
1/14

GoSecure Titan Labs December 3, 2021

TrickBot Leverages Zoom Work from Home Interview Malspam, Heaven’s Gate and…
Spamhaus?

gosecure.net/blog/2021/12/03/trickbot-leverages-zoom-work-from-home-interview-malspam-heavens-gate-and-spamhaus/

The team of expert analysts at GoSecure Titan labs have reverse-engineered a new TrickBot cleverly hidden in a Zoom job interview
email through a sample obtained from GoSecure Titan Inbox Detection and Response (IDR). The email message contained a shortcut
(LNK) file entitled Interview_details.lnk and that LNK file downloads a loader which will be examined in this blog. GoSecure Titan Labs
named the loader TrickGate because it uses the Heaven’s Gate technique to load TrickBot, one of the world’s most prevalent botnets.

Analysis

Infection Chain

The initial infection vector is via malspam. The email (906379938be59269713995cf29058f42), shown in Figure 1, is entitled FINAL
interview – September 3 and congratulates the user on passing an internal interview. It provides a link purporting to be zoom details for a
final interview. The link downloads an LNK file (6e49d82395b641a449c85bfa37dbbbc2) from
hxxps://workdrive[.]zohoexternal[.]com/file/6c8ha295582e90c3e4655b87b82bb100f011b.

Figure 1: Zoom Interview Malspam

https://www.gosecure.net/blog/2021/12/03/trickbot-leverages-zoom-work-from-home-interview-malspam-heavens-gate-and-spamhaus/

2/14

Once executed, the LNK file, displayed in Figure 2, opens Notepad as a decoy, then uses curl –silent to download TrickGate, a 32-bit
C/C++ compiled portable executable (PE), from hxxp://185[.]14[.]31[.]112/images/moonfrontmars[.]png. The LNK file then saves
TrickGate (442f1e3d2825d51810bf9929f46439d2) in the %TEMP% directory as tmp.exe and executes it using the start command.

Figure 2: LNK Contents

TrickGate

In TrickGate’s .rsrc section, the file HTML/DATA contains over 255 KB of encrypted shellcode. The shellcode is decrypted directly in the
.rsrc section using the decryption key planbetufernasoberpalade. It should be noted that the decryption key varies from sample to
sample. The decryption routine is depicted in Figure 3.

Figure 3: TrickGate’s Initial Decryption Routine

Once decrypted, the shellcode (87dc309108bbf70e3e67efbf9d4c09da) is copied to memory and executed there. Besides executable
code, the shellcode also contains an encrypted 64-bit portable executable. Figure 4 shows the PE in the process of being decrypted. As
can be observed from the decryption routine, the decryption simply involves XORing a byte from the decryption key with a byte from the
encrypted PE. The decrypted PE (8da11d870336c1c32ba521fd62e6f55b) only contains headers and a .text section, which is later written
to yet another section of memory.

3/14

Figure 4: 64-bit PE Decryption Routine

Next, the shellcode calls kernel32.CreateProcessInternalW, as depicted in Figure 5. Since the second parameter, lpApplicationName, is
null, the process to be created is specified by the third parameter, lpCommandLine, which contains a pointer to the path for Windows
Error Reporting Manager (wermgr.exe). The seventh parameter, dwCreationFlags, which specifies flags that define options for the
created process, contains the value 0x800000C. This value corresponds to the flags CREATE_NO_WINDOW, DETACHED_PROCESS,
and CREATE_SUSPENDED. Thus, wermgr.exe will be created in a suspended state, without a console window. This is the beginning of
process hollowing, a technique used to inject and execute malware in a legitimate process.

Figure 5: Create Suspended wermgr.exe Process

At this point, we expected to simply continue stepping through the disassembled code and observe the remaining process hollowing
steps. However, as displayed in Figure 6, the shellcode makes a far call to 0x33:2F60011, which in turn, makes a call to 0x10001000,
which is where the 64-bit code from the decrypted PE’s .text section is located. Also displayed in Figure 6, on the left, is Process Hacker,
which shows the process wermgr.exe outlined in black, signifying that it is suspended. When we try to step into the far call, instead of
stepping into the instructions at address 0x2F60011, the debugger executes for a few moments, then the instruction pointer returns to the
previous function. Afterwards, wermgr.exe is no longer outlined in black, meaning that something has resumed the process, but we could
not observe it being resumed or whether code was injected into it before it was resumed. Furthermore, setting breakpoints on API calls
associated with process hollowing did not cause the debugger to pause. So, what just happened? Enter Heaven’s Gate.

4/14

Figure 6: Far Call

Heaven’s Gate

Heaven’s Gate, first introduced in 2009, is a technique used to execute 64-bit code from a 32-bit process by using a far call, far return, or
far jump. Unlike regular calls, jumps, and returns, which only specify the memory address, far ones also specify the code segment,
allowing them to call, jump, or return to a different code segment. 0x23 specifies a 32-bit code segment whereas 0x33 specifies a 64-bit
code segment. Thus, when 0x33 is specified with a far call within a 32-bit process, it switches the context of the 32-bit process to that of a
64-bit process. Since we are analyzing the sample with x32dbg, which can only analyze 32-bit code, the debugger is not capable of
handling the process after it switches to 64-bit, and we only regain control of the process when it returns from the far call and reverts
back to 32-bit. Most debuggers will behave in the same manner, except for WinDbg, a debugger created by Microsoft that can debug
both 32-bit and 64-bit code. Using WinDbg, we can step seamlessly through Heaven’s Gate and analyze the 64-bit code being executed.
Figure 7 displays the disassembly in WinDbg before and after crossing Heaven’s Gate. We can see that the registers before the call
pertain to a 32-bit architecture whereas 64-bit registers are being used after the call. Moreover, the code segment (CS) register now
holds the value 0x33.

Figure 7: Stepping Through Heaven’s Gate

Even though WinDbg can handle the context switch, it is still confused in regard to breakpoints on API calls. This fact is illustrated in
Figure 8. When a breakpoint is set for ntdll.NtWriteVirtualMemory, WinDbg sets it for the 32-bit ntdll.dll, as revealed by the x86 identifier
and ntdll.dll’s address, 0x77912d70, which falls in the 32-bit address space. However, the actual version of ntdll.NtWriteVirtualMemory
being called by TrickGate is 64-bit, as its address, 0x7ff8’570ed4a0, lies in the 64-bit address space. Therefore, the debugger will not

5/14

pause at the requested breakpoint unless it is manually set at the appropriate address. This exemplifies just how pernicious Heaven’s
Gate can be. By hiding API calls, it makes malware detection and analysis very difficult. This is why Heaven’s Gate was initially used by
many malware authors. However, the use of Heaven’s Gate has greatly declined since Microsoft introduced Control Flow Guard (CFG) in
Windows 8.1. CFG places restrictions on addresses called by executing code and, as such, can mitigate Heaven’s Gate. There has been
some malware in recent years, such as HawkEye Reborn Keylogger and Remcos RAT, abusing Heaven’s Gate to avoid detection.
Publications on the topic state that malware still using Heaven’s Gate does so to target legacy machines, since CFG should terminate the
execution on modern systems. However, we at GoSecure Titan Labs ran TrickGate on a Windows 10 machine with CFG enabled, and it
fully executed.

Figure 8: Call to ntdll.NtWriteVirtualMemory

As anticipated, the 64-bit shellcode in Heaven’s Gate completes the process hollowing that begin in the 32-bit shellcode. Looking once
again at Figure 8, we see that the value in rdx is 0x7ff7a77a650. This is the second argument passed to ntdll.NtWriteVirtualMemory and
it specifies the base address to where data should be written. Also displayed in Figure 8 is the memory map view in x64dbg, which we
had opened at this point and attached the suspended wermgr.exe process to. It can be seen that the base address to be written to falls
within the .text section of wermgr.exe. r8 contains an address to the buffer containing the bytes to be written and r9 contains the number
of bytes to be written, which is 0x10, or 16 in decimal. The memory window in the top right corner displays the data stored at the address
in r8. Therefore, the call to ntdll.NtWriteVirtualMemory writes the bytes 48 b8 00 10 6f 9d d0 01 00 00 40 0b c0 50 c3 00 to the .text
section of wermgr.exe. The 64-bit shellcode then calls ntdll.NtResumeThread to resume the execution of wermgr.exe, completing the
process hollowing. Before wermgr.exe was resumed, we placed a breakpoint on the address in wermgr.exe where the bytes were written.
As displayed in Figure 9, these bytes replace the return address of the current function with the address 0x1D09D6f1000 and then
returns, passing execution to that address.

Figure 9: Injected Code in wermgr.exe

So, what exactly is stored at this address? Back in Trickgate’s 64-bit shellcode, another call to ntdll.NtWriteVirtualMemory was made
before resuming wermgr.exe. As can be observed from Figure 10, 0x28bd4 bytes, which is a little over 166 KB, was written to memory
beginning at address 0x1D09D6f0000. This written shellcode is TrickBot (8da11d870336c1c32ba521fd62e6f55b), the entry point to which
is at address 0x1D09D6f1000. Thus, TrickGate’s 64-bit shellcode injected code into wermgr.exe so that it would execute a section of
memory containing TrickBot. Therefore, TrickBot is executed disguised as Microsoft’s Windows Error Reporting Manager.

6/14

Figure 10: ntdll.NtWriteVirtualMemory Writing TrickBot To Memory

TrickBot’s Latest Variant

As TrickBot is very well-known malware, discussed in many publications, we will only focus on interesting aspects of the current TrickBot
variant. It creates a folder in the C:\Users\<username>AppData\Roaming\ directory. The folder’s name is UniLiteGames with 4 characters
appended to it, such as UniLiteGames5UIH. It then copies the original PE, TrickGate, and an obfuscated batch file, named command.bat
to this folder. The batch file, shown in Figure 11, is obfuscated with simple string replacements. Once deobfuscated, the file contains the
command start C:\Users\<username>\AppData\Roaming\UniLiteGames<4-characters>\<trickgate-pe-name>.

Figure 11: Obfuscated Batch File

TrickBot then creates a COM object for an interface of Task Scheduler, which it uses to create a scheduled task to run command.bat
every time the user logs on, as depicted in Figure 12. The name of the scheduled task is UniGamesSoft followed by the same 4
characters used when creating the aforementioned folder, and the Author is UniGamesSoft.

7/14

Figure 12: TrickGate Scheduled To Execute at Logon

TrickBot contains 18 command and control (C2) IP addresses, listed in the IoCs section below. All C2 communication occurs over HTTPS
and uses Windows HTTP Services (WinHTTP), as can be seen in Figure 13, which displays the initial check-in. The third argument
passed to winhttp.HttpOpenRequest, which creates the HTTP request handle, is
/rob128/<computer_name>_W10019077.19D16C537142D197E33B9D65DF03B33E/5/file/, which specifies the path on the target server.
All following information sent to the C2 server is sent in similar GET requests. For example, information pertaining to the victim machine’s
network address translation (NAT) status is sent as
/rob128/<computer_name>_W10019077.33A1A5DD03BBFF0FD7BA9BB14F9FBCDF/14/NAT%20status/client%20is%20behind%20NAT/0/.
As this demonstrates, the data sent to and from the C2 server is not encrypted or obfuscated in any way, presumably since TrickBot is
using HTTPS to encrypt communication.

Figure 13: TrickBot’s Check-in Request

The C2 URL path follows the same format observed in previous variants of TrickBot. rob128 follows TrickBot’s convention of using
alphabetic characters followed by a decimal value at the beginning of the path. rob128 was observed in all other samples of the current
campaign. Next is the computer name of the compromised machine, followed by _W, which is hardcoded in all TrickBot samples we have
encountered. A decimal number always follows the _W. Next is a decimal followed by a hexidecimal string 32 characters long. This string
is created based on system time and involves using the function kernel32.GetTickCount and the instruction RDTSC, which is a time
stamp counter. The next value in the path appears to signify the type of request being made and corresponds to values used in a switch
statement that controls the flow of requests, displayed in Figure 14. For example, the initial check-in, which was created in case 5, has
the value 5 for this part of its path. Likewise, the URL containing the NAT status uses the value 14, as it was created in the function
corresponding to case 14.

8/14

Figure 14: C2 Communication Switch Statement

An interesting feature observed in this variant is that after TrickBot obtains the public IP address of the victim machine, it will query IP
blacklist services to determine the reputation of the IP address. As we can see in Figure 15, TrickBot calls ws2_32.getaddrinfo, which
queries information about a specified IP. The value passed to its first parameter is .zen.spamhaus.org. zen.spamhaus.org is a domain
name system blacklist (DNSBL) service. Prepended to this is the victim machine’s IP address in reverse order. TrickBot also uses other
DNSBL services to check the victim machine’s IP address. These include cbl.abuseat.org, b.barracudacentral.org, dnsbl-
1.uceprotect.net, and spam.dnsbl.sorbs.net.

Figure 15: IP Reputation Check

TrickBot will then send a request to its C2 server stating the results of the reputation checks. As displayed in Figure 16, an example of the
URL path generated for such requests is rob128/<computer_name>_W10019077.33A1A5DD03BBFF0FD
7BA9BB14F9FBCDF/14/DNSBL/not%20listed/0/. Of course, if any of the DNSBL services report the IP as blacklisted, not%20listed will
be changed to listed in the URL path.

Figure 16: Reporting DNSBL Status to C2 Server

Conclusion

9/14

The notorious botnet and information stealer, TrickBot, has remained active since 2016 and continues to live up to its name, as it
regularly incorporates new tricks into its already long list of abilities. TrickGate Loader is the latest addition to those tricks, and a very
impressive one at that, since its use of Heaven’s Gate allows it to effectively conceal API calls used to load TrickBot.

Through close monitoring, analyzing, and reverse engineering, GoSecure Titan Labs, as part of our GoSecure Titan Managed Detection
and Response offering, have created signatures to detect the emerging threats discussed in this report. One such signature, listed below
in the Detection section, is a file detection signature for the TrickBot shellcode entitled malware_trickbot_4, which was created using
binlex, an opensource genetic binary trait lexer library and utility. By unpacking TrickBot shellcode from numerous samples of TrickGate,
we were able to utilize binlex to extract the common traits and thus, to create an effective signature.

Increased work from home and remote work have led to a rise in these types of threats for users. Tools like GoSecure Titan IDR, which
can be installed in desktop, mobile and web applications, allow users to send suspicious emails for expert analysis. This can help identify
and remove potentially harmful threats from the environment before they spread—while also delivering samples to experts for
documentation and reverse-engineering.

Malware Analyst: Sean Mahoney

Indicators of Compromise

+======+==================================+============================+
| type | indicator | decription |
+======+==================================+============================+
| md5 | 906379938be59269713995cf29058f42 | Malspam Email |
+------+----------------------------------+----------------------------+
| md5 | 6e49d82395b641a449c85bfa37dbbbc2 | LNK Downloader |
+------+----------------------------------+----------------------------+
| md5 | 442f1e3d2825d51810bf9929f46439d2 | TrickGate Loader |
+------+----------------------------------+----------------------------+
| md5 | 87dc309108bbf70e3e67efbf9d4c09da | TrickGate Loader Shellcode |
+------+----------------------------------+----------------------------+
| md5 | 8da11d870336c1c32ba521fd62e6f55b | 64-bit PE |
+------+----------------------------------+----------------------------+
| md5 | 0d9febdee78018daea87101c0d1a5362 | Trickbot Shellcode |
+------+----------------------------------+----------------------------+
| ip | 97[.]83[.]40[.]67 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 46[.]99[.]175[.]217 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 46[.]99[.]175[.]149 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 128[.]201[.]76[.]252 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 103[.]105[.]254[.]17 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 179[.]189[.]229[.]254 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 24[.]162[.]214[.]166 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 65[.]152[.]201[.]203 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 62[.]99[.]76[.]213 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 216[.]166[.]148[.]187 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 184[.]74[.]99[.]214 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 185[.]56[.]175[.]122 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 181[.]129[.]167[.]82 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 60[.]51[.]47[.]65 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 46[.]99[.]188[.]223 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 82[.]159[.]149[.]52 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 45[.]36[.]99[.]184 | TrickBot C2 |
+------+----------------------------------+----------------------------+
| ip | 62[.]99[.]79[.]77 | TrickBot C2 |
+======+==================================+============================+

Detection

https://github.com/c3rb3ru5d3d53c/binlex
https://github.com/c3rb3ru5d3d53c/binlex

10/14

GoSecure Titan Labs are providing the following signatures to help the community in detecting and identifying the threats discussed in
this report.

11/14

rule other_lnk_download_and_execute_0{
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "LNK downloading and executing a file"
 hash = "6e49d82395b641a449c85bfa37dbbbc2"
 created = "2021-10-14"
 tlp = "white"
 os = "windows"
 type = "other"
 rev = 1
 strings:
 $lnk = { 4C 00 00 00 01 14 02 00 }
 $file_1 = ".exe" ascii wide nocase
 $file_2 = ".dll" ascii wide nocase
 $file_3 = ".scr" ascii wide nocase
 $file_4 = ".pif" ascii wide nocase
 $file_5 = "This program" ascii wide nocase
 $file_6 = "TVqQAA" ascii wide nocase
 $execute_1 = "cmd.exe" ascii wide nocase
 $execute_2 = "/c echo" ascii wide nocase
 $execute_3 = "/c start" ascii wide nocase
 $execute_4 = "/c set" ascii wide nocase
 $execute_5 = "%COMSPEC%" ascii wide nocase
 $execute_6 = "rundll32.exe" ascii wide nocase
 $execute_7 = "regsvr32.exe" ascii wide nocase
 $execute_8 = "Assembly.Load" ascii wide nocase
 $execute_9 = "[Reflection.Assembly]::Load" ascii wide nocase
 $execute_10 = "process call" ascii wide nocase
 $download_1 = "bitsadmin" ascii wide nocase
 $download_2 = "certutil" ascii wide nocase
 $download_3 = "ServerXMLHTTP" ascii wide nocase
 $download_4 = "http" ascii wide nocase
 $download_5 = "ftp" ascii wide nocase
 $download_6 = ".url" ascii wide nocase
 $download_7 = "curl" ascii wide nocase
 condition:
 $lnk at 0 and
 any of ($file_*) and
 any of ($execute_*) and
 any of ($download_*)
}
rule malware_trick_gate_loader_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Tickbot Loader using Heaven's Gate"
 hash = "442f1e3d2825d51810bf9929f46439d2"
 created = "2021-11-04"
 os = "windows"
 type = "malware.loader"
 tlp = "white"
 rev = 1
 strings:
 $get_base_address = {
 55 8b ec 83 ec 14 89 4? ?? 8b 4? ?? 8b 4? ?? 89
 48 08 6a 40 8b 5? ?? 8b 42 08 50 ff 15 ?? ?? ??
 ?? 85 c0 74 ?? 8b 4? ?? c7 01 00 00 00 00 8b 5?
 ?? c7 42 04 00 00 00 00 e9 ?? ?? ?? ?? 8b 4? ??
 8b 4? ?? 8b 51 08 89 10 8b 4? ?? 8b 08 8b 51 3c
 89 5? ?? 8b 4? ?? 83 78 08 00 74 ?? 83 7? ?? 00
 74 ?? 8b 4? ?? 8b 51 08 03 5? ?? 89 5? ?? eb ??
 eb 07 c7 4? ?? 00 00 00 00 68 f8 00 00 00 8b 4?
 ?? 50 ff 15 ?? ?? ?? ?? 85 c0 74 ?? 8b 4? ?? c7
 41 04 00 00 00 00 eb ?? 8b 5? ?? 8b 02 8b 48 3c
 89 4? ?? 8b 5? ?? 83 7a 08 00 74 ?? 83 7? ?? 00
 74 ?? 8b 4? ?? 8b 48 08 03 4? ?? 89 4? ?? eb ??
 eb 07 c7 4? ?? 00 00 00 00 8b 5? ?? 8b 4? ?? 89
 42 04 8b 4? ?? 8b e5 5d c2 04 00}
 $resolve_api_call = {
 55 8b ec 6a ff 68 ?? ?? ?? ?? 64 a1 00 00 00 00
 50 64 89 25 00 00 00 00 81 ec 94 00 00 00 89 8?
 ?? ?? ?? ?? 8b 4? ?? 50 8b 8? ?? ?? ?? ?? e8 ??
 ?? ?? ?? c7 4? ?? 00 00 00 00 8b 4? ?? 8b 11 8b
 42 04 8b 4? ?? 8b 54 01 0c 89 5? ?? 33 c0 83 7?
 ?? 00 0f 94 ?? 0f b6 c8 85 c9 74 ?? 8b 5? ?? 8b
 02 8b 48 04 8b 5? ?? 8b 44 0a 3c 89 4? ?? 83 7?
 ?? 00 74 ?? 8b 4? ?? 8b 11 8b 42 04 8b 4? ?? 8b
 54 01 3c 89 5? ?? 8b 4? ?? e8 ?? ?? ?? ?? 8b 4?
 ?? 8b 08 8b 51 04 8b 4? ?? 8b 4c 10 0c 89 8? ??

12/14

 ?? ?? ?? 33 d2 83 b? ?? ?? ?? ?? 00 0f 94 ?? 8b
 8? ?? ?? ?? ?? 88 50 04 c7 4? ?? ff ff ff ff 8b
 8? ?? ?? ?? ?? 8b 4? ?? 64 89 0d 00 00 00 00 8b
 e5 5d c2 04 00}
 $heap_writing_function = {
 5? 8b ?? 6a ?? 68 ?? ?? ?? ?? 64 a1 ?? ?? ?? ??
 5? 64 89 ?? ?? ?? ?? ?? 5? 81 e? ?? ?? ?? ?? 5?
 5? 5? 89 ?? ?? c7 4? ?? ?? ?? ?? ?? 8b ?? ?? 89
 ?? ?? ?? ?? ?? 8b ?? ?? ?? ?? ?? 83 c? ?? 89 ??
 ?? ?? ?? ?? 8b ?? ?? ?? ?? ?? 8a ?? 88 ?? ?? ??
 ?? ?? 83 8? ?? ?? ?? ?? ?? 80 b? ?? ?? ?? ?? ??
 75 ?? 8b ?? ?? ?? ?? ?? 2b ?? ?? ?? ?? ?? 89 ??
 ?? ?? ?? ?? 8b ?? ?? ?? ?? ?? 33 ?? 89 ?? ?? 89
 ?? ?? 8b ?? ?? 8b ?? 8b ?? ?? 8b ?? ?? 8b ?? ??
 ?? 89 ?? ?? 8b ?? ?? ?? 89 ?? ?? 83 7? ?? ?? 7c
 ?? 7f ?? 83 7? ?? ?? 76 ?? 8b ?? ?? 8b ?? 8b ??
 ?? 8b ?? ?? 8b ?? ?? ?? 89 ?? ?? 8b ?? ?? ?? 89
 ?? ?? 8b ?? ?? 3b ?? ?? 7c ?? 7f ?? 8b ?? ?? 3b
 ?? ?? 76 ?? 8b ?? ?? 8b ?? 8b ?? ?? 8b ?? ?? 8b
 ?? ?? ?? 89 ?? ?? 8b ?? ?? ?? 89 ?? ?? 8b ?? ??
 2b ?? ?? 8b ?? ?? 1b ?? ?? 89 ?? ?? ?? ?? ?? 89
 ?? ?? ?? ?? ?? eb ?? c7 8? ?? ?? ?? ?? ?? ?? ??
 ?? c7 8? ?? ?? ?? ?? ?? ?? ?? ?? 8b ?? ?? ?? ??
 ?? 89 ?? ?? 8b ?? ?? ?? ?? ?? 89 ?? ?? 8b ?? ??
 5? 8d ?? ?? e8 ?? ?? ?? ?? c7 4? ?? ?? ?? ?? ??
 0f b6 ?? ?? f7 d? 1b ?? f7 d? 83 e? ?? 83 f? ??
 75 ?? 8b ?? ?? 83 c? ?? 89 ?? ?? e9 ?? ?? ?? ??}

 condition:
 uint16(0) == 0x5a4d and
 uint32(uint32(0x3c)) == 0x00004550 and
 all of them
}

rule malware_trick_gate_loader_shellcode_0 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Shellcode decrypted from TrickGate's resource section"
 hash = "87dc309108bbf70e3e67efbf9d4c09da"
 created = "2021-11-04"
 os = "windows"
 type = "malware.loader"
 tlp = "white"
 rev = 1
 strings:
 $decryption_routine = {
 5? 4? 75 ?? 5? 8b ?? 8b ?? 05 ?? ?? ?? ?? 68 ??
 ?? ?? ?? 89 ?? ?? 5? 8b ?? 4? 8b ?? 4? 8b ?? 66
 ad 85 ?? 74 ?? 3b ?? 77 ?? 2b ?? c1 e? ?? 5? 8b
 ?? 03 ?? 81 c? ?? ?? ?? ?? 8b ?? 5? 03 ?? 5? eb
 ?? 89 ?? ?? b? ?? ?? ?? ?? 03 ?? 8b ?? 2b ?? 2b
 ?? 8b ?? 89 ?? ?? 8b ?? 83 e? ?? 8b ?? c7 4? ??
 ?? ?? ?? ?? 89 ?? 5? ff d?}
 condition:
 $decryption_routine
}
rule malware_trickbot_4 {
 meta:
 author = "Titan Labs"
 company = "GoSecure"
 description = "Unpacked Trickbot Shellcode"
 created = "2021-11-26"
 type = "malware.botnet"
 os = "windows"
 tlp = "white"
 hash = "0d9febdee78018daea87101c0d1a5362"
 rev = 1
 strings:
 $heap_write = {
 90 90 90 90 90 90 90 90 90 90 90 90 90 0f b6 1a
 88 18 0f b6 5a ?? 88 58 ?? 0f b6 5a ?? 88 58 ??
 0f b6 5a ?? 88 58 ?? 0f b6 5a ?? 88 58 ?? 0f b6
 5a ?? 88 58 ?? 0f b6 5a ?? 88 58 ?? 49 83 c0 f8
 0f b6 5a ?? 48 8d 52 ?? 88 58 ?? 48 8d 40 ?? 75
 bc}
 $requestOptions = {
 c7 44 24 ?? 00 33 ?? ?? 4c 8d 44 24 ?? ba 1f ??
 ?? ?? 41 b9 04 ?? ?? ?? 48 8b c8 ff 15 ?? ?? ??
 ?? 85 c0 0f 84 96}

13/14

 $createProcess = {
 c7 44 24 ?? 68 ?? ?? ?? 48 8b ce ff 15 ?? ?? ??
 ?? 48 8b 8c 24 ?? ?? ?? ?? ?? 89 7c 24 48 48 89
 74 24 ?? 48 c7 44 24 ?? ?? ?? ?? ?? 48 c7 44 24
 ?? ?? ?? ?? ?? c7 44 24 ?? ?? ?? ?? ?? c7 44 24
 ?? ?? ?? ?? ?? 33 d2 45 33 c0 45 33 c9 ff 15 ??
 ?? ?? ?? 85 c0 74 68}
 $get_path = {
 33 db 48 8d 8c 24 ?? ?? ?? ?? ba 05 01 ?? ?? 45
 33 c9 4c 8b c6 ff 15 ?? ?? ?? ?? 85 c0 48 8b fe
 48 0f 44 fb 48 85 ff 75 0a}
 $incrementVars = {
 33 ff 48 8d 6c 24 ?? 90 90 90 90 90 90 90 90 90
 90 ff c7 66 83 7d ?? ?? 48 8d 6d ?? 75 f3}
 $readFile_1 = {
 48 c7 44 24 ?? ?? ?? ?? ?? 4c 8d 4c 24 ?? 48 8b
 cb 49 8b d4 44 8b c5 ff 15 ?? ?? ?? ?? 33 ff 85
 c0 0f 95 c0 74 08}
 $readFile_2 = {
 4c 8b 25 ?? ?? ?? ?? 33 f6 33 d2 45 33 c0 41 b9
 02 ?? ?? ?? 48 8b cb 41 ff d4 8b e8 89 6c 24 ??
 33 d2 45 33 c0 45 33 c9 48 8b cb 41 ff d4 85 ed
 74 58}
 $query_headers = {
 48 8b 4f ?? 48 8d 44 24 ?? 48 89 44 24 ?? 48 c7
 44 24 ?? ?? ?? ?? ?? 4c 8d 4c 24 ?? ba 13 00 00
 20 45 33 c0 ff 15 ?? ?? ?? ?? 8b c8 b8 01 ?? ??
 ?? 85 c9 75 38}
 $return_static = {
 55 48 8b ec 48 83 e4 f8 48 8d 0d ?? ?? ff ff 48
 8d 05 ?? ff ff ff 48 2b c1 48 8b e5 5d c3}
 $logic_1 = {
 44 89 5c 24 ?? 4c 89 7c 24 ?? 48 89 54 24 ?? 48
 8b 44 24 ?? 48 8b 6c 24 ?? 48 3b e8 bd 4a c7 43
 0a 41 0f 42 ee 48 8b 44 24 ?? 81 fd af b7 12 f5
 7f 43}
 $logic_2 = {
 48 83 7c 24 ?? ?? b8 95 6a 7d b9 b9 9f f8 cd a9
 0f 45 c1 e9 73 fb ff ff}
 $logic_3 = {
 48 89 9c 24 ?? ?? ?? ?? 89 74 24 ?? 48 8b 84 24
 ?? ?? ?? ?? 80 38 ?? b8 0d 1a 75 84 b9 e1 21 8b
 44 0f 45 c1 e9 6f fa ff ff}
 $logic_4 = {
 48 8b 44 24 ?? 48 89 44 24 ?? 48 8b 84 24 ?? ??
 ?? ?? 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24 ?? ??
 ?? ?? 48 89 84 24 00 ?? ?? ?? 48 8b 84 24 ?? ??
 ?? ?? 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24 ?? ??
 ?? ?? 48 89 84 24 ?? ?? ?? ?? 49 8b 07 0f b7 08
 89 4c ?? 24 48 83 c0 02 49 89 07 48 89 84 24 ??
 ?? ?? ?? 83 7c ?? 24 ?? b8 6b 7f a2 a5 b9 96 d1
 66 15 0f 45 c1 e9 a0 fc ff ff}
 $logic_5 = {
 48 8b 44 24 ?? 8a ?? 48 8b 6c 24 ?? 88 45 ?? 48
 8b 44 24 ?? 80 38 ?? bd 9e 58 3a b3 41 0f 44 e9
 48 8b 44 24 ?? eb b5}
 $logic_6 = {
 48 8b 6c 24 ?? 48 ff c5 48 89 6c 24 ?? 48 8b 6c
 24 ?? 48 ff c5 48 89 6c 24 ?? 48 8b 6c 24 ?? 8a
 5d ?? 88 5c 24 ?? 80 7c 24 ?? ?? bd 64 55 26 9d
 41 0f 45 ea e9 33 ff ff ff}
 $logic_7 = {
 48 8b 84 24 ?? ?? ?? ?? 8b ?? 48 8b 4c 24 ?? 48
 8d 14 01 48 89 94 24 ?? ?? ?? ?? 8b 54 01 ?? 4c
 8b c3 8b df 44 8b ce 48 8b 74 24 ?? 48 03 f2 48
 89 b4 24 ?? ?? ?? ?? 49 8b d8 8b 54 01 ?? 48 8b
 74 24 ?? 48 03 f2 48 89 b4 24 ?? ?? ?? ?? 41 8b
 f1 8b 44 01 ?? 48 03 44 24 ?? 48 89 84 24 ?? ??
 ?? ?? b8 f7 db c4 c5 49 8b cd 48 89 4c 24 ?? e9
 96 f9 ff ff}
 $logic_8 = {
 49 63 45 ?? 4c 89 6c 24 ?? 48 8b 4c 24 ?? 48 8d
 84 01 ?? ?? ?? ?? 48 89 84 24 ?? ?? ?? ?? 48 8b
 84 24 ?? ?? ?? ?? 48 89 84 24 ?? ?? ?? ?? 48 8b
 84 24 ?? ?? ?? ?? 83 38 ?? b8 4d 1d f8 fb b9 c3
 f8 ec ?? 0f 45 c1 e9 05 f7 ff ff}
 $logic_9 = {
 49 8b 07 0f b7 08 89 4c 24 ?? 48 83 c0 02 48 89
 84 24 ?? ?? ?? ?? 48 8b 84 24 ?? ?? ?? ?? 49 89
 07 83 7c 24 ?? ?? b8 18 ab 0a 99 b9 28 86 7a 7a

14/14

 0f 45 c1 e9 76 f8 ff ff}
 $logic_10 = {
 83 7c 24 ?? ?? b8 79 5c ba 4b b9 a9 a6 56 b9 0f
 4f c1 8b 4c 24 ?? 89 4c 24 ?? e9 50 fa ff ff}
 $logic_11 = {
 8b 44 24 ?? 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24
 ?? ?? ?? ?? 48 8b 8c 24 ?? ?? ?? ?? 48 8d 04 88
 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24 ?? ?? ?? ??
 8b ?? 89 44 24 ?? 83 7c 24 ?? ?? b8 38 55 90 88
 b9 29 a5 0e be 0f 45 c1 e9 12 fe ff ff}
 $logic_12 = {
 8b 44 24 ?? 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24
 ?? ?? ?? ?? 48 8b 8c 24 ?? ?? ?? ?? 8b 04 81 48
 03 44 24 ?? 48 89 84 24 ?? ?? ?? ?? b8 b9 23 c7
 33 33 f6 48 8b 9c 24 ?? ?? ?? ?? e9 96 fe ff ff
 }
 $logic_13 = {
 8b 44 24 ?? 89 44 24 ?? 48 8b 84 24 ?? ?? ?? ??
 48 83 c0 18 48 89 84 24 ?? ?? ?? ?? 48 8b 84 24
 ?? ?? ?? ?? 8b 4c 24 ?? 3b 08 b8 5c b1 a7 79 b9
 26 e6 ba 02 0f 42 c1 e9 21 fb ff ff}
 $logic_14 = {
 8b 44 24 ?? 89 44 24 ?? 8b 44 ?? 24 8b 4c 24 ??
 3b c8 b8 d0 78 7a 87 b9 07 2b 67 eb 0f 42 c1 c7
 44 24 ?? ?? ?? ?? ?? e9 58 f9 ff ff}
 $logic_15 = {
 8b 44 ?? 24 8b 4c 24 ?? 3b c8 b8 65 79 3f 9a b9
 3c 26 ab 78 0f 44 c1 8b 4c 24 ?? 89 4c 24 ?? e9
 ff f7 ff ff}
 $logic_16 = {
 8b 44 24 ?? 8b c8 f7 d1 81 e1 4d 5e 9b 89 25 b2
 a1 64 76 0b c1 35 dc fe ed bc 89 84 24 ?? ?? ??
 ?? b8 e1 65 b5 e3 33 ff e9 85 f7 ff ff}
 $logic_17 = {
 8b 74 24 ?? f7 de bf 01 ?? ?? ?? 2b fe 48 8b 74
 24 ?? 8a 5c 24 ?? 88 1e 48 8b 74 24 ?? 48 ff c6
 bd f3 dc 32 70 eb 2a}
 $logic_18 = {
 f6 44 24 ?? 01 b8 5d ff b5 c1 b9 7a 22 79 97 0f
 45 c1 e9 0d ff ff ff}
 condition:
 filesize < 328KB and 10 of them
}
alert http any any -> $EXTERNAL_NET any (
 msg:"GS MALWARE Trickbot C2 Communication";
 content:"_W"; http_uri; fast_pattern;
 pcre:"/^\/\w+\d+\/[^\/]+_W\d+\.[A-F0-9]{32}\/\d+\//U";
 flow:to_server, established;
 metadata:created 2019-06-06, updated 2021-11-25, type malware.botnet, os windows, tlp white, id 3;
 classtype:trojan-activity;
 sid:300000464;
 rev:3;
)

