomware.

StealBit Malware Key Points

Feature updates and widened target base: A comparative analysis between relatively older
and newer StealBit samples shows that StealBit has been undergoing improvement with new
features, especially evasion and hiding features. In addition, although older samples do not
execute on systems located in the former Soviet countries Russia, Ukraine, Belarus,
Tajikistan, Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Turkmenistan, Uzbekistan,
and Moldova, newer StealBit samples do not implement this restriction and execute on any
system.

Developed for maximum data exfiltration efficiency: StealBit implements the Microsoft
input/output (I/O) completion port threading model to maximize the overall efficiency of data
exfiltration activities. For example, StealBit parallelizes the exfiltration of the content of
multiple files to shorten the overall exfiltration timespan. This is important to ransomware
operators, since fast data exfiltration reduces the chances of being discovered in the process.

Developed for maximum usage convenience and scalability: StealBit implements
interprocess communication (IPC) between multiple StealBit processes that run on a single
compromised system to designate many files for exfiltration in a scalable manner. In addition,
StealBit supports dragging and dropping of files or folders for exfiltration to StealBit windows
in scenarios where the StealBit operators have access to the graphical user interface of
compromised systems. This feature enables StealBit operators to designate many files for
exfiltration in a convenient and scalable manner.

Somewhat incomplete implementation: The implementation of some StealBit features that
we analyzed is not complete. This includes features that the LockBit threat group advertises
as advantageous to alternative exfiltration tools on the underground market, such as
compression of exfiltrated data and a hidden mode of operation. For example, a recent

3/29

StealBit sample that we analyzed does not compress exfiltrated data and does not properly
hide the windows that StealBit creates, making the malware visible in the graphical user
interface of the compromised system.

StealBit Malware Detected and prevented: The Cybereason XDR Platform effectively
detects and prevents StealBit when the malware exfiltrates data, and also detects and
prevents the execution of the related LockBit ransomware, which LockBit affiliates may
execute after they use StealBit to exfiltrate data for double extortion.

Cybereason Managed Detection and Response (MDR): The Cybereason GSOC has zero
tolerance towards attacks that involve ransomware and data exfiltration tools, such as
StealBit, and categorizes such attacks as critical, high-severity incidents. The Cybereason
GSOC MDR Team issues a comprehensive report to customers when such an incident
occurs. The report provides an in-depth overview of the incident, which helps to scope the
extent of compromise and the impact on the customer’s environment. In addition, the report
provides attribution information when possible as well as recommendations for mitigating and
isolating the threat.

StealBit Malware Introduction

The traditional ransomware extortion tactic, where malicious actors demand payment for
decrypting data that the actors have encrypted using ransomware, does not always work as
intended. Victims may not pay ransom for several reasons, such as lack of financial
resources, concerns that ransomware operators may not decrypt the data, or the availability of
backups of the encrypted data.

Therefore, many modern ransomware operators use a double extortion tactic: ransomware
operators exfiltrate data from compromised systems before encrypting the data, and if the
victim refuses to pay ransom for data decryption, the malicious actors threaten to leak the
exfiltrated data online or sell the data for profit.

The proliferation of double extortion on the ransomware scene marks a major turning point in
the evolution of the ransomware threat, with ransomware actors massively joining in on the
trend. For example, in June 2021, TrendMicro reported that it has observed 35 ransomware
families that use double extortion — with a growing tendency.

Since the double extortion tactic relies on exfiltrated data, data exfiltration tools are crucial to
ransomware operators that use this tactic. Ransomware operators use publicly available tools
for data exfiltration, such as Rclone, as well as custom data exfiltration tools that are intended
specifically for use in ransomware operations. Some custom data exfiltration tools are Ryuk
Stealer, the recently discovered Exmatter, and StealBit.

The StealBit malware is a data (file content) exfiltration tool that the LockBit threat group
develops and maintains. StealBit exfiltrates file content to remote attacker-controlled
endpoints for double extortion purposes. In addition to StealBit, the LockBit threat group

https://www.cybereason.com/platform
https://www.cybereason.com/blog/cybereason-vs.-lockbit2.0-ransomware
https://www.cybereason.com/services/managed-detection-response-mdr
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-double-extortion-and-beyond-revil-clop-and-conti
https://rclone.org/
https://www.bleepingcomputer.com/news/security/new-ryuk-info-stealer-targets-government-and-military-secrets/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/blackmatter-data-exfiltration

4/29

develops and maintains the LockBit ransomware, which has a strong presence on the
ransomware threat scene.

As of June 2021, the LockBit group runs a ransomware affiliate program, LockBit 2.0, which
provides access to the LockBit ransomware and the StealBit data exfiltration tool to affiliates.
As part of affiliate recruitment efforts, the LockBit group advertises the features of the LockBit
ransomware and StealBit by comparing the ransomware and StealBit to alternative solutions.
The LockBit group claims that StealBit is superior, especially in terms of data exfiltration
speed:

The LockBit group advertises StealBit (source: KELA, Twitter)

This report discusses the implementation of StealBit and its internal working principles. In
addition, this report provides an overview of the evolution of relevant configuration and
implementation aspects of StealBit across different StealBit samples. Previous research
documents some aspects of the implementation of StealBit, with a focus on automating the
de-obfuscation of relevant StealBit configuration: the IP addresses of the attacker-controlled
endpoints to which StealBit exfiltrates file content.

This report provides an in-depth and comprehensive insight into the functionalities,
architecture, and evolution of StealBit. The detailed insight into how StealBit works and
evolves is important to build proper detection and protection strategies against the malware.
This, in turn, is crucial for the timely detection of ransomware operations that involve StealBit
at the point when malicious actors exfiltrate data before deploying ransomware.

StealBit Malware Analysis

https://www.cybereason.com/blog/cybereason-vs.-lockbit2.0-ransomware
https://www.cybereason.com/blog/rising-threat-from-lockbit-ransomware
https://securityintelligence.com/posts/lockbit-ransomware-attacks-surge-affiliate-recruitment/
https://twitter.com/intel_by_kela/status/1406905385580118017
https://yoroi.company/research/hunting-the-lockbit-gangs-exfiltration-infrastructures/

5/29

The Deep Dive Analysis section discusses the implementation of StealBit and its internal
working principles. In this section, we focus on a recent StealBit sample with a Secure Hash
Algorithm (SHA)-256 hash of
6c9a92955402c76ab380aa6927ad96515982a47c05d54f21d67603814d29e4a5. The
Comparative Analysis section compares different StealBit samples to provide an overview of
the evolution of relevant configuration and implementation aspects of StealBit across the
samples.

StealBit Malware Deep Dive Analysis

StealBit first checks whether the StealBit process runs in the context of a debugger by
evaluating the value of the NtGlobalFlag field of the Process Environment Block (PEB). If the
value of NtGlobalFlag is 0x70, StealBit executes an empty infinite loop:

StealBit detects the presence of a debugger

StealBit then de-obfuscates the filenames of the dynamic-link libraries (DLLs) advapi32,
gdi32, gdiplus, shell32, ntdll, ole32, user32, shlwapi, kernel32, and ws2_32 and loads the
libraries by executing the LoadLibraryExA function. StealBit stores the XOR obfuscated
filenames of these DLLs in the malware’s executable file:

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa

6/29

StealBit loads DLLs

StealBit then decrypts RC4-encrypted strings that the malware stores in the malware’s
executable file. StealBit uses these strings for different purposes throughout the malware’s
operation. For example, one string specifies a Windows command that StealBit executes,
another string specifies the path to a named pipe file that StealBit creates, and StealBit
displays some of the strings to the malware operator. We discuss these aspects of the
StealBit operation in greater detail later in this section:

7/29

StealBit decrypts RC4-encrypted strings

StealBit then configures the process to not display certain Windows error messages by
invoking the NtSetInformationProcess function and parses the command line parameters that
the StealBit operator may have specified. The table below lists the command line parameters
that StealBit supports. We discuss the exact impact of these command line parameters on the
execution of StealBit in greater detail later in this section:

8/29

Command line parameter Description Required
/
optional

Default
value

<path to file or folder> This parameter specifies the
filesystem path to the file or the
folder whose content StealBit is to
exfiltrate. Setting this parameter
configures StealBit to read and
exfiltrate the content of the file, or
the content of the files placed in
the folder.

Required none

-hide/-h yes/y | no/n This parameter controls the
visibility of the graphical user
interface of StealBit—that is, this
parameter hides (yes/y) or
displays (no/n) windows that
StealBit creates.

Optional no/n:
StealBit
displays
windows

-delete/-d yes/y | no/n This parameter configures StealBit
to self-delete (yes/y)—that is, to
delete the executable file that
implements StealBit from the
filesystem of the compromised
system when StealBit is finished
executing—or not to self-delete
(no/n).

Optional no/n:
StealBit
does not
self-delete

-net/-n <transfer rate>

-once/-o <transfer rate>

This parameter configures StealBit
to exfiltrate file content at the
specified rate, where rate is an
amount of exfiltrated file content in
KBs, MBs, or GBs, over 15
seconds.

Optional unlim:
there is no
file
content
exfiltration
rate

9/29

-skipfiles yes/y | no/n This parameter configures StealBit
to not exfiltrate the content of files
with specific filename extensions
(no/n).

Optional yes/y:
StealBit
does not
consider
the
filename
extensions
of files as
a criterion
for file
content
exfiltration

-skipfolders yes/y | no/n This parameter configures StealBit
to not exfiltrate the content of files
that are placed in specific folders
(no/n).

Optional yes/y:
StealBit
does not
consider
folders as
a criterion
for file
content
exfiltration

-file/-f <file size> This parameter configures StealBit
to exfiltrate the content of only
those files of a size equal to, or
less than the specified file size in
KBs, MBs, or GBs.

Optional unlim:
there is no
maximum
file size for
file
content
exfiltration

Examples

stealbit.exe
C:\Users\user\Desktop\file.db
-hide y -skipfiles n

stealbit.exe
C:\Users\user\Desktop\ -net
5MB -delete y -h y -
skipfolders n -file 2GB

The command line parameters that StealBit supports

After parsing command line parameters, StealBit creates or opens the named pipe file \??
\pipe\STEALBIT-MASTER-PIPE. The path to the named pipe file is one of the strings that
StealBit has previously decrypted using the RC4 algorithm.

10/29

If the current StealBit instance is the first one that the malware’s operator has executed on the
compromised system, StealBit creates the named pipe file STEALBIT-MASTER-PIPE by
invoking the NtCreateNamedPipeFile function and assumes the role of a named pipe server.

We refer to this StealBit instance as a StealBit named pipe server. If not, StealBit opens the
named pipe file STEALBIT-MASTER-PIPE by invoking the NtCreateFile function and assumes
the role of a named pipe client. We refer to this StealBit instance as a StealBit named pipe
client.

In summary, StealBit implements named pipe-based IPC between multiple StealBit processes
that run on a single compromised system. We show later in this section that this enables
StealBit operators to designate many files for exfiltration in a scalable manner by executing
StealBit named pipe clients with the <path to file or folder> command line parameter set to the
paths to the files. This makes the overall process for exfiltrating the content of multiple files
convenient and efficient for StealBit operators:

StealBit creates or opens the named pipe file STEALBIT-MASTER-PIPE

11/29

At this point in the execution flow of StealBit, the execution of a StealBit instance that
assumes the role of a named pipe server diverges from the execution of a StealBit instance
that assumes the role of a named pipe client. The StealBit Named Pipe Server section
discusses the former and the StealBit Named Pipe Client section discusses the latter.

StealBit Named Pipe Server

After creating the named pipe file STEALBIT-MASTER-PIPE, the StealBit named pipe server
creates and starts two threads: one that creates two windows, and one that shows a message
about exfiltration progress.

The first thread creates two windows by invoking the CreateWindowExW function. The first
window is a top-level, parent window, with a title of StealBit 1.1. The second window is a child
window of the top-level window and is therefore confined to the area of the parent window.
The child window can display formatted text, and this window displays the output of StealBit to
the malware operator.

We emphasize that setting the -hide/-h command line parameter to yes/y hides only the child
window, while the parent window is still visible. This indicates that the implementation of the
window hiding feature of StealBit—that is, of the -hide/-h command line parameter—is not
complete, because it does not make StealBit invisible in the Windows graphical user interface
by hiding all windows that StealBit creates. This contradicts the claim of the LockBit group that
StealBit hides its presence on compromised systems:

LockBit claims that StealBit hides its presence on compromised systems (source: KELA,
Twitter)

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-createwindowexw
https://docs.microsoft.com/en-us/windows/win32/winmsg/window-features
https://twitter.com/intel_by_kela/status/1406905385580118017

12/29

StealBit displays windows when the malware operator sets the command line parameter -
hide/-h to no/n (upper image) and yes/y (lower image)

The parent StealBit window supports dragging and dropping files or folders and the F2 and
Shift+F2 hotkeys. Pressing the F2 key closes the parent and child window without terminating
execution, which effectively makes StealBit invisible in the Windows graphical user interface.

Pressing the key combination Shift+F2 has no effect. Dragging and dropping a file or folder
into the parent StealBit window is equivalent to specifying the <path to file or folder>
command line parameter. The drag and drop activity causes StealBit to read and exfiltrate the
content of the dropped file, or the content of the files placed in the dropped folder, in a way
that we discuss later in this section.

The drag and drop feature enables malicious actors to conveniently provide many file or folder
paths to StealBit for file content exfiltration in scenarios where the StealBit operators have
access to the graphical user interface of compromised systems, such as through an Remote

13/29

Desktop Protocol (RDP) session. This makes the overall process for exfiltrating the content of
many files practically convenient and scalable for StealBit operators.

The second thread is active during the overall operation of StealBit and displays a message in
the StealBit window that informs the operator about the progress of file content exfiltration
when exfiltration takes place. In the form of a format string, the message is: Stats: %I64d files
(size %S), read speed %S/sec (compression ratio %I64d%%), upload %S/sec. This format
string is one of the strings that StealBit has previously decrypted using the RC4 algorithm.

After creating and starting the two threads, StealBit displays the values of the configuration
settings that StealBit operators can configure by setting the values of the StealBit command
line parameters. In addition, StealBit displays the computer name of the compromised system
and the name of the domain to which the system belongs (if any; see the figure above).

StealBit then initializes the Windows Socket networking library, which StealBit uses for
communication with the attacker-controlled endpoints to which StealBit may exfiltrate file
content. StealBit de-obfuscates five IP addresses of these endpoints, which the malware
stores in XOR obfuscated form in the StealBit executable file. StealBit also stores a string that
uniquely identifies the set of the endpoint IP addresses across StealBit samples, such as
DI0AN. We refer to this string as the StealBit configuration ID:

14/29

StealBit de-obfuscates IP addresses of attacker-controlled endpoints to which StealBit may
exfiltrate file content

StealBit Malware Threading: I/O Completion Port

After initializing the Windows Socket library, StealBit establishes its core functionality: the
Microsoft I/O completion port threading model for processing multiple asynchronous I/O
requests in parallel. StealBit implements the I/O completion port threading model to maximize
the overall efficiency of file content exfiltration activities on compromised systems. For
example, as we show later in this section, StealBit parallelizes the exfiltration of the content of
multiple files to shorten the overall exfiltration timespan. This is important to ransomware
operators, since fast data exfiltration reduces the chances of being discovered in the process.

The I/O completion port threading model works by creating an I/O completion port and
associating one or more file handles with that port. When an asynchronous I/O operation on
one of these file handles completes, the Windows operating system queues to the port an I/O
completion packet:

I/O completion packets carry information about the I/O operation. The application can then
process I/O completion packets by removing them from the queue in a first-in-first-out (FIFO)
order. In addition to a file handle, an application may associate a handle-specific I/O

https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

15/29

completion key with an I/O completion port. I/O completion keys can carry arbitrary data,
which is typically data related to the handle. The figure below depicts the I/O completion port
threading model that StealBit implements:

StealBit implements the I/O completion port threading model

StealBit creates an I/O completion port by invoking the ZwCreateIoCompletion function.
StealBit also creates threads for processing I/O completion packets that Windows queues to
the port, which we refer to as StealBit worker threads. StealBit creates as many worker
threads as processors are available on the compromised system. StealBit then associates
three file handles (and I/O completion keys) with the I/O completion port by invoking the
ZwSetInformationFile function:

16/29

A handle to the socket to an attacker-controlled endpoint to which StealBit
exfiltrates file content: This assigns available worker threads to handle the
communication with the attacker-controlled endpoint. StealBit attempts to connect
to each of the five IP addresses that the malware has de-obfuscated. If StealBit
cannot establish a connection to any of these IP addresses, the malware
indefinitely attempts to establish a connection. If the connection to one of these IP
addresses succeeds, StealBit opens a socket to the attacker-controlled endpoint
and associates the socket handle and an I/O completion key with the I/O
completion port. In addition, to make static analysis difficult, StealBit obtains an
address to the TransmitPackets function at runtime by invoking the WSAIoctl
function. The TransmitPackets function is crucial to StealBit, since the malware
uses this function to exfiltrate file content. WSAIoctl returns an address to
TransmitPackets if an application provides the globally unique identifier (GUID) of
the TransmitPacket function, {0D689DA0-1F90-11D3-9971-00C04F68C876}, as a
parameter to WSAIoctl:

StealBit obtains an address to the TransmitPackets function at runtime

https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nc-mswsock-lpfn_transmitpackets
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsaioctl

17/29

A handle to the named pipe STEALBIT-MASTER-PIPE: This assigns available
worker threads to handle the communication with StealBit named pipe clients. The
section StealBit Named Pipe Client discusses the activities that the worker threads
conduct when StealBit named pipe clients send data to the StealBit named pipe
server.
A handle to a file whose content StealBit is to exfiltrate: This assigns available
worker threads to handle file content exfiltration upon successful file read
operations on the file. This parallelizes file content exfiltration and shortens the
overall timespan of file content exfiltration activities. In addition to exfiltrating read
file content, it is the StealBit named pipe server, and not the StealBit named pipe
client, that reads file content for exfiltration purposes.

StealBit Malware File Content Exfiltration

The StealBit named pipe server reads and exfiltrates the content of the file or the folder,
whose file system path is either provided by a StealBit named pipe client or specified as the
value of the <path to file or folder> command line parameter by the StealBit operator. Section
StealBit Named Pipe Client discusses the communication between the StealBit named pipe
server and client in more detail.

If the StealBit operator has specified a file path as the value of the <path to file or folder>
command line parameter, the StealBit named pipe server first evaluates whether the path
leads to a file or a folder. If the path leads to a file, StealBit reads the content of the file only if
the file meets one or more of these requirements:

The length of the name of the file is less than, or equal to, four characters.
The filename extension of the file is not present in a list of filename extensions,
which StealBit stores in hashed format in the malware’s executable file. StealBit
enforces this criterion only if the StealBit operator has set the -skipfiles command
line parameter to no/n.

In addition, the size of the file has to be less than or equal to 0.53 GB. The command line
parameter -file/-f does not have an impact on the execution of the StealBit sample that we
analyzed. This indicates that the implementation of the -file/-f command line parameter is not
complete.

If the path leads to a folder, StealBit iterates the folder recursively to enumerate files placed in
the folder and sub-folders. If the StealBit operator has set the -skipfolders command line
parameter to no/n, StealBit enumerates files only from those folders that are not present in a
list of folders, which StealBit stores in hashed format in the malware’s executable file. After
enumerating the files in a folder, StealBit reads the content of each file, except the content of
system files (FILE_ATTRIBUTE_SYSTEM), if the above conditions are fulfilled.

https://docs.microsoft.com/en-us/windows/win32/fileio/file-attribute-constants

18/29

Before reading content from a file, StealBit opens the file and then associates the handle to
the file and an I/O completion key with the I/O completion port that StealBit has created.
StealBit invokes the ZwReadFile function to read the content of the file in equal-sized blocks.
StealBit calculates the block size as a function of the total file size—the bigger the file, the
bigger the block size.

Each successful file content read operation issues an I/O completion packet to the I/O
completion port. The available worker threads process this packet and exfiltrate the file
content to an attacker-controlled endpoint using the TransmitPackets function, whose address
StealBit has previously obtained.

To evade exfiltration detection mechanisms that monitor the amount of sent data to remote
endpoints over time, StealBit operators can configure StealBit to exfiltrate file content at a
given rate (amount of exfiltrated file content over 15 seconds) by configuring the -net/-n or -
once/-o command line parameters. These parameters control the file content exfiltration rate
by controlling the rate at which StealBit reads file content.

As we mentioned earlier, the file read activity issues I/O completion packets to the StealBit I/O
completion port and instructs available worker threads to exfiltrate the read content. StealBit
controls the file content reading rate by delaying invocations of the ZwReadFile function for
continuously adjusted time periods, such that the total amount of read file content over 15
seconds does not exceed the exfiltration rate that the StealBit operator has specified.

Every time StealBit reads file content using the ZwReadFile function, available StealBit worker
threads exfiltrate the read file content by issuing the Hypertext Transfer Protocol 1.1 (HTTP
1.1) PUT request to an attacker-controlled endpoint. StealBit stores exfiltrated file content on
the attacker-controlled endpoint as a resource that has a random name, which StealBit
generates for each file whose content the malware exfiltrates (for example, 03E76A538… in
the figure below). The data that StealBit sends to the attacker-controlled endpoint includes:

A Distributed Authoring and Versioning 2 (DAV2) header (DAV2... in the figure
below)
The StealBit configuration ID (for example, DI0AN in the figure below)
The computer name of the compromised system and the name of the domain (if
any) to which the system belongs (for example, NODOMAIN and DESKTOP-
PUK8BTP in the figure below)
The absolute path to the file whose content StealBit exfiltrates (for example,
C:\Users\<user>\Desktop\SB_6c9a\testfile.txt in the figure below)
The file content that StealBit exfiltrates (for example, Hello. This is a test file. in the
figure below).

The file content is not compressed. This contradicts the claim of the LockBit threat group that
StealBit compresses exfiltrated file content:

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwreadfile

19/29

LockBit claims that StealBit compresses exfiltrated file content (source: KELA, Twitter)

StealBit exfiltrates uncompressed file content

https://twitter.com/intel_by_kela/status/1406905385580118017

20/29

The StealBit sample that we analyzed does not execute indefinitely in order to keep the
StealBit worker threads that handle I/O completion packets active in a typical server fashion.
To the contrary, after creating worker threads and establishing the I/O completion port
threading model, StealBit processes the <path to file or folder> command line parameter and
exfiltrates file content if the StealBit operator has specified a valid parameter value.

StealBit then waits until the worker threads have processed all I/O completion packets, and
then closes the named pipe file STEALBIT-MASTER-PIPE. Next, depending on the value of
the -delete/-d command line parameter, StealBit empties the content of its executable file and
deletes the file. StealBit conducts these activities by invoking the ShellExecuteExW function to
execute these commands, where <file size> is the size of the StealBit executable file in bytes
and <file path> is the path to the StealBit executable file:

ping 127.0.0.7 -n 7 > Nul

fsutil file setZeroData offset=0 length=<file size> <file path>

del /f /q <file path>

Finally, StealBit terminates its execution:

StealBit deletes its executable file

StealBit Malware Named Pipe Client

After opening the named pipe file STEALBIT-MASTER-PIPE, the StealBit named pipe client
delegates file content reading and exfiltration to the StealBit named pipe server. To do this, the
StealBit named pipe client communicates with the StealBit named pipe server by following a
communication protocol.

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexw

21/29

The figure below depicts this protocol. When a StealBit named pipe client sends data to a
StealBit named pipe server, this action issues an I/O completion packet to the I/O completion
port that the StealBit named pipe server creates (see section StealBit Named Pipe Server).
The worker threads of the StealBit named pipe server then process this packet. The StealBit
named pipe server uses the worker threads that handle the communication with StealBit
named pipe clients to conduct the server's activities that are depicted in the figure below:

The StealBit named pipe client communicates with the StealBit named pipe server

After opening STEALBIT-MASTER-PIPE and therefore connecting to the StealBit named pipe
server, the StealBit named pipe client sends the four bytes 00 00 00 00 to the server to
announce the client's presence. The StealBit named pipe server keeps track of the state of
the connection. When the StealBit named pipe client announces itself, the server
acknowledges the client's presence by updating the state of the connection to indicate
successful client connection.

The StealBit named pipe client then processes the value of the <path to file or folder>
command line parameter in the same manner as the StealBit named pipe server (see section
StealBit Named Pipe Server). However, in contrast to the StealBit named pipe server, the

22/29

StealBit named pipe client does not read and exfiltrate file content, but delegates this task to
the server as follows:

The client sends the four bytes 01 00 00 00 to the server to indicate that the client
is about to send a file path to the server. This file path is the path to the file whose
content the server is to read and exfiltrate. The StealBit named pipe server
acknowledges the communication by updating the state of the connection to
indicate the incoming file path.
The client sends four bytes to the server such that the bytes specify the length of
the file path in a null-terminated Unicode string format. For example, the client
sends the bytes 3E 00 00 00 to the server when the client is about to send the file
path C:\Users\user\Desktop\file.txt to the server (0x3E in hexadecimal format is 62
in decimal format). The StealBit named pipe server updates the state of the
connection and allocates a virtual memory region of a size that is the same as the
file path length that the client has sent.
The client sends the file path to the server. The StealBit named pipe server
updates the state of the connection, stores the file path in the previously allocated
memory region, and then reads and exfiltrates the content of the file at the file path
(see section StealBit Named Pipe Server).
Delegating file content reading and exfiltration to the StealBit named pipe server
enables malicious actors to designate many files for exfiltration in a scalable
manner by executing StealBit named pipe clients with the <path to file or folder>
command line parameter set to the paths to the files.

The StealBit named pipe client then closes the connection to the server and, depending on
the value of the -delete/-d command line parameter, deletes its executable file in the same
manner as the StealBit named pipe server. The StealBit named pipe client then terminates its
execution. The command line parameters -hide/-h, -net/-n, and -once/-o do not have an
impact on the execution of the StealBit named pipe client.

StealBit Malware Comparative Analysis

The table below lists selected StealBit samples that represent StealBit samples that the
security community has observed at the time of writing of this report, in terms of the
configuration and implementation aspects of StealBit that are in the scope of this report. For
referencing purposes, each sample has a codename with the prefix SB_ and a suffix that is
the first four hexadecimal numbers of the sample’s SHA-256 hash:

SB_3407

SHA-256
Hash

3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d

https://www.virustotal.com/gui/file/3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d/details

23/29

First
submission
to
VirusTotal

2021-08-06

SB_107d

SHA-256
Hash

107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636

First
submission
to
VirusTotal

2021-09-09

SB_6c9a

SHA-256
Hash

6c9a92955402c76ab380aa6927ad96515982a47c05d54f21d67603814d29e4a5

First
submission
to
VirusTotal

2021-11-08

SB_6b9a

SHA-256
Hash

6b9aa479a5f9c6bfee52046c1afa579977dfcde868fdad3f18fdcd1779535068

First
submission
to
VirusTotal

2021-11-26

Representative StealBit samples

The tables below compare the selected StealBit samples (column ‘Sample’) considering the
following configuration and implementation aspects:

https://www.virustotal.com/gui/file/107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636/detection
https://www.virustotal.com/gui/file/6c9a92955402c76ab380aa6927ad96515982a47c05d54f21d67603814d29e4a5/details
https://www.virustotal.com/gui/file/6b9aa479a5f9c6bfee52046c1afa579977dfcde868fdad3f18fdcd1779535068

24/29

IP addresses and geolocations of attacker-controlled endpoints to which StealBit
exfiltrates data (column ‘IP addresses’ and ‘Location’).
The debugger detection method that StealBit implements as an anti-analysis
measure (column ‘Debugger detection’).
Command line parameters and the respective malware features (column
‘Command line parameters’).
A named pipe IPC infrastructure that makes exfiltrating the content of multiple files
practically convenient and efficient for StealBit operators (column ‘IPC’).
The I/O completion port threading model to maximize the overall efficiency of data
exfiltration activities (column ‘I/O completion’).

Conditions for execution and file content exfiltration (column ‘Execution
conditions’):

Sample IP addresses Location

SB_3407 88.80.147[.]102

168.100.11[.]72

139.60.160[.]200

193.38.235[.]234

174.138.62[.]35

Bulgaria

The Netherlands

United States

Russia

United States

SB_107d 93.190.139[.]223

168.100.11[.]72

139.60.160[.]200

193.38.235[.]234

174.138.62[.]35

The Netherlands

The Netherlands

United States

Russia

United States

SB_6c9a 185.182.193[.]120 The Netherlands

SB_6b9a 185.182.193[.]120 The Netherlands

Comparison of StealBit samples: Attacker-controlled endpoints

25/29

Sample Debugger detection Command
line
parameters

IPC I/O
completion

Execution
conditions

SB_3407 NtGlobalFlag <path to file
or folder>

Yes Yes Location

SB_107d <path to file or folder> Location

SB_6c9a <path to file or folder>, -hide/-
h, -delete/d, -net/-n, -once/-o, -
skipfiles, -skipfolders, -file/-f

None

SB_6b9a <path to file or folder>, -hide/-
h, -delete/-d, -net/-n, -once/-o,
-skipfiles, -skipfolders, -file/-f

None

Comparison of StealBit samples

The majority of the attacker-controlled endpoints to which the StealBit samples that we
analyzed exfiltrate data are located in western countries, with the Netherlands and the United
States at the top of the list. All StealBit samples implement named pipe-based IPC and the I/O
completion port threading model for maximum exfiltration efficiency, usage convenience, and
scalability. In addition, all StealBit samples detect the presence of a debugger attached to the
StealBit process by evaluating the value of the NtGlobalFlag field of the PEB and execute an
empty infinite loop if a debugger is present.

Older Versus Newer Versions of StealBit Malware

A major difference between the StealBit samples that we analyzed is the command line
parameters and the respective malware features that the samples support. Relatively older
StealBit samples do not support the command line parameters -hide/-h, -delete/-d, -net/-n, -
once/-o, -skipfiles, -skipfolders, and -file/-f and the features that these parameters configure,
such as self-deletion and data exfiltration rate.

This indicates that StealBit has been undergoing improvement with new features, especially
evasion and hiding features. Another major difference is that relatively older samples do not
execute on systems located in the former Soviet countries of Russia, Ukraine, Belarus,
Tajikistan, Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Turkmenistan, Uzbekistan,
and Moldova. StealBit determines the location of a compromised system based on the
system’s default language. Relatively newer samples do not implement this restriction and
execute on any system.

26/29

Detection and Prevention of StealBit Malware

Cybereason XDR Platform

The Cybereason XDR Platform detects and stops StealBit when the malware exfiltrates data,
using multi-layer protection that employs threat intelligence, machine learning, and next-gen
antivirus (NGAV) capabilities to detect and block malware. The Cybereason platform also
detects malicious actors that execute the related LockBit ransomware:

The Cybereason XDR Platform detects StealBit based on threat intelligence

Cybereason GSOC MDR

Cybereason GSOC recommends the following:

Enable the Anti-Malware feature on the Cybereason NGAV, and enable the
Detect and Prevent modes of this feature.
Regularly monitor outgoing network traffic for data exfiltration activities.
Threat Hunting with Cybereason: The Cybereason MDR team provides its
customers with custom hunting queries for detecting specific threats - to find out
more about threat hunting and Managed Detection and Response with the
Cybereason Defense Platform, contact a Cybereason Defender here.

For Cybereason customers: More details available on the NEST including
custom threat hunting queries for detecting this threat.

Cybereason is dedicated to teaming with Defenders to end cyber attacks from endpoints to
the enterprise to everywhere. Learn more about Cybereason XDR powered by Google
Chronicle, check out our Extended Detection and Response (XDR) Toolkit, or schedule a
demo today to learn how your organization can benefit from an operation-centric approach to
security.

Indicators of Compromise for StealBit Malware

https://www.cybereason.com/platform
https://www.cybereason.com/blog/cybereason-vs.-lockbit2.0-ransomware
https://nest.cybereason.com/documentation/product-documentation/190/anti-malware-settings
https://www.cybereason.com/platform/managed-detection-response-mdr
https://www.cybereason.com/services/managed-detection-response-mdr#form
https://nest.cybereason.com/knowledgebase/4580181
https://www.cybereason.com/platform/xdr
https://www.cybereason.com/get-the-xdr-toolkit
https://www.cybereason.com/request-a-demo
https://www.cybereason.com/blog/the-cybereason-malop-achieving-operation-centric-security

27/29

Executables SHA-256 hash:
3407f26b3d69f1dfce76782fee1256274cf92f744c65aa1ff2d3eaaaf61b0b1d

SHA-256 hash:
107d9fce05ff8296d0417a5a830d180cd46aa120ced8360df3ebfd15cb550636

SHA-256 hash:
6c9a92955402c76ab380aa6927ad96515982a47c05d54f21d67603814d29e4a5

SHA-256 hash:
6b9aa479a5f9c6bfee52046c1afa579977dfcde868fdad3f18fdcd1779535068

Named pipe
files

STEALBIT-MASTER-PIPE

IP
addresses

88.80.147[.]102

168.100.11[.]72

139.60.160[.]200

193.38.235[.]234

174.138.62[.]35

93.190.139[.]223

185.182.193[.]120

MITRE ATT&CK Techniques for StealBit Malware

Execution Privilege Escalation Defense
Evasion

Discovery Exfiltration

Native API Abuse Elevation Control
Mechanism: Bypass User
Account Control

Indicator
Removal on
Host: File
Deletion

File and
Directory
Discovery

Data
Transfer
Size Limits

Inter-Process
Communication

 Obfuscated
Files or
Information

System
Information
Discovery

Exfiltration
Over C2
Channel

https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1548/002/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1030/
https://attack.mitre.org/techniques/T1559/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1041/

28/29

 Hide Artifacts:
Hidden Window

System
Location
Discovery

About the Researchers:

Aleksandar Milenkoski, Senior Malware and Threat Analyst,

Cybereason Global SOC

Aleksandar Milenkoski is a Senior Malware and Threat Analyst with the Cybereason Global
SOC team. He is involved primarily in reverse engineering and threat research activities.
Aleksandar has a PhD in system security. For his research activities, he has been awarded by
SPEC (Standard Performance Evaluation Corporation), the Bavarian Foundation for Science,
and the University of Würzburg, Germany. Prior to Cybereason, his work focused on research
in intrusion detection and reverse engineering security mechanisms of the Windows 10
operating system.

Kotaro Ogino, Security Analyst, Cybereason Global SOC

Kotaro Ogino is a Security Analyst with the Cybereason Global SOC team. He is involved in
threat hunting, administration of Security Orchestration, Automation, and Response (SOAR)
systems, and Extended Detection and Response (XDR). Kotaro has a bachelor of science
degree in information and computer science.

https://attack.mitre.org/techniques/T1564/003/
https://attack.mitre.org/techniques/T1614/

29/29

About the Author

Cybereason Global SOC Team

The Cybereason Global SOC Team delivers 24/7 Managed Detection and Response services
to customers on every continent. Led by cybersecurity experts with experience working for
government, the military and multiple industry verticals, the Cybereason Global SOC Team
continuously hunts for the most sophisticated and pervasive threats to support our mission to
end cyberattacks on the endpoint, across the enterprise, and everywhere the battle moves.

All Posts by Cybereason Global SOC Team

https://www.cybereason.com/blog/authors/cybereason-global-soc-team

