
1/19

Chasing Shadows: A deep dive into the latest obfuscation methods being
used by ShadowPad

pwc.co.uk/issues/cyber-security-services/research/chasing-shadows.html

08 December, 2021

By Adam Prescott, Cyber Threat Intelligence Analyst, PwC

While monitoring for the backdoor known as ShadowPad, our threat intel practice discovered a bespoke packing
mechanism – which we named ScatterBee – being used to obfuscate malicious 32-bit and 64-bit payloads for
ShadowPad binaries. The obfuscation mechanism has been briefly touched on in open source; however in this blog we
detail how the technique works, ways to analyse binaries obfuscated in this manner, and how to find further samples
obfuscated with this bespoke method. This content has previously been made available privately to clients via PwC’s
intelligence subscription service.

During our analysis, further malicious samples were uncovered which indicate that one or more users of ShadowPad
have access to ScatterBee, and have highly likely delivered some of these malicious payloads via watering hole attacks
on sites that are used to deliver Adobe Flash update files.

Most of the malicious ScatterBee files can be directly linked back to a China-based threat actor that we are currently
tracking as Red Dev 10.

Analysis

Throughout the rest of this blog we will detail a series of obfuscation techniques that, when combined, we assess is the
result of a packing mechanism we call ScatterBee. The ScatterBee packing mechanism consists of control flow
obfuscation, string encoding, dynamic API resolutions, several anti-analysis techniques and shellcode
decoding/decrypting.

For anyone wanting to replicate the analysis detailed in this blog, we have provided an accompanying GitHub repository
containing scripts and a walkthrough.

The malicious DLL loader

1

https://www.pwc.co.uk/issues/cyber-security-services/research/chasing-shadows.html
https://github.com/PwCUK-CTO/ScatterBee_Analysis

2/19

Discovery of the ScatterBee obfuscation began with a file tagged by ESET on an online multi-antivirus scanner as “a
variant of Win32/Shadowpad.L”.

SHA-256 a8e5a1b15d42c4da97e23f5eb4a0adfd29674844ce906a86fa3554fc7e58d553

Filename log.dll

File type Win32 DLL

File size 209,408 bytes

Compilation timestamp 31/07/2020 08:08:43

This DLL exports one seemingly benign function called “log”, which just writes a given string to %TEMP%\log.txt, as well
as exporting its entry point function.

The entry point function, which is automatically called when an executable loads this DLL, contains guardrails to make
sure the executable loading log.dll has specific bytes at specific offsets, as seen in Figure 1.

Figure 1 - Checking bytes in calling executable

Searching for files with these bytes at these positions returns an MPRESS packed file that is likely a legitimate version
of BDReinit.exe, a component of BitDefender. We have observed a similar guardrail technique in previous ShadowPad
samples.

Once the malicious DLL has verified it is being loaded by the target version of BDReinit.exe it will overwrite the parent
executable’s entry point with a call into its own code.

Figure 2 - Overwriting the entry point of the parent executable

This is a common technique used by various malware families originating from China-based threat actors – notably in
PlugX loaders – to gain execution of the malicious DLL’s code while running as the original and legitimate executable’s
process.

Once the parent executable has finished loading its required DLLs, it will then execute code from its entry point, which
now points to code in the malicious DLL. This is where the first unique obfuscation technique employed by ScatterBee is
found.

Figure 3 - Calls to an obfuscated jump routine

Each of the calls to loc_100095f1 in Figure 3 are used to calculate where the next instruction to be executed is located.
The code in this function makes use of pairs of inverted conditional branches to identical locations to further obfuscate
how the destination is calculated, as seen in Figure 4.

Figure 4 - Opposing conditional branches

The result of the obfuscated code is to take the return address (the memory location immediately after the call) that is on
the stack, get the next four bytes from memory, add them to the return address and then jump to the calculated address.

Figure 5 - Offsets used to calculate destination addresses

In the first highlighted example in Figure 5 the current return address is 0x100128c0; adding the 32-bit value 0xffff81ed
to this address results in a target address of 0x1000aaad. From this point on every single instruction in the malicious
DLL is followed by an obfuscated jump to the next address, preventing disassemblers from being able to follow the
control flow of the sample. As a first attempt at deobfuscating the malicious code we replaced the calls to the obfuscated
address calculation function by jmp instructions which jump to the correct location. The results of this can be seen in
Figure 6.

Figure 6 - Fixed control flow

2

3

3/19

The resulting code has similar instructions to a standard function epilogue (push ebp; mov ebp, esp) but then has a
strange comparison instruction comparing the stack register – esp – to 0xe1cf. This is the second technique that
ScatterBee employs to obfuscate control flow. Throughout the malicious code, the stack is compared to various low
values and then a conditional jump is placed after the check. This fools disassemblers into thinking the code could take
the jump if the current stack register is a small value. In practice, it is impossible for the stack register to be a small
value, as on x86 and x64 systems the stack is placed in high memory ranges. Further, the targets of the conditional
jumps are often into the middle of existing instructions, or to code halfway through functions which prevents
disassemblers and decompilers from correctly analysing the flow of execution.

Both of these techniques are likely applied as part of a custom compiler pass as they significantly modify the control
flow of the binary, which is easiest to do before the final assembly instructions have been generated. It is uncommon for
China-based actors to employ such extensive custom obfuscation techniques and indicates either a greater level of
capability or a greater need to avoid detailed analysis once discovered than other China-based threat actors. Similar
techniques have been seen used by financially motivated threat actors (e.g. DoppelPaymer ransomware binaries) who
go to extreme lengths to avoid their malware being analysed.

There are several approaches that could aid in statically analysing code obfuscated in this way, however we have taken
the route of rebuilding the malicious binary with the jump and stack obfuscations removed. In doing this, the resulting
binary will be very close to what would be produced from compiling the original source code with a standard compiler.

Figure 7 - Deobfuscated code from Figure 6

The results of this deobfuscation can be seen in Figure 7. This demonstrates the benefit of this approach as in Figure 6
only the first three meaningful instructions were able to be displayed in an analysis tool, whereas in the deobfuscated
binary a plain disassembly listing is evident, showing many more instructions while taking up less space.

We chose to leave the stack comparison instructions in the deobfuscated binary while removing the fake branches for
two reasons; firstly they do not affect execution of the sample as the obfuscation technique ensures they are never
placed between a valid comparison instruction and its resulting conditional jump; and secondly each numerical value
used in the obfuscated comparison instruction occurs exactly once in the original obfuscated sample; this means that
when analysing the deobfuscated sample an analyst can verify that the output of the deobfuscation tool is accurate by
searching for the constant value used in the original binary and checking the expected instructions in both binaries
match up.

With a rebuilt binary, decompilation tools were then able to successfully analyse the malicious binary. The differences in
outputs are clearly demonstrated in Figure 8 and Figure 9 with the same code being attempted to be decompiled in both
figures.

Figure 8 - Decompilation before deobfuscation

Figure 9 - Decompilation after deobfuscation

The next obfuscation technique employed by ScatterBee is to resolve API functions dynamically at runtime. This is
achieved by decoding strings specifying the library and function names required, then searching the Process
Environment Block (PEB) for the kernel32 functions LoadLibraryA and GetProcAddress and using them to retrieve a
pointer to the needed function. The string encoding algorithm is used extensively by ScatterBee obfuscated binaries for
API call obfuscation, data obfuscation and string obfuscation.

The encoding algorithm is a stream cipher that takes a 32-bit value as a seed and for each byte in the encoded string:

Multiplies the current seed by 17;
Subtracts the 32-bit constant value 0x443246ba from the seed;
Stores the result as the seed for the next iteration; and,
Sums each byte of the resulting seed to give the final XOR byte to use with the current encoded byte.

This algorithm will generate a pseudo random sequence of bytes that will be different for each seed used. Different
values have been observed being used as the subtraction value in the algorithm. Sometimes the algorithm terminates
when it decodes a null character, while other implementations have it run over a fixed number of bytes.

4

5

6

4/19

Once these obfuscation methods have been dealt with, it is possible to analyse the functionality of this malicious DLL. It
will look for a file in the same folder called log.dll.dat and read the contents. The first four bytes of the file are a little-
endian integer to use as the seed value with the previously described encoding algorithm. In this instance, the value
0x107e666d is added to the seed during each iteration instead of having 0x443246ba subtracted.

A buffer is created in memory for the decoded payload, using VirtualAlloc with a length 4,096 bytes greater than the
length of the payload. The extra space is so that the malware can generate a random number less than 4,096 via a call
to QueryPerformanceCounter, and then use the value as an offset into the buffer to write the payload. This will prevent
some detection methods that rely on malicious payloads being written at the start of memory segments and also hinder
analysts in determining the entry point of the payload when analysing the sample dynamically.

The malicious payload

SHA-256 8065da4300e12e95b45e64ff8493d9401db1ea61be85e74f74a73b366283f27e

Filename log.dll.dat

File type Binary

File size 861,074 bytes

The payload is position independent shellcode that uses the same ScatterBee obfuscation techniques as the loader.
After deobfuscating the payload to rebuild analysable code there are numerous calls to addresses that are outside the
payload’s loaded memory (Figure 10).

Figure 10 - Calls using invalid memory locations

This is caused by a further obfuscation technique that is employed by ScatterBee shellcode to patch specific parts of the
shellcode at run time. The logic for how the shellcode finds and applies the patches to its own memory is described
below.

The first function that the shellcode calls searches through its own memory for a configuration data section by checking
that there are six specific integer values consecutively in memory. It XORs every four bytes in the shellcode with
0xAD48FB1D, checking whether the following integer matches the result. Once a match is found it then checks that the
next following integer, XORed with 0xE642D205, matches its subsequent integer value and that the integer after that,
XORed with 0x868910EE, also matches its subsequent integer value. The valid data in this sample that signifies the
start of the configuration information is shown in Figure 11.

Figure 11 – XOR bytes at start of config

The three integers that immediately follow these XOR bytes represent the size of the code section (0xC9000), data
section (0x3000) and patch metadata section (0x5AD0) of the shellcode. It further checks the integrity of the payload by
checking that the first byte of the shellcode is 0xE9, which corresponds to the initial jmp instruction used by the
malware. This is designed to thwart a common malware analysis technique of loading a payload into memory with a
breakpoint on the first instruction which has the effect of replacing the first byte (0xE9) with 0xCC.

Once the shellcode has passed these checks it uses the patch metadata section to overwrite data in its own memory.
The metadata section is an array of pairs of four-byte integer values, the second integer value in each pair is used as
the value to overwrite the four bytes in the shellcode at the offset specified by the first integer value.

The same code from Figure 10 after the patching has been applied can be seen in Figure 12.

Figure 12 - Patched function calls

After we have removed the ScatterBee obfuscation layers from the shellcode, the final payload can be analysed in
detail. In this instance, the payload matches what is described as ShadowPad.4 in open source.

An example of configuration information in a 32-bit sample is shown in the following structure:

7

8

9

5/19

Table 1 - Configuration data structure

Offset Size Description

0x0 6 DWORDs Used to mark the start of the config

0x18 DWORD Size of code section of shellcode

0x1c DWORD Size of data section of shellcode

0x20 DWORD Size of patch metadata section

0x24 DWORD Space for pointer to obfuscated data written at runtime

0x28 DWORD Value of 0,1,2 or 3 used to determine the operating mode of the backdoor

0x2c DWORD If set; target PID queried during backdoor operation

0x34 19 WORDs An array containing relative offsets to obfuscated strings

0x5a Six DWORDs Null padding

0x72 4 WORDs An array containing relative offsets to obfuscated strings

0x7a 16 BYTEs 0x08 repeated – reason unknown

0x8a DWORD Value 0x1e – reason unknown

0x8e DWORD Null padding

0x92 DWORD Value 0x350b – reason unknown

0x96 10 DWORDs Null padding

0xbe Variable Start of obfuscated string data used with relative offset arrays

Each of the offsets in the arrays at 0x34 and 0x72 in the configuration structure point to an obfuscated string that is used
by the ScatterBee encoded ShadowPad payloads to specify sample specific variables such as C2s and filenames to
use. The obfuscated strings consist of one WORD to use as a decoding seed, a WORD specifying the length of the
encoded string, and then the encoded data.

Examples of each of these decoded strings with a description of possible usage is shown in the table below. The first 19
entries correspond to the array starting at 0x34 and the final four entries correspond to the array starting at 0x72.

Table 2 - Configuration strings

Description Example data (multiple shown where configs have differences across samples)

Timestamp “2020/10/26 16:31:13”, “6/30/2020 1:25:52 PM”

Campaign code “Chrome.exe”, “ccc”

Filepath “%ALLUSERSPROFILE%\\DRM\\Chrome\\”, “%PROGRAMDATA%\\”

Spoofed name “Chrome.exe”, “msdn.exe”

Loader filename “log.dll”

Payload filename “log.dll.dat”

Service name “Chrome_update”, “WMNetworkSvc”

Alternative service name “Chrome_update”, “WMNetworkSvc”

Alternative service name “Chrome_update”, “WMNetworkSvc”

6/19

Registry key path “SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run”

Possibly service description “Chrome_update”, “WMSVC”

Program to inject into “%ProgramFiles%\\Windows Media Player\\wmplayer.exe”

Alternative injection target “%windir%\\system32\\svchost.exe”

Alternative injection target “%windir%\\system32\\winlogon.exe”

Alternative injection target “%windir%\\explorer.exe”

C2 “TCP://207.148.98[.]61:443”

Alternative C2 “UDP://cigy2jft92[.]kasprsky[.]info:53”

Alternative C2 Empty string

Alternative C2 Empty string

Proxy info string “SOCKS4\n\n\n\n\n”

Proxy info string “SOCKS4\n\n\n\n\n”

Proxy info string “SOCKS5\n\n\n\n\n”

Proxy info string “SOCKS5\n\n\n\n\n”

64-bit variations

As alluded to previously, we also found 64-bit versions of ShadowPad obfuscated with ScatterBee. The following table
shows the details of one of the 64-bit loaders.

SHA-256 c72436969d708905901ac294d835abb1c4513f8f26cb16c060d2fd902e1d5760

Filename secur32.dll

File type Win64 DLL

File size 142,848 bytes

Compilation timestamp 2040-04-30 05:32:44

Whereas all of the 32-bit loaders found so far have had the filename log.dll, we have found that the 64-bit ScatterBee
loaders are named either mscoree.dll or secur32.dll. The functionality of these loaders is identical to the 32-bit variants,
in that they search the current directory for a file with the same name as themselves with “.dat” appended
(secur32.dll.dat or mscoree.dll.dat), then deobfuscate and load it into memory.

In 32-bit versions of ScatterBee loader files, there are a limited number of strings in plaintext in the .data section of the
malicious binary, along with plaintext stack strings for kernel32, LoadLibraryA and GetProcAddress, whereas in the 64-
bit samples there are no strings relating to the ScatterBee encoded sections. Some 64-bit ScatterBee files also employ
a different encoding algorithm to the stream cipher in various places, and may hint that several different users of
ScatterBee have added their own take on obfuscation to the tool.

The encoding algorithm predominantly seen in 64-bit ScatterBee samples uses a combination of MD5 and AES to
decode data. The process is as follows:

Takes 16 hardcoded bytes from the shellcode, along with the final four bytes of the encoded data and MD5 hash
them;
Uses CryptDeriveKey with the resulting hash as input to generate an AES-128 key; and,
Calls CryptDecrypt on the encoded data (minus the final four bytes used to create the key).

7/19

The below table shows the details of an encoded, 64-bit ScatterBee payload.

SHA-256 943778353ce3af1043ec161ef18c9ba3e1ad6a9915dfe1783dff7aac8b53df16

Filename secur32.dll.dat

File type Binary

File size 608,679 bytes

The configuration data in these samples starts with a similar section of six DWORDs that are used as XOR markers,
along with the sizes of the code, data, and patch sections of the payload. However the subsequent data is a series of
obfuscated chunks.

Each chunk begins with a four-byte marker that contains the chunk ID in the high byte, and the length of the chunk in
the lowest three bytes. For example, the DWORD 0x80000774 has a chunk type of 0x80 and a length of 0x774 bytes.
The chunks are decoded by using either of the previously described algorithms - the stream cipher, or the MD5 and AES
algorithm.

In the payloads that we have access to, these chunks contain various different IDs. The chunks with 0x80 as their chunk
type contain similar data to the 32-bit configuration data, although the encoded strings can use either the AES
encoding algorithm or the stream cipher algorithm. Chunks with an ID of 0x02 contain 0x20 bytes of unknown data
followed by a valid PE file. These PE files are ShadowPad modules that further enhance the capabilities of the running
backdoor. In files seen by PwC, some are obfuscated with ScatterBee techniques and some are not. We have not seen
any other IDs in chunks from samples that we have analysed, however, from the code in the ShadowPad backdoor it
supports further chunks with IDs of 0x83, 0x84, 0x90, 0x91, 0x92 and 0xa0.

Further malicious files

Pivoting on the names of the DLL loaders and the code sequences used to calculate the obfuscated jumps uncovered
25 malicious DLLs obfuscated with ScatterBee and 10 further malicious payload files that use ScatterBee
obfuscation/packing.

Pivoting on the stack comparison code also uncovered trojanised flash installers, a malicious loader and a ZIP archive
(detailed in Table 3). All of these malicious files are part of an execution chain that executes variants of ShadowPad,
and so far PwC has not found any files obfuscated with ScatterBee that do not deliver ShadowPad, likely indicating that
ScatterBee is a core part of the build process of one or more ShadowPad users.

Table 3 - Early stage ScatterBee files

SHA-256 Description

f7ef194f2dcc341ba03f76872cb7c0dfbae8f79118f99cf73dfccfb146c4e966

Drops and executes a DLL search
order hijacked Oleview.exe.

39f92aed5dfa2cd20ae7df11e16acce9bb2e80c7e6539bc81f352d42ab578eb6 Trojanised flash installer.

ebe4347e993c81d145b68a788522d5c554edfa74c35e9e61ededd6c510e80c75 Trojanised flash installer.

dbb02aaea56a1f0200b76f3f5b2d3596622503633285c7798b4248e0a558f01c ZIP archive containing Oleview.exe
along with a malicious DLL and
payload.

The trojanised installers both contain the same logic for executing their embedded payloads. The initial file is a 64-bit
Windows executable that writes two files from its resource section to disk in the folder returned by GetTempPathA. The
names and descriptions of the files dropped are as follows:

A hack tool, named “Microsoft.Win32.TaskScheduler.dll”, for carrying out operations relating to Windows Task
Scheduler ; and,
A malicious second stage loader named “td.Principal.UserId =.exe”.

10

11

8/19

SHA-256 2a3cf204dcc977df6347a039428ae863066700cecfac965dcaeb7b9bd61bc1b6

Filename td.Principal.UserId =.exe

File type 64-bit .NET executable

File size 9,757,184 bytes

Compilation timestamp 2042-06-11 00:17:24

The Task Scheduler hack tool is not executed by this or any other stage seen by PwC, and is highly likely an artefact of
the build process that supports a persistence mechanism not used by this sample. However, the second stage loader
(“td.Principal.UserId =.exe”) is executed by the trojanised installer in a call to CreateProcessA. This second stage loader
is a .NET executable responsible for dropping and executing a legitimate Adobe Flash installer and a DLL search order
hijacked copy of Oleview.exe, as well as creating a task that runs as a LogonTrigger.

First, the malicious loader will attempt to disable all network adapters returned by a query of “SELECT * From
Win32_NetworkAdapter”. Then, it reads five resources from its own resources section and writes them to disk as the
following:

Table 4 - Dropped files

File path SHA-256

%TMP%\OLEVIEW.exe 2e642afdd36c129e6b50ae919ca608ac0006ce337f2a5a7a6fb1eef6a4ad99e7

%TMP%\IVIEWERS.dll e328060057f454232aab79a2c521414ee110c13925ac53e1bfacd7f2155e38d2

%TMP%\IVIEWERS.dll.dat 9cbfa03a65e6cd4b62b2aa60a4cc4785b824378f735de2596a1195b75f71ecf3

%TMP%\helper.exe f4effcf4d7321be824fd637b27f404250d0b1f03205bbc0682022d61aba5801e

%TMP%\flashplayerax_install_cn_fc.exe c4edf7b8cdffb67fcd62ef81485c04648b11a14a8452f407133f131e2f74a57a

Next it will create a new TaskDefinition (registered as “FlashUpdate”) with an action that is triggered by LogonTrigger
with the following details:

Table 5 - Persistence task details

Field Value

RegistrationInfo.Description Adobe Tech.co

RegistrationInfo.Author Adobe Tech.co

Principal.UserId system

Actions ExecAction with an argument of %TMP%\helper.exe

With the persistence task registered, the .NET executable reenables the network adapters and creates three processes
to execute the dropped .exe files.

The first three files in Table 4 are a DLL search order hijacking triplicate of files with similar functionality to the
ScatterBee files described earlier in this report. When the legitimate Oleview.exe is executed by the .NET executable it
will load the malicious IVIEWERS.dll, which will in turn load and execute the malicious ScatterBee obfuscated
ShadowPad payload contained in IVIEWERS.dll.dat.

flashplayerax_install_cn_fc.exe is also executed by the .NET executable and is a legitimate Adobe Flash installer.

12

9/19

helper.exe is a binary written in Go, which acts as a HTTP server and serves up the response “Hello!” when any client
connects to it. It is highly likely that this is another artefact left in the loader by accident, or that is still under
development, to allow the threat actor to gain persistence on the victim machine via a secondary backdoor.

The file f7ef194f2dcc341ba03f76872cb7c0dfbae8f79118f99cf73dfccfb146c4e966, from Table 3, is a similar dropper to
the first stage of the trojanised installers; however, in this case it simply drops the three OLEVIEW related files straight
to disk and executes them.

These first stage droppers also have strings and logic embedded in them to support dropping and executing two further
files that were not present in these samples - %TMP%\flsh.exe and %TMP%\schost.exe.

Among the additional DLLs discovered, there was a cluster of eight files that stand out from the rest.

Table 6 – Xiamen submitted DLLs

SHA-256 Filename

8396e35b19f906f9c6e342e6cd90ab8bbbecc90f9090b0afe68f4fa53530bc33 ALTTEST.dll

15371908d89caef3f4487298a452e58732d9f671f2c6a1f07036d123ce3c840d ALTTEST.dll

a41348407e01886e76baf7cb8bb0efcf790b213cab87924b8a4f6bf8a9502350 ALTTEST.dll

02a18df00e241f82cecb7477f661ebe3f26012cdfc5b8172d634c07af4468130 ALTTEST.dll

7c8b6dfcdbcb6e0d87513eec841302a202e7371cdff16101d1594ea34a8dd1af ATLTEST.dll

c951a1d1294c46c995189dce4a70da0460dd19c0b7136a4905f41212cdead0c7 ALTTEST.dll

f768bd36e88ffa496e7b6c538f2259cbdab0317e88432a99050f550b4c9f2f12 ALTTEST.dll

c738af04c5b531abdb303a68cfb8994bb8db6e088bf99b45f85bdb863d3fb3e5 MyDRes.dll

All of the files in Table 6 were submitted to an online multi-antivirus scanner from locations in Xiamen, China. All of the
files have an exported DLL name of Dll.dll, and all apart from the last one were also submitted by the same submitter ID
within the space of about 20 minutes. Each of these files are slightly different DLLs: some are MFC binaries, some are
meant to be run as Service DLLs; however, all of them contain almost identical copies of ScatterBee packed shellcode
to load a .dat file into memory. Only two of these samples have code that would enable the ScatterBee shellcode to run
if loaded with an appropriate executable file:

f768bd36e88ffa496e7b6c538f2259cbdab0317e88432a99050f550b4c9f2f12; and,
c738af04c5b531abdb303a68cfb8994bb8db6e088bf99b45f85bdb863d3fb3e5.

All the other files either, will not run the packed shellcode, or would require another loader beyond just an executable
importing their DLL.

The clustering of file submissions from the same location, the similarity of the files exported names, the presence of
almost identical copies of ScatterBee packed shellcode, the mixture of functioning and none-functioning samples, and
the submission name of ALTTEST.dll in many of these samples all add weight to the possibility that a developer or user
of ScatterBee is based in Xiamen, and was testing and/or developing the ScatterBee packer during January 2021.
Alternatively, there is a possibility that these submissions are from a researcher related to Positive Technologies, as
their public blog on this malware family was published the day after these submissions to the online multi-antivirus
scanner.

Targeting

Based on submissions to an online multi-antivirus scanner of the obfuscated payloads, it is highly likely that the threat
actor using the ScatterBee obfuscated ShadowPad binaries has targeted:

A military organisation in Afghanistan;

13

10/19

An aviation organisation in Hong Kong; and,
A company with a security operations centre based in India.

There are also numerous submissions from users based in China, some of which may represent testing whether the
current version of the malicious file is detected by antivirus vendors, and others that are likely organisations based in
China that are being targeted by a ShadowPad user. This targeting is consistent with our historical tracking of
ShadowPad victims, based on communications with known command and control servers.

Infrastructure

When extracting the ShadowPad payloads from the ScatterBee encoded payloads we found the following C2s in use in
the configuration sections of the backdoors:

Table 7 - ScatterBee encoded ShadowPad C2s

SHA-256 Configured C2s

5f1a21940be9f78a5782879ad54600bd67bfcd4d32085db7a3e8a88292db26cc cigy2jft92[.]kasprsky[.]info

0371fc2a7cc73665971335fc23f38df2c82558961ad9fc2e984648c9415d8c4e ti0wddsnv[.]wikimedia[.]vip

c602456fae02510ff182b45d4ffb69ee6aae11667460001241685807db2e29c3 6czumi0fbg[.]symantecupd[.]com

04089c1f71d62d50cbd8009dfd557aa1e6db1492a9fa2b35902182c07a0ed1c1 yjij4bpade[.]nslookup[.]club

8065da4300e12e95b45e64ff8493d9401db1ea61be85e74f74a73b366283f27e 207.148.98[.]61

fb17b3886685887aeb8f7c3496c6f7ef06702ec1232567278286c2f8ec4351bb 172.18.165[.]105 (private IP)

943778353ce3af1043ec161ef18c9ba3e1ad6a9915dfe1783dff7aac8b53df16 kazehaya0110[.]chickenkiller[.]com

7579e864d47898f1322bb189bdd21b537b40e549149318ce8409f1d57233fa48 fljhcqwe[.]com

9cbfa03a65e6cd4b62b2aa60a4cc4785b824378f735de2596a1195b75f71ecf3 a[.]fljhcqwe[.]com

The first four domains in Table 7 were already tracked by us as Red Dev 10, and have resolved to IP addresses that
have previously shown up in our scans for ShadowPad C2s. Pivoting on these domains and IPs uncovers a highly
connected set of infrastructure that includes the following domains, most of which also have numerous subdomains that
have been observed used as C2 addresses in other variants of ShadowPad.

Table 8 - Red Dev 10 domains

Domains

dnslookup[.]services

livehost[.]live

windowshostnamehost[.]club

kasprsky[.]info

symantecupd[.]com

wikimedia[.]vip

nslookup[.]club

Red Dev 10 has made a habit of using NameCheap and Namesilo when registering its domains, and this activity follows
that pattern. In addition, the subdomains under several of these domains also follow a pattern of having between 8 and
12 random alphanumeric characters, which, combined with domains registered by NameCheap and Namesilo that

11/19

resolve to IP addresses assigned to The Constant Company, as well as being parked resolving to 127.0.0[.]1 when not
in use, allows analysts to pivot and find more potentially malicious domains.

While investigating this cluster of infrastructure, several of the domains shared self-signed SSL certificates that were
themed around Microsoft. This, together with the domain names chosen in Table 8, shows a general pattern of trying to
spoof the legitimacy of infrastructure employed by these campaigns.

The remaining C2s from Table 7 are not easily linked together beyond being found in ScatterBee encoded ShadowPad
samples, which leaves open the possibility that there may be multiple groups using the packer, or that for some
operations that greater care is taken to compartmentalise the activity.

Putting together the use of ShadowPad (predominantly a tool used by China-based threat actors), C2 infrastructure that
we have previously tracked as Red Dev 10, and the likely targeting of targets aligning to previous ShadowPad usage,
we assess that most of this activity is highly likely Red Dev 10, with the possibility that a small subset of this activity
could be an as yet unknown China-based threat actor.

Conclusion

PwC has been tracking ShadowPad since 2017 and has observed numerous evolutions of the technical capability.
During this time, there has also been widespread reporting about its use in supply chain attacks. Despite this, multiple
threat actors continue to use ShadowPad for long term compromise of sensitive organisations, including in the military
and telecommunications sectors. This activity aligns extremely closely to the threat actor we track as Red Dev 10, which
is a known ShadowPad user.

The ScatterBee obfuscation technique documented in this report is likely the latest attempt to minimise detection in
victim networks. Whether this technique is exclusively used by one threat actor, or a general development of
ShadowPad capability, remains to be seen.

More detailed information on each of the techniques used in this blog, along with mitigations, can be found on the
following MITRE pages:

Appendix A – Indicators of compromise

Indicator Type

9cbfa03a65e6cd4b62b2aa60a4cc4785b824378f735de2596a1195b75f71ecf3 SHA-256

dbb02aaea56a1f0200b76f3f5b2d3596622503633285c7798b4248e0a558f01c SHA-256

d29113e3417dcba9d0e2d540fc53f702869dc7dc018a6b053bc3f70b4e55e436 SHA-256

5f1a21940be9f78a5782879ad54600bd67bfcd4d32085db7a3e8a88292db26cc SHA-256

0371fc2a7cc73665971335fc23f38df2c82558961ad9fc2e984648c9415d8c4e SHA-256

fb17b3886685887aeb8f7c3496c6f7ef06702ec1232567278286c2f8ec4351bb SHA-256

26de542f77da51071389463fad1a50c687b70d902bbd0800db6c959e40dff755 SHA-256

8065da4300e12e95b45e64ff8493d9401db1ea61be85e74f74a73b366283f27e SHA-256

c0fbb71af4863db0cd82942974957088908f815ef7f02b197834e22d02d4a460 SHA-256

c0aae2d5e77acb8b35037f3cd3b76e92eebdb1c53cf3775921bd6f64d94e9a99 SHA-256

[1] ‘Higaisa or Winnti? APT41 backdoors, old and new’, Positive Technologies, https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/ (14th January 2021)
 [2] CTO-TIB-20210324-02A - Threat actors change, but memory dumps last forever

 [3] See https://github.com/PwCUK-CTO/ScatterBee_Analysis/blob/main/Scripts/ScatterJump.py for the IDA plugin that fixes these jumps
 [4] ‘Writing an LLVM Pass’, LLVM, https://llvm.org/docs/WritingAnLLVMPass.html#introduction-what-is-a-pass

 [5] See https://github.com/PwCUK-CTO/ScatterBee_Analysis/blob/main/Scripts/ScatterRebuildPayload.py for an IDA python script which can rebuild ScatterBeecode.[6] See https://github.com/PwCUK-CTO/ScatterBee_Analysis/blob/main/Scripts/ScatterDecodeAPICalls.py for an IDA python script to rename the functions thatcall API functions.
 [7] See https://github.com/PwCUK-CTO/ScatterBee_Analysis/blob/main/Scripts/ScatterDecodePayload.py for a script that can take an encoded payload file anddecode it to its ScatterBee encoded shellcode.

 [8] See GitHub repo – ScatterBeePatch.py for a python script that applies the patches to a payload file.
 [9] Dr.WEB, ‘BackDoor.ShadowPad.4’, https://vms.drweb.com/virus/?i=21932847

 [10] The layout of these configuration chunks is slightly different, however, they contain all the same information as previously detailed in the 32-bit analysis. Ofnote, all of the 64-bit samples seen to date have had the timestamp string removed from the configuration.
 [11] GitHub, ‘dahall/TaskScheduler’, https://github.com/dahall/TaskScheduler

 [12] The legitimate Oleview.exe file is always seen named in capitals when dropped by ScatterBee related files.
 [13] The spelling variation here was present in the name of the file submitted

12/19

991511785a05f4dfbf1212e3fb69ff3b666659ecba5f3e5e9c8fbe9804afd23c SHA-256

943778353ce3af1043ec161ef18c9ba3e1ad6a9915dfe1783dff7aac8b53df16 SHA-256

7579e864d47898f1322bb189bdd21b537b40e549149318ce8409f1d57233fa48 SHA-256

c951a1d1294c46c995189dce4a70da0460dd19c0b7136a4905f41212cdead0c7 SHA-256

7c8b6dfcdbcb6e0d87513eec841302a202e7371cdff16101d1594ea34a8dd1af SHA-256

c602456fae02510ff182b45d4ffb69ee6aae11667460001241685807db2e29c3 SHA-256

5e7e336bc7b489c3d4c59af861580ed73a5731d26560488bce03befdef9faadf SHA-256

c72436969d708905901ac294d835abb1c4513f8f26cb16c060d2fd902e1d5760 SHA-256

dbb32cb933b6bb25e499185d6db71386a4b5709500d2da92d377171b7ff43294 SHA-256

37417f300e1382b5b1b93e0be675ba8ab2d418747ea3fa015329f7ca405ae603 SHA-256

c738af04c5b531abdb303a68cfb8994bb8db6e088bf99b45f85bdb863d3fb3e5 SHA-256

ffc5bc143ab2320ae6989ccdf8c37a3d7c3c51c09eabf5a94ada86ab7c3abebd SHA-256

a8e5a1b15d42c4da97e23f5eb4a0adfd29674844ce906a86fa3554fc7e58d553 SHA-256

1e06fd5b9aa0e5260369e52ec2d9f87060941de835234afd198b1d4c0b161678 SHA-256

7cbd4339c33af40c70d27256cf3ec473bea588ac33ddfa64a8771344c82d9e6c SHA-256

cb5f8759831829614b82ed4a3bf1ac3f27f1640faf2a1f15ba728751e2fa44fa SHA-256

04089c1f71d62d50cbd8009dfd557aa1e6db1492a9fa2b35902182c07a0ed1c1 SHA-256

531e54c055838f281d19fed674dbc339c13e21c71b6641c23d8333f6277f28c0 SHA-256

042541cc39bafdcb0565ee468359ef575256f5adfda0e53c915ecdbbedd91316 SHA-256

5a151aa75fbfc144cb48595a86e7b0ae0ad18d2630192773ff688ae1f42989b7 SHA-256

f768bd36e88ffa496e7b6c538f2259cbdab0317e88432a99050f550b4c9f2f12 SHA-256

8d1a5381492fe175c3c8263b6b81fd99aace9e2506881903d502336a55352fef SHA-256

a41348407e01886e76baf7cb8bb0efcf790b213cab87924b8a4f6bf8a9502350 SHA-256

f8c5e93d6114f5a69d1544504d9d7f6a1d7397e3e5e0cce8e24e6d7b884c109e SHA-256

2a3cf204dcc977df6347a039428ae863066700cecfac965dcaeb7b9bd61bc1b6 SHA-256

15371908d89caef3f4487298a452e58732d9f671f2c6a1f07036d123ce3c840d SHA-256

96dc16bbc0f3e6e80fba447e3a3e1085fddf8e97edf286ee8b3fd82954f565bb SHA-256

39f92aed5dfa2cd20ae7df11e16acce9bb2e80c7e6539bc81f352d42ab578eb6 SHA-256

8396e35b19f906f9c6e342e6cd90ab8bbbecc90f9090b0afe68f4fa53530bc33 SHA-256

ebe4347e993c81d145b68a788522d5c554edfa74c35e9e61ededd6c510e80c75 SHA-256

02a18df00e241f82cecb7477f661ebe3f26012cdfc5b8172d634c07af4468130 SHA-256

f7ef194f2dcc341ba03f76872cb7c0dfbae8f79118f99cf73dfccfb146c4e966 SHA-256

f4effcf4d7321be824fd637b27f404250d0b1f03205bbc0682022d61aba5801e SHA-256

06539163f71f8bd496db75ccb41db820 MD5

13/19

493698b1d7acfbf57848b964b4b0ae97 MD5

69be59f365f74b406e505a8c0e128047 MD5

bf98b795957d40ed8e0c52403af659d2 MD5

8b9436c358a1d7f0ca61eca81b5025f7 MD5

4ad23aae3409c31d3d72e1d10e9d957d MD5

ffbadead054d1eac270f1a24d02e8a1f MD5

3520e591065d3174999cc254e6f3dbf5 MD5

a22fce6e7c1b2d129602ff938a2ac039 MD5

ad82d23accb10b4c0fc7f8c9782ae6ad MD5

2a4976a82a07016bd1b5de1a372d8e15 MD5

3e372906248b215ea0ee853cb4e29dd8 MD5

ab8b13f3a93baaa36b730cb42434620a MD5

67329d4239551b51c481062b5d38a687 MD5

18b391d91883979fc2df9e13c8aee075 MD5

529e9edc37b668e13be6b077a399f195 MD5

42988a0bd2bbdf4454d5d15a2733aa31 MD5

ea6be331b5fa349a2fa464b062043b0e MD5

d50b9ca68a3a650016e64ab4c3ff8e4c MD5

409b27c8eab8b043cfe8854ca22799b3 MD5

70477683ea5a7e193bb80c6cf01da8dd MD5

373eacf3ffd1b5722f9d3c1595092b4c MD5

d7e153c2957a519a1ee6734820e5efbd MD5

9563df80a0f9709baa909c25bdd64214 MD5

64cc83ba22f67c6c8c82c162f64a7c92 MD5

25f3713b9ff40b7fb1293213916c1dbc MD5

c486da41dda4f55f5bafa4f22d877495 MD5

af10f874ee9a24d4a8d5e515af9c24a2 MD5

9d3aaaf04c684bf6c90ada2030ceaea3 MD5

21779cdfbe7ce838d3adc11f42b64191 MD5

5f3093473ae4167fd51d4282fce73741 MD5

42794ad1300ed3edb1ed2d1a473b77ad MD5

52c28bdb6b1fc4d77b1ea58dc8c1c810 MD5

73790e781a0b3c7f1e1e8f9fa8f9d239 MD5

5fe99a8f8cbfe46832478aa9c9634ed6 MD5

14/19

263b7fb02bb4c05c789d2c1de92e0007 MD5

24f73d5f67bc6cf0bccaade97e04fbca MD5

d2b97a3391c91d1577fb46963b8ef18a MD5

af78467a6cdbb4efa3894a30edef608b MD5

9d3a9edec791cb3eb7225be225337c1e MD5

7c8c3700757ddb5c6d423d88dd944065 MD5

4d6705979b4ba29e44d3178ac979e1c6 MD5

5fcdb89a3b2eb7ff31c5122e8f145277 MD5

ff46982c58cf9cd0371e187a6c0dd6f7712c084c SHA-1

880fa69a6efd8de68771d3df2f9683107fb484c0 SHA-1

0cfba69898627c620575cadfff92130429dcd019 SHA-1

ea43dbef69af12404549bc45fda756bfefcb3d88 SHA-1

cad05dec778a6dbdeb170a63bbbd18271b56d719 SHA-1

addf67b8bcb8074927431bdfe3e3c867b07f5333 SHA-1

7db78548aae9e4872b06ee9e79c29553947db3d6 SHA-1

c73329dfbe99de4abb93b4fda6310a0c5eedd8f9 SHA-1

47cdaf6c5c3fffeeff1f2c9e6c7649f99ab54932 SHA-1

3342ad3a686be7a873409ae01cfab2eb0b621840 SHA-1

215404d27c6a63a47561d6ab5258af26843b1769 SHA-1

34ce0df62814e3a2430784836914c629d49f22b1 SHA-1

c62b977c93979effb48a1614956c2a788abb22fe SHA-1

fa397effbb1d2d9b276d9d109e79ef89790729bc SHA-1

6512750a9da8c81c6b7c5b5301a60d4962c0c41b SHA-1

b885b9c4a9cd7872cd995198834471e52219ae41 SHA-1

f8e4b7bd1cc973be7540f731028953073430759a SHA-1

6966687463365f08cfb25fd2c47c6e9a27af22b0 SHA-1

9605ad1bf0432ffb148d422099e23eaa26bed4c8 SHA-1

30c63b1e252ea0dc72b97785c1874ab7b6ddef43 SHA-1

48daf01f86cfc9f22c446d602f0cdbd4b763dfc8 SHA-1

b73134449329fd640a6de94a36cbcbebb4d5f541 SHA-1

363e32fafd2732b3cfb53dfd39bef56da1affd7f SHA-1

e96759fcb766744a7aae9692947b4ed4ba77ce37 SHA-1

55811e2fade5fa4412bd5ff7f17eca79887d6aff SHA-1

a36e63f41ee3fdfaf2a826c0b6e7728af546981e SHA-1

15/19

44fc5b13ac3947a3be3fff7808d5d664d7258cb9 SHA-1

03a47494b76aa6feed68053e44c0a2fde6172ea5 SHA-1

494d8239650f3acb0b946f0d00f6dbc9c2c05be0 SHA-1

1c997ddb204bc597f937a07665511ae7d9d98661 SHA-1

c227d3cdcb39b56eddb7ab62d0da62f006207764 SHA-1

d4086a747566d5a7b0e80f0c977e1e6db3410d26 SHA-1

e2898e362dd19a0fb6f317d559cbdb78eac6488c SHA-1

9853fe35e1b6e06b53ad2234d4fa2156fa5ccf97 SHA-1

f6f6f352fa58d587c644953e4fd1552278827e14 SHA-1

b224ae9ffd8119d773dedb1863d46725c29143f8 SHA-1

7cd459821ef2daea764df2f52c896e6ab00ed263 SHA-1

3f2ec5d5ae8be0394baff82bd5c08fcf8df0e754 SHA-1

fd492b013d52e061f101b6086c5c4902abb4b0e0 SHA-1

ba985d268bca9ff3bf0b09ab63085b57f52d3574 SHA-1

1bbc81db4d2d98a1cf29d4f84d065c6556f7caed SHA-1

12118603b97e6b3d3a8cb6e48ec7351e160da445 SHA-1

93fec58769f40285b5a76106377644924d0c1dd0 SHA-1

5zsi53pi6uu[.]livehost[.]live Domain

coivo2xo[.]livehost[.]live Domain

ui79zm8o9b[.]livehost[.]live Domain

qrvc7pdnbf[.]symantecupd[.]com Domain

pow2u24h7[.]wikimedia[.]vip Domain

vt[.]livehost[.]live Domain

c5t7dvucq[.]symantecupd[.]com Domain

1dfpi2d8kx[.]wikimedia[.]vip Domain

dns[.]dnslookup[.]services Domain

bsyu[.]dnslookup[.]services Domain

2og8qfrkrk[.]symantecupd[.]com Domain

test[.]wikimedia[.]vip Domain

dust[.]dnslookup[.]services Domain

dntc[.]livehost[.]live Domain

fljhcqwe[.]com Domain

5q4qp9trwi[.]dnslookup[.]services Domain

www[.]livehost[.]live Domain

16/19

bj0wyck5v5[.]livehost[.]live Domain

7ec8txihoa[.]dnslookup[.]services Domain

wikimedia[.]vip Domain

4yti11wlo5[.]livehost[.]live Domain

cigy2jft92[.]kasprsky[.]info Domain

6q4qp9trwi[.]dnslookup[.]services Domain

sci[.]livehost[.]live Domain

524ce3dm8h[.]symantecupd[.]com Domain

lmogv[.]dnslookup[.]services Domain

dlbo92v2ef[.]livehost[.]live Domain

bctu[.]dnslookup[.]services Domain

wcuhk[.]livehost[.]live Domain

hccadkml89[.]dnslookup[.]services Domain

r1d3wg7xofs[.]livehost[.]live Domain

jn3thp2wl6[.]symantecupd[.]com Domain

d89o0gm34t[.]livehost[.]live Domain

coivotek[.]livehost[.]live Domain

a[.]fljhcqwe[.]com Domain

evbyo7jj0v[.]livehost[.]live Domain

www[.]wikimedia[.]vip Domain

bm2l41risv[.]livehost[.]live Domain

wntc[.]livehost[.]live Domain

69gy9k6wc2[.]symantecupd[.]com Domain

wvt[.]livehost[.]live Domain

m2[.]livehost[.]live Domain

dns[.]livehost[.]live Domain

8hh3aktk2[.]kasprsky[.]info Domain

1160idswz5[.]kasprsky[.]info Domain

files[.]windowshostnamehost[.]club Domain

8hh3aktk[.]kasprsky[.]info Domain

wiki[.]windowshostnamehost[.]club Domain

windowshostnamehost[.]club Domain

6lh9bgi4n[.]symantecupd[.]com Domain

v2ray[.]windowshostnamehost[.]club Domain

17/19

5s2zm07ao[.]wikimedia[.]vip Domain

b3d3fn9n[.]kasprsky[.]info Domain

6czumi0fbg[.]symantecupd[.]com Domain

ns2[.]windowshostnamehost[.]club Domain

dbtwcse10sd[.]kasprsky[.]info Domain

mx[.]windowshostnamehost[.]club Domain

wfftm5kcj[.]kasprsky[.]info Domain

wlamazcsrv1[.]windowshostnamehost[.]club Domain

cde858l2yf[.]kasprsky[.]info Domain

bnmyphvq[.]wikimedia[.]vip Domain

local[.]windowshostnamehost[.]club Domain

juv0cumdo3[.]kasprsky[.]info Domain

felzeaxrs8hd[.]kasprsky[.]info Domain

c2[.]windowshostnamehost[.]club Domain

687eb876e047[.]kasprsky[.]info Domain

a6olaxgd[.]kasprsky[.]info Domain

ur1lwzh2qp[.]kasprsky[.]info Domain

hostmaster[.]wikimedia[.]vip Domain

bc[.]windowshostnamehost[.]club Domain

db311secsd[.]kasprsky[.]info Domain

arress[.]windowshostnamehost[.]club Domain

www[.]kasprsky[.]info Domain

7hln9yr3y6[.]symantecupd[.]com Domain

vwlamazcsrv1[.]windowshostnamehost[.]club Domain

v3hagesrj[.]symantecupd[.]com Domain

z16sxt822s[.]symantecupd[.]com Domain

dnslookup[.]services Domain

ybk47i6z8q[.]wikimedia[.]vip Domain

d89o0gm35t[.]livehost[.]live Domain

zk4c9u55[.]wikimedia[.]vip Domain

dsyu[.]livehost[.]live Domain

wsyu[.]livehost[.]live Domain

sc[.]livehost[.]live Domain

w0eew6nkmb[.]livehost[.]live Domain

18/19

r315imowtg[.]symantecupd[.]com Domain

o56n1tosy[.]livehost[.]live Domain

ti0wddsnv[.]wikimedia[.]vip Domain

symantecupd[.]com Domain

wctu[.]livehost[.]live Domain

4iiiessb[.]wikimedia[.]vip Domain

tei1sw0d98[.]symantecupd[.]com Domain

livehost[.]live Domain

nslookup[.]club Domain

kasprsky[.]info Domain

60.250.18[.]188 IPv4

141.164.35[.]117 IPv4

139.180.135[.]175 IPv4

66.42.44[.]130 IPv4

182.162.136[.]235 IPv4

128.199.232[.]13 IPv4

182.16.112[.]226 IPv4

149.28.145[.]214 IPv4

207.148.78[.]244 IPv4

207.148.99[.]56 IPv4

149.28.152[.]196 IPv4

139.180.135[.]200 IPv4

158.247.219[.]236 IPv4

207.148.98[.]61 IPv4

45.76.100[.]224 IPv4

139.180.187[.]35 IPv4

158.247.217[.]102 IPv4

45.76.148[.]41 IPv4

141.164.61[.]70 IPv4

141.164.63[.]174 IPv4

202.182.96[.]238 IPv4

139.180.141[.]227 IPv4

19/19

158.247.206[.]194 IPv4

139.180.156[.]26 IPv4

112.121.168[.]2 IPv4

141.164.62[.]81 IPv4

108.160.134[.]80 IPv4

5bcd1346428b6d7f1f19c0f175d96800c5a0951d SSL SHA-1 fingerprint

743f1ef860a1cad5c046cb0099c479acf6815b97 SSL SHA-1 fingerprint

61c39c6c60f7a45ff18806ed855985ef48d954ef SSL SHA-1 fingerprint

f1f5fe0dd96e165e049b8a7d508ccd951c7cca0b SSL SHA-1 fingerprint

9575b444beeed7a16d639223b08e18e29b5eb5a4 SSL SHA-1 fingerprint

c9b276bd2166c95726fbe33f126fa0a014f84a36 SSL SHA-1 fingerprint

5aa19bfcbc980d65df184e644053bf4732929d8e SSL SHA-1 fingerprint

log.dll.dat Filename

secur32.dll.dat Filename

mscoree.dll.dat Filename

Related content

Cyber security: Research

Explore our latest cyber security research, developed to share new knowledge on critical cyber security issues.

Contact us

Form

Hide

© 2015 - Sat May 28 13:50:16 UTC 2022 PwC. All rights reserved. PwC refers to the PwC network and/or one or more
of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details.

https://www.pwc.co.uk/issues/cyber-security-services/research.html
https://cloud.uk.info.pwc.com/cyber-security-sign-up-to-updates
http://www.pwc.com/structure

