
1/14

Shaun Hurley December 7, 2021

How DopplePaymer Hunts & Kills Windows Processes
crowdstrike.com/blog/how-doppelpaymer-hunts-and-kills-windows-processes/

In a July 2019 blog post about DoppelPaymer, Crowdstrike Intelligence reported that
ProcessHacker was being hijacked to kill a list of targeted processes and gain access,
delivering a “critical hit.” Although the blog is now a couple of years old, the hijacking
technique is interesting enough to dig into its implementation.

The hijack occurs when ProcessHacker loads a malicious stager DLL designed to exploit
legitimate behavior. Once the process has been hijacked, the stager DLL is able to terminate
processes, including those protected by Protected Process Light (PPL). To accomplish this
task, it leverages ProcessHacker’s kernel driver, KProcessHacker, that has been registered
under the service name KProcessHacker3. This blog delves into the details about how
DoppelPaymer hijacks ProcessHacker and exploits KProcessHacker to kill a list of
processes, including both antivirus (AV) and endpoint detection and response (EDR)
applications.

https://www.crowdstrike.com/blog/how-doppelpaymer-hunts-and-kills-windows-processes/
https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
https://www.crowdstrike.com/blog/evolution-protected-processes-part-1-pass-hash-mitigations-windows-81/

2/14

Figure 1. Architecture diagram to kill a target process

Launching Process Hacker

To start ProcessHacker, DoppelPaymer writes the ProcessHacker executable, the
KProcessHacker driver, and the malicious stager DLL into a subdirectory of %APPDATA% .
Both the subdirectory name and the file names for the executable and driver are a unique
string of alphanumeric characters. Once those two files have been written, one of the DLLs
loaded by ProcessHacker has to be hijacked using a technique called “DLL search order
hijacking.”

DLL Search Order Hijacking

Similar to Dridex, DoppelPaymer uses DLL search order hijacking to exploit the DLL loading
behavior for Windows processes. As the operating system PE loader loads a binary, it also
needs to load the DLL files required for the PE to function. By default, MS Windows has a
specific path it takes when looking for the DLL files to load. Windows checks for Windows

3/14

system DLLs in the same directory as the target binary before it checks the Windows system
directories. A malicious process, in this case DoppelPaymer, can drop a malicious version of
a DLL in that directory and it will be loaded by the target application.

To determine which DLL to hijack, DoppelPaymer walks the module name list in the Import
Address Table (IAT) of the ProcessHacker binary. Each name is hashed with a CRC32
algorithm and compared against a hardcoded list of hashes (Table 1), and if a match occurs,
the name is added to a list data structure. A random number generator is used to pick one of
the three names out of the list.

CRC32 Filename

0xd8946922 VERSION.dll

0x020da855 WINSTA.dll

0x3c55abe2 UxTheme.dll

Table 1. Mapping DLL name to CRC32 hash for search order hijacking

Once a DLL has been picked, the legitimate Windows version of the DLL is read into a
memory buffer. This DLL is used as a template to build the malicious stager DLL. The file is
written to the same subdirectory as the ProcessHacker executable with the same file name
as the hijacked DLL.

Creating the Process

DoppelPaymer passes two arguments to the ProcessHacker process: The first is the name
of the KProcessHacker.sys driver, and the second is an integer that will be used for inter-
process communication (IPC) between the DoppelPaymer and ProcessHacker processes.

C:\Users\ducksoup\AppData\Roaming\M28fPT\ibOLR 2LEQV0 161604546

Figure 2. ProcessHacker command line

Setting Up the IPC Objects

Event handlers and section objects are used to communicate between the two processes.
These objects allow DoppelPaymer to communicate directly with the stager DLL that is
loaded inside the ProcessHacker process. The example handle values in Table 2 are used
throughout the rest of this post when referencing these objects. These values vary with
different executions of DoppelPaymer.

Object Type Handle
Value

Purpose

Event Object 0x120 Notify data in queue

4/14

Event Object 0x11C Notify data processed

Section
Object

0x124 Queue used to send process information to the stager
DLL

Section
Object

0x128 Contains the three events

Table 2. IPC handles with concrete values from testing

For each section object, a view is mapped into process memory, so that DoppelPaymer is
able to write data to the objects. The 0x124 object is the queue where the process
information of the processes to terminate will be written. The other object, 0x128 , will
contain the handle values of the other three objects: 0x120 , 0x11C and 0x124 . For the
stager DLL to access those three handles, DoppelPaymer needs to provide the 0x128
handle value to ProcessHacker.

Sticking with the example command line in Figure 1, the second argument to ProcessHacker
is the section object handle 0x128 XORd against the same constant value (unique per
binary) used throughout the lifetime of DoppelPaymer. For this binary, the constant is
0x9a1e2ea . XORing 0x128 with 0x9a1e2ea gives us the decimal value 161604546 .

After these IPC objects are created, and the second argument to ProcessHacker has been
generated, CreateProcessW is called to launch ProcessHacker. Now DoppelPaymer has to
wait for the stager DLL to initialize inside of the ProcessHacker process prior to establishing
inter process communication. NtWaitForSingleObject is called for event handle 0x120 ,
and DoppelPaymer waits for that event to be signaled.

Loading the Stager DLL

The stager DLL is loaded into ProcessHacker. Several initialization steps have to occur
before the stager DLL can leverage KProcessHacker to kill processes:

ProcessHacker’s entry point needs to be modified to ensure that none of the startup
routines for ProcessHacker execute
The KProcessHacker service has to be initialized
ProcessHacker and the stager DLL have to be verified as a valid client for the
KProcessHacker service
The IPC objects necessary for DoppelPaymer to communicate with the stager DLL
need to be duplicated

After all four of these steps have been successfully completed, the stager DLL can start
killing target processes provided by DoppelPaymer.

Reaching ProcessHacker’s Code Entrypoint Address

5/14

Once the process starts to load the stager DLL, the malicious code will start to execute, but if
control isn’t passed back to the OS to finish loading ProcessHacker, it will not be usable by
DoppelPaymer. The loading process completes when the entry-point address of
ProcessHacker is reached. To determine when the entry point is reached, the stager DLL will
overwrite the entry point of ProcessHacker with the code in Figure 3.

.rdata:10006120 mov eax, 94A351BBh

.rdata:10006125 push 0

.rdata:10006127 push 8FF4B5ACh ; Event handle

.rdata:1000612C call eax ; NtSetEvent

.rdata:1000612E loc_1000612E:

.rdata:1000612E push 0

.rdata:10006130 push 1

.rdata:10006132 push 0FFFFFFFEh

.rdata:10006134 mov eax, 1DCB264Eh

.rdata:10006139 call eax ; NtWaitForSingleObject

.rdata:1000613B jmp short loc_1000612E

Figure 3. Entrypoint template code

This code is copied from the .rdata section of the stager DLL and is modified to represent the
current process environment. Placeholders exist for the event handle and for the two
Windows API functions used for the notification routines. The event used to signal that the
entry point has been reached is created and copied to the 8FF4B5ACh placeholder. The
addresses for NtSetHandle and NtWaitForSingleObject are resolved and written to
94A351BBh and 1DCB264Eh , respectively.

Once the template is complete, VirtualProtect is called to set ProcessHacker’s entry
point to write-able, the entry point code is overwritten, and the original protection restored.
The new entry-point code, in C, is shown in Figure 4.

//
// Signal entrypoint reached
//
NtSetEvent(entryPointReachedHdl, NULL);

while (1) {
 //
 // Entrypoint thread will loop indefinitely
 //

 NtWaitForSingleObject(-2, 1, NULL);
}

Figure 4. ProcessHacker entry point infinite loop

The code in Figure 4 signals to the stager DLL thread that the entry point has been reached,
and it continues in an infinite loop that calls NtWaitForSingleObject . Not only will this
infinite loop let the stager DLL know when the entry point is reached, it also prevents

6/14

ProcessHacker from interfering with the stager DLL and prevents the ProcessHacker window
from being displayed.

Now that the entry point is overwritten, the stager DLL spawns a new thread that initializes
the KProcessHacker driver and sets the stage for killing AV processes. First, the thread calls
NtWaitForSingleObject and waits for the entry point to be reached.

Initializing the KProcessHackerDriver

The “entry point reached” event is signaled, and this thread can continue and initialize the
KProcessHacker driver. The stager DLL has to create the KProcessHacker service and
register the driver. The code to accomplish this task is essentially the same code used by the
two ProcessHacker functions that can be found in the kph.c source code:

KphConnect2Ex

KphConnect

The code opens the service control manager in Windows and creates the KProcessHacker
service under the name KProcessHacker3 . The stager DLL passes the following
arguments to the CreateService procedure:

CreateService(
 scmHandle,
 L”kprocesshacker3”,
 L”kprocesshacker3”,
 SERVICE_ALL_ACCESS,
 SERVICE_KERNEL_DRIVER,
 SERVICE_DEMAND_START,
 SERVICE_ERROR_IGNORE,
 //
 // Path to kprocesshacker.sys driver file
 //
 L”C:\Users\ducksoup\AppData\Roaming\M28fPT\2LEQV0”,
 NULL,
 NULL,
 NULL,
 NULL,
 L""
);

The KProcessHacker service has been created and started and is ready to receive requests
from the client ProcessHacker process. Before a client can make a request to the service, it
needs to be verified.

Kernel Verification of the KProcessHacker Client

Every time an IOCTL is sent to the KProcessHacker service, it is checked to ensure that the
caller is a verified KProcessHacker client that is allowed to communicate with the service. All
attempts to communicate with KProcessHacker are validated using an IOCTL request key

https://github.com/processhacker/processhacker/blob/master/phlib/kph.c

7/14

that is generated by sending a KPH_RETRIEVEKEY request from the user-mode process.
The importance of this key is discussed in the “KProcessHacker IOCTL Request Keys and
APC” section below. Attached to the KPH_RETRIEVEKEY request is an Asynchronous
Procedure Call (APC) routine, KphpWithKeyApcRoutine , which will be executed upon
completion.

KProcessHacker initializes a KPH_CLIENT structure that needs to be populated with the
correct values to distinguish the caller as verified. This initialization occurs when the stager
DLL opens a handle to the KProcessHacker driver file. As this occurs, the Windows kernel
sends an IRP_MJ_CREATE request to the KProcessHacker driver, and the handler,
KphDispatchCreate , is called.

typedef struct _KPH_CLIENT
{
 struct
 {
 ULONG VerificationPerformed : 1;
 ULONG VerificationSucceeded : 1;
 ULONG KeysGenerated : 1;
 ULONG SpareBits : 29;
 };
 FAST_MUTEX StateMutex;
 NTSTATUS VerificationStatus;
 PVOID VerifiedProcess; // EPROCESS (for equality checking only - do not access
contents)
 HANDLE VerifiedProcessId;
 PVOID VerifiedRangeBase;
 SIZE_T VerifiedRangeSize;
 // Level 1 and 2 secret keys
 FAST_MUTEX KeyBackoffMutex;
 KPH_KEY L1Key;
 KPH_KEY L2Key;
} KPH_CLIENT, *PKPH_CLIENT;

Figure 5. KPH_CLIENT data structure from the Kph.h source code

This KphDispatchCreate function allocates kernel memory to store this data structure.
Due to it being kernel memory, the stager DLL is unable to manipulate the data structure
from user mode, even from inside the ProcessHacker process. Instead, the stager DLL can
send a KPH_VERIFYCLIENT IOCTL request to the driver. The handler function,
KphVerifyClient , for this IOCTL will set the necessary fields once the client is verified.

IOCTL Request Name Description

0x99992007 KPH_VERIFYCLIENT Verify the client process

0x999200B KPH_RETRIEVEKEY Retrieve the verification key

0x999920CB KPH_OPENPROCESS Opens a process

8/14

0x999920DF KPH_TERMINATEPROCESS Terminate a process

Table 3. KProcessHacker IOCTLs used by the stager DLL

The KphVerifyClient function first checks to see if verification has already occurred by
checking the boolean value, Client->VerificationPerformed . If this field is false, the
following checks are made by KProcessHacker:

1. Verify that the start address of the APC routine is a user-space address and not a
kernel address

2. Compare the process image file name against the mapped PE image name where the
APC routine resides

3. Verify that the APC routine address came from an area of memory that is type
MEM_IMAGE and in a MEM_COMMIT state

1. These states ensure that the memory where the APC routine resides is both
committed memory and a mapped view of an image section

4. Verify the PE file backing the process making the request by hashing the file’s contents
and comparing it against a digital signature:

1. The 256-bit Elliptic Curve Digital Signature is a hash of a known valid
ProcessHacker PE file that was signed using KProcessHacker’s private key

2. The digital signature is decoded from the stager DLL and sent with the
KPH_VERIFYCLIENT request

3. The contents of the file backing the process that made the request is hashed
using SHA-256

4. The signed hash is decrypted using KProcessHacker’s public key
5. If the decrypted signed hash and the generated hash match, then the PE file is

verified

Once verification passes, the code in Figure 6 is executed to populate several fields that will
be used for verification when the stager DLL attempts to send the KPH_OPENPROCESS and
KPH_TERMINATEPROCESS IOCTL requests.

status = KphVerifyFile(processFileName, Signature, SignatureSize);
if (NT_SUCCESS(status))
{
 Client->VerifiedProcess = PsGetCurrentProcess();
 Client->VerifiedProcessId = PsGetCurrentProcessId();
 Client->VerifiedRangeBase = memoryBasicInfo.BaseAddress;
 Client->VerifiedRangeSize = memoryBasicInfo.RegionSize;
}
Client->VerificationStatus = status;
Client->VerificationSucceeded = NT_SUCCESS(status);
Client->VerificationPerformed = TRUE;

Figure 6. KphVerifyClient sets verified fields of a KPH_CLIENT structure

9/14

The hijacked ProcessHacker process is now a verified client of the KProcessHacker service.
A new thread is spawned to duplicate the IPC objects from DoppelPaymer into the
ProcessHacker process space.

Duplicating the IPC Objects Inside ProcessHacker

From Figure 2, the second argument, 161604546 , is decoded, yielding the handle ID of
0x128 . The section object that this handle references is duplicated in the ProcessHacker

process. The section object is duplicated with the same access rights as the original.
Duplicating objects generate new handle values, but to keep it simple, this post reuses the
original values.

//
// Duplicating DoppelPaymer’s section object handle.
//
NtDuplicateObject(
 DoppelPaymerProcHandle, // Process handle for source process
 0x128, // Handle for the source section object
 0xFFFFFFFF, // ProcessHacker process handle
 duplicateHdl, // New section object handle
 NULL,
 NULL,
 DUPLICATE_SAME_ACCESS
);

A view of the duplicated section object is mapped to local process memory using
NtMapViewOfSection . It contains the same handles from Table 2 that were written to the

section object in the DoppelPaymer process: 0x120 , 0x11C and 0x124 . Each of these
handles is duplicated, and a view of the 0x124 section object is mapped into
ProcessHacker’s process memory.

DoppelPaymer is now in a state where it is waiting for an event to be signaled that notifies it
that the stager DLL has completed initialization and is ready to process requests in the
queue. This notification is sent by calling NtSetEvent with the 0x120 event handle, and
the stager DLL waits for requests.

Killing Blocklisted Applications

Once DoppelPaymer receives the signaled event, it starts enumerating both service and
process names, and hashes them with the CRC32 algorithm. These hashes are compared
against a list of blocklisted hashes in DoppelPaymer’s process memory. The complete list
was covered in the previous DoppelPaymer blog post. This section discusses what happens
when an application matches one of the blocklisted items.

DoppelPaymer writes the process ID associated with the service, along with a command to
the mapped section object, 0x124 . The command will tell the stager DLL which steps to
take.

10/14

AntiAV {
 +0x00 Command
 +0x08 Process ID
 +0x10 errorCodeResponse // Response code from ProcessHacker
}

Figure 7. Blocklisted process information written to IPC section

Process termination occurs in two steps: a process is opened, then it is killed. The first
command sent, 1 , will tell the stager DLL to open a handle to the process. Table 4 contains
a list of valid commands.

Command Action

0 Terminate ProcessHacker

1 Open the process

2 Kill the process

Other value Invalid, wait for the next command

Table 4. IPC handles with concrete values from testing

The command is written to the queue, along with the process ID, and DoppelPaymer signals
the event to notify the stager DLL that data is in the queue. Once that event is signaled, it
waits for a response.

KProcessHacker IOCTL Request Keys and APC

Certain IOCTL requests to the KProcessHacker service require the verification of an IOCTL
request key. To ensure that the key cannot be tampered with, the key is generated by the
driver and stored in the KPH_CLIENT structure. The following IOCTL requests require a key:

KPH_OPENPROCESS
KPH_OPENPROCESSTOKEN
KPH_TERMINATEPROCESS
KPH_READVIRTUALMEMORY
KPH_OPENTHREAD

Prior to making any of these requests, ProcessHacker has to send a KPH_RETRIEVEKEY
request using NtDeviceIoControlFile . Along with this request, the user-mode address of
an APC routine, KphpWithKeyApcRoutine , and the user-mode address of a function called
by the APC are sent as parameters. This routine to be called by the APC will end up making
one of the IOCTL requests mentioned in the above bulleted list.

11/14

NtDeviceIoControlFile(
 PhKphHandle,
 NULL,
 KphpWithKeyApcRoutine, // Called after NtDeviceIoControlFile
 // returns
 NULL,
 &context.Iosb, // Receives the status code
 KPH_RETRIEVEKEY, // IOCTL
 &input, // Parameters passed to IOCTL
 sizeof(input),
 NULL,
 0
);

The KPH_RETRIEVEKEY request is handled by KphRetrieveKeyViaApc . Prior to
generating the request key, several checks are performed to ensure that the client
(ProcessHacker, in this case) making the request is verified and that the APC parameter is
valid:

Ensure the client has been verified by checking the KPH_CLIENT-
>VerificationSucceeded field
Ensure that the process information for the client matches what was set during the
verification process

KPH_CLIENT->VerifiedProcess

KPH_CLIENT->VerifiedProcessId

Ensure that the instruction address of the APC routine falls within the executable
section of the verified client

Once those checks are passed, a request key is generated and stored in the KPH_CLIENT
structure. This key will also be passed as argument to the APC routine. So now, both the
client and the server have independent copies of the same request key. The APC routine,
KphpWithKeyApcRoutine , executes.

As noted earlier, the APC routine receives a function pointer that will be used to execute a
specific action (kill process, open process, etc.). To restrict which requests can be made via
this APC routine, it makes sure that only the following functions can be called from the APC:

KphpGetL1KeyContinuation
KphpOpenProcessContinuation
KphpOpenProcessTokenContinuation
KphpTerminateProcessContinuation
KphpReadVirtualMemoryUnsafeContinuation
KphpOpenThreadContinuation

This check prevents DLLs from being injected into ProcessHacker and leveraging the
KphpWithKeyApcRoutine APC as a method to execute its own routines under the guise of

being a valid KPH_CLIENT . Once this check passes, the function passed to the APC is

12/14

called and the client copy of the request key is passed to that function.

Both this check and the checks made in the KphRetrieveKeyViaApc procedure pose a
challenge for the stager DLL. The author of the stager DLL scraps the original
KphpWithKeyApcRoutine routine and passes their own APC routine, StagerAPCRoutine .

The code for this is written directly after ProcessHacker’s overwritten entry-point code. This
bypasses both of the function pointer checks and passes the checks performed by
KphRetrieveKeyViaApc .

000000013f5b2f2c jmp cs:CallFunctionPointerRoutine
000000013f5b2f3a push rax
000000013f5b2f3b retn

Figure 8. StagerAPCRoutine

The StagerAPCRoutine (Figure 8) shortcuts the entire process and jumps directly to a
procedure, CallFunctionPointerRoutine , that calls the DLL stager versions of
KphpOpenProcessContinuation and KphpTerminateProcessContinuation procedures

and passes the client copy of the request key as a parameter.

Opening a Process Handle

As outlined in the previous section, to open a process handle, a KPH_RETRIEVEKEY request
is sent to the KProcessHacker service. Along with this request, the StagerAPCRoutine
address and the address of the function called by the APC open a process,
StagerOpenProcess . A new request key is generated, saved to KPH_CLIENT and passed

to StagerAPCRoutine . Once everything has been validated, the StagerAPCRoutine calls
StagerOpenProcess where a KPH_OPENPROCESS request is sent to the KProcessHacker

service. Both the client copy of the request key and the process ID of the target are sent with
the request.

13/14

Figure 9. Process diagram to open a process

The service handles this request by calling KpiOpenProcess . Before a handle to the
process can be opened, the client’s request key is validated by calling KphValidateKey ,
where the client copy of the key is compared against the copy stored in KPH_CLIENT . If
these match, a handle to the target process is opened.

PsLookupProcessByProcessId is called to get a pointer to the process object in kernel
memory. That pointer is used to open a handle to the object by calling
ObOpenObjectByPointer . This handle can now be referenced by the stager DLL.

The stager DLL signals the 0x120 event handle, notifying DoppelPaymer that a handle has
successfully been opened to the target process. Now the process can be killed.

Killing a Process

14/14

DoppelPaymer verifies that the process was successfully opened, and then takes the
appropriate action. If an error occurred, it continues checking for blocklisted applications;
otherwise, another notification is sent, this time with the command 2 to terminate the
process.

Terminating a process follows the same procedure as opening a process with one difference:
The StagerKillProcess function pointer is passed to the StagerAPCRoutine . The
StagerKillProcess function sends a KPH_TERMINATEPROCESS request to the

KProcessHacker service. This is handled by the KpiTerminateProcess kernel-mode
function. The request key is validated before process termination can occur. The target
process is reopened to get a kernel handle, and ZwTerminateProcess is called to kill the
process. Note that using this procedure ignores PPL, so even protected processes will be
killed.

Conclusion

DoppelPaymer’s usage of ProcessHacker to kill AV services is part of a larger trend of
various actors leveraging legitimate tools to disable AV/EDR functionality. DoppelPaymer’s
method is a testament to how innovative malware authors can be when it comes to
neutralizing the defenses of their target.

Many thanks to Bill Demirkapi for helping to sort out how digital signature verification is used
to validate the PE.

Additional Resources

Discover how CrowdStrike Falcon X combines automated analysis with human
intelligence, enabling security teams, regardless of size or skill, to get ahead of the
attacker’s next move.
Find out how to stop adversaries targeting your industry — schedule a free 1:1 intel
briefing with a CrowdStrike threat intelligence expert today.
Learn about the powerful, cloud-native CrowdStrike Falcon® platform by visiting the
product webpage.
Get a full-featured free trial of CrowdStrike Falcon Prevent™ to see for yourself how
true next-gen AV performs against today’s most sophisticated threats.

https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://go.crowdstrike.com/threat-intelligence-briefing.html
https://www.crowdstrike.com/endpoint-security-products/
https://go.crowdstrike.com/try-falcon-prevent.html

