
1/9

muzi December 7, 2021

Agent TeslAggah
malwarebookreports.com/agent-teslaggah/

In May of 2020, Deep Instinct reported on a new variant of the malware loader called “Aggah,” a fileless loader that
takes advantage of LOLBINS and free services such as Bitly, Blogger, etc. Heading into the second December of the
Covid-19 pandemic, Aggah has continued the trend of using Covid-19 as a lure for malspam.

The group behind “Aggah” is known for using the malware loader to deliver RATs such as Agent Tesla, NanoCore,
njRAT, Revenge and Warzone. Initially, Palo Alto believed activity from “Aggah” was related to the Gorgon Group, but
Palo’s Unit 42 has been unable to identify direct overlaps in activity/indicators.

On November 30, 2021, a new campaign was identified utilizing the Aggah loader to deliver Agent Tesla. The chain of
activity closely resembles previous Aggah activity, with some minor changes. Below is a summary of the observed
activity.

Stage 1: PPA with VBA Macros

Filename: 새 구매 주문서 .ppa
MD5: 9b61bc8931f7314fefebfd4da8dba2cc
SHA1: a7ee21728f146b41c04b54be8a6cdbf6cc39f90f
SHA256: aa121762eb34d32c7d831d7abcec34f5a4241af9e669e5cc43a49a071bd6e894

Prior Aggah campaigns abused Microsoft Office Documents containing VBA macros and this round remains the same.
This Covid-19 themed .ppa file contained a very small VBA Macro that ran on Auto_Open and executed a simple mshta
call. This execution method remains consistent, but the macro is crafted in a slightly different way.

https://malwarebookreports.com/agent-teslaggah/
https://www.deepinstinct.com/blog/aghast-at-aggah-teasing-security-controls-with-advanced-evasion-techniques
https://apt.thaicert.or.th/cgi-bin/showcard.cgi?g=Aggah&n=1

2/9

Figure 1: .PPA

File VBA Macros

Stage 2: HTML File Containing WScript

Filename: gdhamksgdsadj.html | divine111.html
MD5: e2370c77c35232bae8eca686d3c1126e
SHA1: 20d096705b1b09d8f7d7af6c09ed61a8e8e714e2
SHA256: 8d74ac866d8972e6725ffb573dbeec57d248bf5da5f4a555e1bd1d68cff12caa

Stage 1 of the Aggah dropper executes mshta hxxp://bitly[.]com/gdhamksgdsadj. The bit.ly URL redirects to
hxxps://onedayiwillloveyouforever[.]blogspot[.]com/p/divine111.html, a mostly blank Blogspot page that contains
some malicious VBScript.

3/9

Figure 2: Stage 2

divine111.html contains malicious VBScript

Figure 3:

Malicious VBScript contained in divine111.html
The VBScript stashed in the HTML document performs the following:

Downloads an additional payload from the following BitBucket URL:

hxxps://bitbucket[.]org/!api/2.0/snippets/hogya/5X7My8/b271c1b3c7a78e7b68fa388ed463c7cc1dc32ddb/files/divine1-
2″

4/9

Reverses and base64 decodes the payload from the above URL

Creates a scheduled task to download and execute a payload hosted at the following BlogSpot URL (Note: This
payload contains the same VBS payload as in divine111.html):

hxxps://madarbloghogya[.]blogspot[.]com/p/divineback222.[]html

Figure 4:

Persistence via Scheduled Task
While the VBScript obfuscation is relatively light, one interesting thing to note is the usage of CLSIDs when creating
new objects. Directly referencing CLSIDs during object creation is fairly uncommon and could be useful for creating a
Yara rule.

set MicrosoftWINdows = GetObject("new:F935DC22-1CF0-11D0-ADB9-00C04FD58A0B")
Set Somosa = GetObject("new:13709620-C279-11CE-A49E-444553540000")

Stage 3: Obfuscated VBScript Containing Encoded PE File

Filename: divine1-2
MD5: ace852b1489826d80ea0b3fc1e1a3ccd
SHA1: 1391fe80309f38addb1fc011eb8d3fefecf4ac73
SHA256: c4f374f18ed5aba573b6883981a8074b86b79c2bdc314af234e98bed69623686

The final stage of Aggah is built around deobfuscating and executing the final payload, which is embedded in the
document: Agent Tesla (for this campaign, at least). According to the comment at the top of the VBScript, this stage of
Aggah was updated 11/18/2021.

5/9

Figure 5: Third

Stage of Aggah last updated 11/18/2021.

The VBScript in this stage deobfuscates the embedded Agent Tesla payload, adds it to startup and executes the
payload. There are three main functions that handle deobfuscation, seen below.

Figure 6: Functions Used to

Deobfuscate Payload

Figure 7: Building

PowerShell Command to Create Persistence and Execute Payload

6/9

Once the replacements and substitutions are made, we see an old friend reappear. After a simple base64 decode,
we’re left with our payload: Agent Tesla.

Figure 8: Base64

Exe, Anyone?

Stage 4: Agent Tesla

Filename: MVuVmuzKeduVVeroJXAhxJFg.exe
MD5: d6373ce833327ecb3afeb81b62729ec9
SHA1: a80137dc1ffe68fa1527bab0933471f28b9c29df
SHA256: 3bb3440898b6e2b0859d6ff66f760daaa874e1a25b029c0464944b5fc2f5a903

Agent Tesla is a .NET based keylogger and RAT readily available to actors and is one of the RATs preferred by Aggah.
It logs keystrokes, the host’s clipboard and steals various credentials and beacons this information back to the C2. This
particular sample was surprisingly not packed, which is relatively uncommon.

Agent Tesla is known to steal a wide-variety of stored/cached credentials. The strings containing the targeted
applications are typically encoded/encrypted, but are typically easily extracted in a debugger. The sections below walk
through extracting the strings/configuration of this Agent Tesla sample and contain a Yara rule for detection.

String/Configuration Extraction

While the Agent Tesla payload delivered in this campaign was not packed, the configuration as well as the strings
related to information stealing are hidden. The Agent Tesla sample uses the following function to decode these strings
during runtime to make static detection more difficult.

Figure 9:

Config/String Decode Function
The decode function consists of an incremental xor as well as a static xor by key 0xAA (170). While this decode function
could be easily implemented with Python or any language of choice, dnSpy was used as it aided in creating the Yara
rule in the next step. In order to debug properly, the Agent Tesla sample must first be run through de4dot to clean up
variable names. Once the sample has been cleaned, a watch can be set on the byte array byte_0 and the contents
can be saved once the decode loop has completed.

https://malpedia.caad.fkie.fraunhofer.de/details/win.agent_tesla

7/9

Figure 10:

Decode Loop Cleaned up by de4dot
Once a watch for the byte array byte_0 is set, the decode loop is allowed to complete and decode the configuration
and strings. The decoded content in byte_0 can then be saved to a file.

Figure 11: Byte

Array Decoded
After saving the contents from dnSpy to a file, the configuration and strings appear in cleartext, providing information
around types of data being collected, exfiltration method, etc.

Figure 12:

Decoded Configuration and Strings

Agent Tesla Yara Rule

8/9

While this Agent Tesla sample did not contain a great number of strings that would allow creation of an effective Yara
rule, one could certainly be created. However, targeting the strings alone will likely not result in a robust Yara rule. A
better approach might be to target the decode loop covered in the previous section. This blog post will not cover in-
depth writing rules based on IL, however, Stephan Simon of Binary Defense put out a great blog post that covers this
topic very well.

dnSpy provides an option for decompilation to IL. After selecting IL as the decompilation language, the decode loop can
be seen in IL form. This link serves as an excellent reference when reading IL and writing Yara rules targeting it. The
Yara rule below breaks down each IL instruction and relates it to the corresponding portion of the decode loop.

Figure 13:

Decode Loop Decompiled to IL
Note: The rules below should be tested before being implemented in a production environment (especially the second
one). I’m not responsible for blowing up your environment! 🙂

rule Classification_Agent_Tesla {
 meta:
 author = "muzi"
 date = "2021-12-02"
 description = "Detects Agent Tesla delivered by Aggah Campaign in November 2021."
 hash = "3bb3440898b6e2b0859d6ff66f760daaa874e1a25b029c0464944b5fc2f5a903"

 strings:

 $string_decryption = {
 91 // byte array[i]
 (06|07|08|09) // push local var
 61 // xor array[i] ^ 0xAA (const xor key)
 20 [4] // push const xor key (170 or 0xAA in example)
 61 // xor array[i] ^ i
 D2 // convert to unsigned int8 and push int32 to
stack
 9C // Replace array element at index with int8 value
on stack
 (06|07|08|09) // push local var
 17 // push 1
 58 // add i +=1
 (0A|0B|0C|0D) // pop value from stack into local var
 (06|07|08|09) // push local var
 7E [4] // push value of static field on stack (byte
array)
 8E // push length of array onto stack
 69 // convert to int32
 FE (04|05) // conditional if i >= len(bytearray)
 }

 condition:

 all of them

}

https://www.binarydefense.com/creating-yara-rules-based-on-code/
https://en.wikipedia.org/wiki/List_of_CIL_instructions

9/9

rule WScript_CLSID_Object_Creation {
 meta:
 author = "muzi"
 date = "2021-12-02"
 description = "Detects various CLSIDs used to create objects rather than their object name."
 hash = "9b36b76445f76b411983d5fb8e64716226f62d284c673599d8c54decdc80c712"

 strings:
 $clsid_windows_script_host_shell_object = "F935DC22-1CF0-11D0-ADB9-00C04FD58A0B" ascii wide nocase
 $clsid_shell = "13709620-C279-11CE-A49E-444553540000" ascii wide nocase
 $clsid_mmc = "49B2791A-B1AE-4C90-9B8E-E860BA07F889" ascii wide nocase
 $clsid_windows_script_host_shell_object_2 = "72C24DD5-D70A-438B-8A42-98424B88AFB8" ascii wide nocase
 $clsid_filesystem_object = "0D43FE01-F093-11CF-8940-00A0C9054228" ascii wide nocase

 condition:

 any of them

}

agenttesla aggah malware

https://malwarebookreports.com/tag/agenttesla/
https://malwarebookreports.com/tag/aggah/
https://malwarebookreports.com/tag/malware/

