
1/13

December 13, 2021

A Look Into Purple Fox’s Server Infrastructure
trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html

Introduction

In one of our previous blog entries, we analyzed the Purple Fox botnet by providing an
overview of how it worked. In addition, we also examined its initial access techniques and
some of its associated backdoors.

In this research, we shed greater light on the later stages of its infection chain that we have
observed via Trend Micro Managed XDR — specifically how it infects SQL databases by
inserting a malicious SQL CLR assembly to achieve a persistent and stealthier execution. It
should be noted that most files used in this attack are not stored on the disk and are either
executed from memory after either being pulled from the command-and-control (C&C) server
or encrypted, after which these are loaded by another process.

We also discuss the botnet’s underlying C&C infrastructure and the motivation behind Purple
Fox operators’ choice to target SQL servers in their recent activities.

By examining Purple Fox’s routines and activities, both with our initial research and the
subject matter we cover in this blog post, we hope to help incident responders, security
operation centers (SOCs), and security researchers find and weed out Purple Fox infections
in their network.

Process injection

Let’s begin by analyzing Purple Fox’s process injection routine. The malware first loads its
various components by spawning a suspended svchost.exe (changed to fontdrvhost.exe by
the accompanied rootkit) process. It then loads the DLL component in the process address
space, then redirects execution to the loaded DLL.

https://www.trendmicro.com/en_us/research/21/l/a-look-into-purple-fox-server-infrastructure.html
https://www.trendmicro.com/en_us/research/21/j/purplefox-adds-new-backdoor-that-uses-websockets.html
https://www.trendmicro.com/en_us/business/services/managed-xdr.html

2/13

Figure 1. Process tree overview

The C&C server

The malware has three different ways to communicate with its C&C servers. Each method is
used at a particular stage of execution for various purposes.

DNS

The DNS is used to get a list of C&C IP addresses at the start of each process execution. It
is also used to renew this list if all servers fail to respond during this stage, or in a later stage
as we see next. One thing to note is that the IP addresses received by the DNS requests are
not the real IP addresses used for the C&C server. Although those received by the DNS
requests are encoded, they can be decoded by subtracting a fixed number from the IP
address. The following table shows examples of this.

IP address from DNS request Decoded IP address

178[.]195.162.94 216[.]189.159.94:12113

3/13

79[.]222.214.20 117[.]216.211.20:10669

145[.]68.65.106 183[.]62.62.106:13600

73[.]127.195.228 111[.]121.192.228:14640

53[.]238.137.143 91[.]232.134.143:18372

Table 1. Examples of IP addresses received via DNS requests and the actual decoded IP addresses

The following are the domains used for the DNS requests:

Kew[.]8df[.]us which points to m[.]tet[.]kozow[.]com
ret[.]6bc[.]Us which points to a[.]keb[.]kozow[.]com

The list of returned IP addresses changes every few minutes or so, in order to cycle through
the botnet C&C infrastructure.

UDP

The second communication method, User Datagram Protocol (UDP), is used for various
types of messages and includes the building of a cache IP address list that will be used for
further communication. In addition, it is used for pulling configuration for running tools and for
retrieving the IP:PORT list for the HTTP traffic discussed in the next section.

After selecting an IP address from the DNS, it is decoded to the real IP address and a port
number, after which a request is made to pull the cache IP address list. If at any point this
cache list fails, the malware will return to the DNS to pull a new IP address to build another
cache IP address list.

HTTP

To start performing its routine on the system, the malware pulls encrypted DLLs by issuing a
GET request in the format http://IP:PORT/xxxx[.]moe, where IP:PORT is selected by a UDP
message and xxxx[.]moe is one of the worker DLLs. These DLLs are saved in a file and are
loaded by the worker process that decrypts, decompresses, and executes them.

The Worker DLLs

The SQL Server Scanner [32A7E157.moe]

4/13

The first of the worker DLLs is a SQL Server scanner that pulls its core module from
/3FE8E22C.moe using the HTTP communication described previously. This core module is
injected to a new process and the scanner configuration is pulled using UDP communication,
which has the starting public address for scanning.

It scans local and public IP addresses for SQL Server over port 1433. If it finds an open port,
it begins a brute-force attack for the SQL Server authentication using the 10 million-strong
word list.

When the malware is authenticated, it executes an SQL script that installs a backdoor
assembly (evilclr.dll) on the SQL Server database that is used to facilitate executing
commands using SQL statements. Using this assembly, PowerShell commands are
executed on the SQL Server to start Purple Fox’s infection chain as discussed in our
previous blog entry.

Figure 2. An SQL brute-force request

5/13

Figure 3. A failed response to the SQL brute-force request

6/13

Figure 4. A successful response to the SQL brute-force request

7/13

Figure 5. Executing SQL statements

8/13

 Figure 6. Database before infection

9/13

 Figure 7. Database after infection

XMR Coinminer [F30DC9EB.moe]

The second worker DLL is an XMR Coinminer that starts its routine by retrieving the
configuration over UDP. It then begins executing an embedded XMRig binary with the
configuration pulled, making the bot join the mining pool on 108[.]177[.]235[.]90:443.

10/13

Figure 8. Custom XMRig running in the foreground

Operating system execution via SQL Server

Purple Fox focuses on SQL servers as its target as opposed to normal computers for the
former’s cryptocurrency-mining activities. This is mainly because of the more powerful
hardware configuration — for both CPU and memory — that the servers would usually have.
More specifically for SQL servers, the combination of CPU, memory, and disk factors should
scale with the database-related operations to avoid bottlenecks in performance.

These machines normally possess much greater computing power compared to normal
desktops, as such servers are usually fitted with hardware such as the Intel Xeon line of
CPUs that produces a significantly higher amount of hash-based calculations (hash rates),
making a server more advantageous to coinmining compared to a typical desktop computer.

Since SQL databases support different vectors for executing operating system commands
directly, Purple Fox has leveraged the stealthiest method of having a binary inserted in the
SQL server database that can be executed via TSQL commands. The following interfaces
are available from the SQL components for the malicious actors to use when targeting an
SQL server:

Method Details

https://www.hashrates.com/cpus/

11/13

NET New Process() + UseShellExecute
System.management.automation.powershell
Common Language Runtime (CLR) Assemblies

C++ ShellExecute/ShellExecuteEx
xp_cmdshell

COM objects wscript.shell
shell.application

Table 2. The available interfaces from the SQL components

Purple Fox opted to go with the .NET method using CLR Assemblies, a group of DLLs that
can be imported into a SQL Server, in its infection chain instead of the more popular
xp_cmdshell, which is heavily monitored by security analysts. Once the DLLs have been
imported, they can be linked to stored procedures that can be executed via a TSQL script.
The affected versions for this vector start from SQL Server 2008.

This method, which requires a system administrator role by default, executes as an SQL
Server service account. By leveraging this interface, an attacker is able to compile a .NET
assembly DLL and then have it imported into the SQL server. It is also able to have an
assembly stored in the SQL Server Table, create a procedure that maps to the CLR method,
and finally, run the procedure.

The CLR Assemblies method is reported to have been used before by groups other than
Purple Fox, such as MrbMiner and Lemon Duck.

Infrastructure

The C&C servers used in the communication schemes that have been described here are
infected servers that are part of the botnet used to host the various payloads for Purple Fox.
We deduced this via the following facts:

The C&C servers are SQL Servers themselves.
The HTTP server header is mORMot, which is written in Delphi, the same language
used for the various components.
There is a large number of servers (1,000+ in just over a week).

Both initial DNS requests are CNAMEs to subdomains under kozow[.]com, which is a free
dynamic domain service provided by dynu[.]com. This service can be updated with an API to
make it point to different IP addresses — a technique the attacker uses to change the IP
address at a regular interval.

Other notable characteristics

https://www.netspi.com/blog/technical/adversary-simulation/attacking-sql-server-clr-assemblies/
https://www.netspi.com/blog/technical/adversary-simulation/attacking-sql-server-clr-assemblies/
https://s.tencent.com/research/report/1105.html
https://blog.0xffff.info/2021/08/18/demons-in-the-database-hiding-backdoors-malware-in-rdbms-services-part-1/
https://synopse.info/fossil/wiki/Synopse+OpenSource

12/13

Using our telemetry, we found non-server systems infected with Purple Fox, indicating that
there are other possible initial access methods other than the SQL Server brute-force attack
to spread the malware.

This activity is similar to the ones seen in Lemon Duck attacks and even shares some
techniques, like the use of PowerSploit for reflective PE loading and implementing the same
backdoor, evilclr.dll, for the SQL Server assembly. Both attacks also share the same goal of
mining Monero.

Security recommendations

Upon observing any suspicious activities related to the Purple Fox botnet on a SQL server,
we recommend the following steps to completely remove all the malicious remnants from the
infection.

Review all the SQL Server’s Stored Procedures and Assemblies for any suspicious
assemblies not recognized by the DBAs. Remove any of these assemblies if detected.
Execute the following TSQL script to remove the following remnants of malicious CLR
assemblies that are inserted into the database:
USE [master]
GO
DROP ASSEMBLY [fscbd]
GO
Disable all the unknown accounts on the database server and change all the
passwords.
As a defensive posture, do not publish externally exposed port TCP 1433 to an
untrusted zone. In addition, secure the SQL server hosts via a perimeter firewall in a
DMZ zone with well-protected access policies.
Implement proper network microsegmentation and network zoning while also applying
a zero trust policy via your network security controls.
Restrict the traffic to and from SQL servers. These servers have a very specific
function; therefore, they should only be allowed to communicate with other trusted
hosts. Inbound and outbound internet accessibility should also be controlled.

Detections and Mitigations

Trend Micro Vision One™ with Managed XDR focuses on both the early stages of the attack
kill chain (covered in the previous research) and the final payloads intended to do the actual
damage, thereby protecting users of this service against the damage caused by the latest
evolution of this botnet.

https://blog.talosintelligence.com/2020/10/lemon-duck-brings-cryptocurrency-miners.html
https://www.trendmicro.com/en_ph/business/products/detection-response.html

13/13

Both the Vision One platform and Managed XDR threat experts can correlate the suspicious
activities observed from the protected SQL servers. An environment that has any of the
behavioral detections found in our Vision One heuristics rules might mean that the SQL
servers within the environment have already been affected by an attack. This extends even
to stealthy malware, such as Purple Fox, that does not store majority of its files on the disk.

Since servers have a predictable network footprint and behavior, unusual or
unexpected network patterns could be a sign of botnet propagation.
The same goes for unusual and unexpected SQL server application login failures that
seem like brute-force attacks . The main propagation method for Purple Fox when
infecting SQL servers uses brute-force attacks rather than acting as a worm that
exploits only the vulnerable services.
When a SQL server starts having unusual traffic related to UDP and TCP, there should
be a massive surge in traffic since it scans public IP addresses and the local network.
This will create a domino effect within an environment due to most organizations having
more than one SQL server, such as standby or backup servers.
Unusual network traffic patterns and login failures on the SQL server are also a good
indicator for this threat.
A sudden and unexpected spike in CPU utilization on the SQL server could also be a
sign of SQL bottlenecks or an infection with the XMR Coinminer. Furthermore, there
could also be unusual amounts of network traffic on the server as it joins the mining
pool.

Malware

By examining Purple Fox’s routines and activities, both with our initial research and the
subject matter we cover in this blog post, we hope to help incident responders, security
operation centers (SOCs), and security researchers find and weed out Purple Fox infections
in their network.

By: Jay Yaneza, Abdelrhman Sharshar, Sherif Magdy December 13, 2021 Read time: (
words)

Content added to Folio

