Revix Linux Ransomware

angle.ankura.com/post/102hcny/revix-linux-ransomware

Vishal Thakur

In the first half of 2021, we started to see the REvil ransomware operators pivot to targeting
Linux-based systems with a new Linux version of their ransomware, similar to the malware
they commonly used on Windows systems. Since then, there have been a few versions of

this Linux-based malware.

In this post, we look at the latest version of their Linux-based ransomware "1.2a".

Quick Snapshot:

The malicious file is a Linux executable
Class: ELF64

Type: Dynamically Linked

Machine: X86-64

Number of section headers: 28

Entry Point: 0x401650

callg: __libc_start_main@plt

MD5: ¢83df66c46bcbc05¢cd987661882ff061
Yara Rules:

1/16


https://angle.ankura.com/post/102hcny/revix-linux-ransomware

https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revil.yar
https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revix.yar

Introduction

The execution of this malware is straightforward. It traverses through the directories specified
as targets and encrypts the files present in those directories. Once encryption is complete, it
drops a ransom note in the directory with the usual ransom message and instructions on
paying the threat actor to get the decryption key.

---=== Welcome. Again. ===---
[+] Whats Happen? [+]

Your files are encrypted, and currently unavailable. You can check it: all files
on your system has extension {EXT}.

By the way, everything is possible to recover (restore), but you need to follow
our instructions. Otherwise, you cant| return your data (NEVER).

[+] What guarantees? [+]

Its just a business. We absolutely do not care about you and your deals, except
getting benefits. If we do not do our work and liabilities - nobody will not
cooperate with us. Its not in our interests.

To check the ability of returning files, You should go to our website. There you
can decrypt one file$

This variant of Revix requires a couple of parameters to be passed to execute successfully. It
also requires escalated privileges to run and encrypt files on the disk successfully.
Additionally, the malware checks the files in the target directories to see if they are already
encrypted.

One of the main targets for this malware is VMware ESX platform's, which we've seen before
in a different Linux ransomware from DarkSide.

Analysis

For this post, we analyzed Revix both statically and dynamically. Both methodologies have
been used together throughout the analysis process presented below.

Let’s take a quick look at a couple of sections of this executable so that we have the offsets
to some of the initial calls that can be used for further analysis.

2/16


https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revil.yar
https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revix.yar
https://www.trendmicro.com/en_au/research/21/e/darkside-linux-vms-targeted.html

7T 45 4c 46 62 @1 61 60 GO 00 A0 G0 00 80 B0 06

ABI Version:

nt, little endian
em W

{Executable Tile)
nced Micro Device

Header: y point address: (301658
start of program headers: 64 (bytes into Tile)

e of this
e of prog

5ize of sectio

ders: 17544 (bytes inte file)

Number of section heade
Section header string table index:

Figure 1: Header Information

Section .init:

This section holds executable instructions that need to be executed before the main program

entry point.
TO0D]00J00 01368 <. init=:
A0126E: 48 B3 ec 04 sub  rap,0xB
A0126E: 48 8005 85 4d 2100 mow  rax OWCRD PTR [fp+-0md 14085] # B150 <uslanp@ph=0x214 908>
ANM27E; A0 05 ol tmst  ranrax
2012 7E: T4 05 je o 4D12Td =froa@pls-daR 3=
A0N2TE: @B 03 02 00 DO call 401430 «__gmon_siat_ Eplts
A0927d: 48 B3 =4 04 add  rep, 0«
A01287: ] et

Figure 2: section

Section .text:

This section contains executable code.

OOOD000000401 350 < texl=:

4 raa0: 3 oed wor  ebpebp

401652 49 BB d1 mav  rd,rdx

401655; ) pop  rsl

401834: 48 BB e maw i rsp

41655 48 B3 ed ard  rsp, DD

40165d: 50 push rax

A0 16 Te: 54 push rsp

401a5E 49T D002 41 00 mavw i Oxd 10290

401aGE: 48 e7 o1 2002 41 00 mav o, 0= 10220

A0 166d: 48 cf oF PGB 40 00 mov  rdi Oed OEATF

H01674: a8 b fd ff ff call 401430 <__libc_start_maing@plt=
OOBGA00000404430 = Foe_start_maingEeaite:

401430; 7 25 pa e 21 00 imp CQWORD PTR [rip+0x214caal # 61800 <usleepgpli+0x2 14aal>

401406 A8 1500 00 00 push Outd

40143b: a9 50 fa ff ff jmp 401290 <freef@ph-0x1 0=

Figure 3: section

Functions

3/16



Revix loads several functions upon initialization. Following are some of the more interesting
functions we can extract useful information from, to understand the flow of execution, along
with developing threat detections that we've provided at the end of this post.

We execute the malware while attached to a debugger and break at the main function to
view these functions presented below. Once we hit the main function, we follow the jump to
'puts' function to look at the CPU at that location. We can see all the loaded functions at this
point.

Figure 4: Malware functions loaded upon initialization

S5a dc imp gword [rel 8x61G6138]
GEEI00EE; 904014905 | 65 23 06 99 0 push 8x23
DERAGDEDE: d04B14db|e% h@ Td 1 T jnp ExsDLZ93
GREAAONE: A04D14=0]ff 25 52 4c 21 60 jmp gword [rel Gx61G138]
GEEI00E ;3040145 |68 24 B0 90 O aush 8x24
BER DB A04B14sb|e® ad@ fd fF T jmp ExsBLIE3
DEEIOOOE; A04DLAF0|Ff 25 4 4c 21 90 jmp gward [rel Gx61G1449]
GREI000E; 304814TG |65 25 86 G0 08 aush 8x25
DERIGDDE: 040140 |29 93 *d 1 f jmp Ex£DL793
GEEAGO0E: 0401500 FF 25 42 4c 21 GO jimp gword [rel 8x61G1487
GEEIROEE;30461506|68 26 B0 90 O oush 8x26
DERAODEE: 90481530 |9 H3 Td 1 7T jnp ExsDL2E4
OREIOOOE: A04BL510|Ff 25 3a 4c 21 G0 jmp gword [rel Gx61G154]
BEEIOEE;30481516|68 27 BB 80 08 oush 8x27
'——| DEBBEIGDDE:d04B151b|e® 7@ fd T ©F jmp Ex£0L3949
W ODEAA00E: A04BL520|FF 25 32 4c 21 G0 jmp gword [rel Gx61GL58]
GEEIOREE90461526|66 28 86 98 08 oush 8x2&

Figure 5: Function sequence during execution

Initialization

Let's take a quick look at the program initialization:

The malware requires to be run with a couple of command-line arguments. We can see
these being passed through the stack in the image below/

ASCIT "Sevix 1.2a wrinlsspe exsaple: elf.=«e ..path Swats --thresds Swrin.-silent {-sb use for not stoping

Figure 6: Parameters for the command-line arguments

The image below shows another view from the CPU that shows the program execution in
flight.

4/16



Lelelegelalvle ey e P E g g gy [ o | TET

BERO0BEE0:R4RGETT
Be660880: 00406680 |48 89 e5 mov rbp, rsp
BEO0DSG0:pR406E83 (48 83 ec 30 sub rsp, Ox30
aeoppasn:pe406E87 |89 Td dc moy [rop-8x24], edi
QEBEEEBEE: pO4A6EE8a |48 89 75 48 mov [rbp-8x38], rsi
BEO0DEE0: 40668 (c7 45 B 00 00 OO0 98 mov dword [rbp-0x18], @
BE660880 : 00406695 |83 Td dc 81 cmp dword [rbp-8x24], 1

r==| ©0000OB0:0D406893 (7F 14 ig Gx4068af

H BEOA0EGH ;08406690 |hT 38 67 41 68 nmov edl, GE41B758

E Bea682a0:8084068a0 |eB Tb aa ff ff call revil.elf!puts@plt

Figure 7: Program execution in flight

ASCII "Revix 1.2a wrinUsspe exsmple; elf.=xe ..path Semtss - thresds Swrin--silent {-s) wse for not stoping

Figure 8: Stack view

Execution

When executed as a non-privileged user, the malware is not able to achieve full execution.

As shown in the image below, the malware has been provided with the directory 'here/' for
this analysis.

write(l, @xcc32

)
Figure 9: Write execution on dir

The malware tries to access the data in this directory for read/write and is unsuccessful, as
shown below.

Figure 10: getdent64 unsuccessful

The malware also tries to encrypt a test file that we used in our analysis, but the encryption
process fails as that action requires higher privileges.

write(l, B0x88b2a®, 4BErrer create note im dir heres/vemar-readme.txt
| = 48

close(3[here/stest . txt] semms to be protected by os but let's encrypt anyway...

Figure 11: Encryption unsuccessful

As a result, the execution fails to achieve the desired outcome for the malware, as shown
below.

5/16



ij.
ENCRYPTED

ij|

ij]|

ij| 0000000
ij| FILES
ij|
ij]|
ij|

00000000
MBs
ij

Figure 12: Encryption failed

Another point of interest from this failed execution is that the malware attempted to execute a
esxcli command but this action fails as there is no esxcli on our test machine.

esxcli: not found

Figure 13: esxcli not found

When we execute Revix with elevated privileges, we start to see more successful activity
from the malware.

Firstly, Revix can access the data in the target directory.

openat (AT FDCWD, "heres", O RDOMLY |0 MONBLOCK|O CLOEXEC|O DIRECTORY) = 3

fstat{3, {st_mode=5 IFDIR|@755 size=4896, ...}) = @
getdents64{3, /* 3 entries =/, 32768) = BB

Figure 14: getdents64 successful

We can see in the image above, the system call ‘getdents’. This system call returns directory
entries for the directory it’s run against.

int getdents(unsigned int fd, struct linux dirent *dirp,
unsigned int count);

Figure 15: getdents64(2) Synopsis
In this case, there are three entries as we can see from the result shown in the image above.

Next, we can see that Revix is able to perform read/write functions on the data in the target
directories, resulting in successful encryption of files.

Encrypting [here//test.txt]

clock nanosleep(CLOCK REALTIME, @, {tv sec=@, tv nsec=180888}, HULL)

Figure 16: Encryption successful

The Revix output below shows that it can write the ransom note text file to the victim's disk.

6/16



fstat(5, {st mode=5 IFREG|8644, st size=0, ...}] 2]
write(s, "---=== Welcome. Again. -==hmAn[®..., 2311) = 2311

close(5) =8
close(3)

Figure 17: Ransom note write successful

Finally, we can see that the execution is completed successfully, resulting in the data present
in the target directory being encrypted:

ij| ENCRYPTED |ji
ijl- - - - - -]5d
ij| ©eeees8l |ji

ij| FILES |ji

Figure 18: Execution complete

The file we provided in the target directory is now encrypted, and a ransom note is created in
the same directory:

(@remnux:~/Documents$ 1s here

.vemar vemar-readme.txt

Figure 19: Execution complete, file encrypted

The malware also checks if the data in the target directory is already encrypted. To
demonstrate this, we ran Revix against the same target directory one more time.

Upon execution, Revix runs a check on the data present in the target directory and identifies
it to be already encrypted:

*cSel, FUTEX WALT PRIVATE, @, MULL[heref/test.txt.vemar] already encrypted

Figure 20: Encryption check performed

As a result, the execution ends up with no data being encrypted.

j| ENCRYPTED |j

j1- - - - - -l

j| 00000000 |j

FILES  |j

7/16



Figure 21: Execution complete

VMware ESX Targeting

Revix also tries to use esxcli, the command line interface for VMware’s ESX platform.
Let's take a quick look at the parameters passed to esxcli by Revix when it executes:

esxcli --formatter=csv --format-param=fields=="WorldID,DisplayName" vm process list | awk
-F "\"*\"*" Y{system("esxcli vm process Kill --type=force --world-id="$1)}'

vm process list

List the virtual machines on this system. This command currently will only list running VMs
on the system.

vm process Kill

Used to forcibly kill Virtual Machines that are stuck and not responding to normal stop
operations.

--type
There are three types of VM kills that can be attempted: [soft, hard, force].
--world-id | -w

The World ID of the Virtual Machine to kill. This can be obtained from the 'vm process list'
command (required)

Essentially, these ESX command-line arguments are shutting down all virtual machines
running on the ESX platform.

Revix attempts to target the '/vmfs' directory and encrypt all the data present in that directory,
so all the virtual machines are rendered inoperable until the data is decrypted. This targeting
is similar to that seen in DarkSide's Linux variant.

Command-line Arguments

The malware requires the following parameters to be passed for its execution to begin:
elf.exe --path /vmfs/ --threads 5
It also allows the '--silent' option that executes the malware without stopping any VMs

--silent (-s) use for not stoping VMs mode *

8/16



Parameter Purpose

--path Specifies the path of the data that needs to be encrypted

--threads Specifies the number of threads, by default the malware uses 50 threads

--silent Executes the malware without stopping the VMs running on ESX

Configuration

The configuration of Revix is similar to that of its Windows variant, only with fewer fields.

Field Description

pk Public Key
pid ID
Sub Tag

Dbg Debug mode

nbody Base64-encoded body of the ransom-note

nname Filename of the ransom-note

rdmcnt Readme Count

ext File extension of the encrypted files

Here's an image showing the configuration we were able to extract from the sample we
analysed:

9/16



R AR GrEHRE DRy BhHe pama ey ZR e SelgMmZE i

"pld £ 2281 280 3W ke d. myDed Sl g O dn T CEOMR2duaMRIHTRTEF XhSeCLHuL ofds®,

"EUR"TERET

"D falss,

"Et*1,

"y LSRR TIRRD BARGESLUER YW ILLARPTOHL RIKC B SAXACQ FRey BIY KEwWZWAT R On KM ¢ BraiivelyBhemLgTn
Senbaed e LS BnomOg ¥ v oS« 51N Vu s bl h Y ma L D203 Ug Y 3 ulE o 2GS Bhb Fegdm s 2o 24 qeid  cDzek
B O E R A G s e oD TRV LIS koG Rl e he Swg 20 2ieniDa HuZ y D poy Bab MM W s 2 S0 Dby Dy 2 Madmbl Chp 204
DEG A San ™ n VI H v ASEOrY Y EIHRA G b Geredy B igaW SrdH N VAR ph2 52 LIERaG e pe? Le Hhe S B G0 H e iR I 3
GRNAEEGMESFY O EKSIKC s SR K GFOKES 1Y bn RO F st Coi S xR Gp e A0 S8 e Kk phmvayd g2 U g YW ek oG s
ef8kbyBubd0gy 2Py ZEREYmS14SBEbIUg Y WEkIHIwd X Ig 25 hh IS 15V Y 8 et CEnZ M REal B S bnvmak Rz L B ABIEE Bk by
B3R G b3 Hedvemag VWK S0 YW oo GIla v 2 IC g bre SRS IHdpbGwiben BIGH 3B cmFOZSEIa X Re HyeLiB HMg b
SOIEHUGEH cBpbn=kom vz dHM LS R Ghof W HriHRoZ SEnYmsa X RSESmiHAd Hvynm L2y Bmai®te ors g Wit IRGo IS ZCHnby B
OnyByd X Iga2WicHNZ =gy ERlemUgee S I EKRD B Wikya XBHG I ZZ8matd IGZvdBmemty LIBURGFO SIS B ndW Ry WHDE
WG kimiHbuS D3\ 5 COjL28wZ 8 I GLind 2 Ded e vied m 25 ANEZ vai B mpvaai Re I RZX MabmB01G T heHRiziag 0
ri I HB S D s GoansZ guidi ] o DGl TG M uZ CORYXRhLC DAV 2Z Shad MO HA G hhdin Lad SHIBDy ok Thd 3 Uga W SLIRILD
WP FR ANER R L a3 M b W ACERA N HTR A HY R M HR e WA GRS ph K TS G 3IHRSAIATRRY 2 SghFdad
A2 ETagi e Caot s uZs D IF RPUIB cmstc vy deglDEpl ERvd2 Sso2 FRIGFUZ 0 Dpbr MO s FRPJQism3dudvl GZybalgeG
hipsy Bz R BodH R szos LIRyen Byban Y100 b2 n Lo DIpl ESwZ W g b2V d Y i pd GUEBI Ghid Gy BhoEe o | NDD322FEY
HBR AT Y I Ja s Sn 2 YA 2 Y I A M s RIS T 0 e hin b B TVLITEMOaRE 2 By il il 2 ag e W BRSO R IR IHG
P RLATY 2FUI G R b N W el F R KRz IHdea S Bmadl s CRIY I WEIG 1Y 2ag Y m e TaG I GRUECRIELIIGE 2FiWE YL
sésd-lﬂ.ﬁw?ﬂgc’ﬁg'l GE"WZ'.'J-IBI:H-\."&'IHI‘.IWHNFHGU!IHH"IHCHU-!{SU\;MI:\GHH:IW'BrI';.iHI‘dEI:g:I'J’!’deEI‘IIE LeHVDIG SvemiBC:
kUl Takgp TS0 e G L3030 S SN L S L SILS HL S ML S ML S0 SO SMLSL S L SDILS DL SCILSCIL 3L S0 3L S0ILS
QILSNLENLSNLSHLSCIL S0 Caanl SEaREF ORIV EICERIQpET0AnWCBDen kad GBIY 2hhbm el GZpbGW 2GS Fwd X e T erLCBET
OB TE e2Ug Y WEEIFR aa X KIH2hon RSIHNwERR 3 G2y By R R0 3 Jpmoge S B RIS GFud Sl e H opBrn 2 d By
ErbAgL BEpAH MG S GV UCE FahCEEY WA hZFUgh2Y g GhIHE AN T hiG L gREvEIEFIZ Cwg Y EMgerven i 1L CRUEEUG T ey B
RGO SR EChIC TR A STHTA5M L 1PL LG DNR Tog S MRl G lul HhveX g 3020 e dRzIH R Sd [ GO Sy 122 pb Gy G
Y PsE Ty AN HN R ZE LS ICROA LU Y Mo Brcty e s ok g bW SR dm e KRaa Wl GFy s By s =i Jpbrmes]
Q.M AR EVheILgefhan e kA CAphrR em e mliU D ERE ARSI SFh AA==T,

“nname’ CXTreagme el®,

“ R,

“aEl" " eRmArT

Figure 22: Configuration

Profiling

Revix also gathers information about the victim machine by running the "uname" command:

uname -a && echo " | " && hostname

00300200504110a8
0030020000000072
0OG002000000002C
00G0020000410220
0OGA7FFc29fe206B
0OGATFFc20fe20al
0OGREODE0004110ch
GOGRORE000411046
GOGRODO0DO50CAl0
GORRORAODEE0dIeD

Figure 23: System profiling

The results of the above command appear in the stack:

AEGEOEOASAAGERE] [ap. o .. . | feTurn To GXOBORESEOHOIASRS]

QEQUDUDNCEAC S |[)

JEOEQBEDECABECChY T .. .. . |ASCIT "Linux remndx 5.4.8-T72-generic #E0-Ubunta SMP Mon Apr 12 17:35:80 UT

Figure 24: Stack view of system profiling in action

The info is then passed through the registers:

10/16



EARAARAARARACLAR
COn07fodl9babcad
EREATTTC20Te1RTR
GOt tc9teldtl
£aga7TTc207eldhe
LRLRGLLEL L e
cagaagRatrffrres
LR L
LU L LB Ry T
CREAAEARBARACKAR
0aaavTTc29telend
ERRAARAARAATATRA
a0y ffc2ateltfan

Figure 25: Register view od system profiling in action

And the end-result is created in the form of this configuration with the victim information:

{"ver":512,
"pid":"$2a$12$D3Wk4d.cy0e0EiVgDPJe1.060MR3duocMRIH78iT]
"Sub":"8639",

"pk":"4nONud GmaHi40RvBhHclpampesKyZMxfSelgMmZE/nl=",
"uid":"TE73E5407E73E540",
"sk":"BRCu0SBWVoNHOt5LRPQzvUgP/6vWUnx2FYqbfTrVgvybg
UuNGEKZVvSFH7XwzXXu36tLCA==",

"Os":"linux",

Figure 26: System profiling complete

Encryption

The malware uses Salsa20 encryption algorithm, just like its Windows variant, to encrypt the
data. Here is the pseudocode for the function that implements this encryption:

wold FUM_02481ad3[uint *param_1.uint *paran_2.int param_3)

{
wmnt *local_LB;
paran_1[1] = *paran_32:
paran_1[Z] = param 2[1];:
paran_1[3] = param_2[2];
paran_1[4] = param_2[3);
if (paran_3 == Ouiod) {
local_ 18 = paran_2 + 4;
DAT_D061aZlE = “pxpand Z2-byte kexpand 16-byte kvex-=
}
glsa
DAT_COE1a3LE = "expand 16-byte kvnx-*";
local_18 = param_2;
}
paran_l[0xb] = *local 18;
paran_l[&uc] = 1l 12[1]:
paran_1[Gxd] = 1l 1E[2]:
paran 1[éxa] = local 18[3]:
*param_1 = (LntIDAT_0OSLa3lBl1] == 8 | (1nt]*DAT_0061a318 | (intlOAT_0O6Ladlelzl =< 3xlD |
(Lnt)0eT_D0ELa3L6[3] == 0x1G:

paran_1[5] = (int)DAT_0061a308[S] << 8 | (1nt]DAT_D0Sla3l@(4] | (1at)DAT_0051a3lB[5] << 0«10 |
(Lt )DAT_CO61aZ1E[7] == 0x18;

paran_1[10] = {int}DAT_DEELa31B[9] =< & {int)OAT_0261a31818] | {int)DAT_0OZ6La318]14] << 0xl@ |
finti0aT iA1= Onh] =< Gxl8:

paran_1[&xF] = [int)DA ¥ilal8[Axd] =< B | [int)DAT amblazlg[dec] |
[int) AT O0615316[0xe] =< Celd | (Int]0AT DOS1a3LE[0uf] <= Oxld:
returm;

Figure 27: Pseudo-code for the encryption algorithm

11/16



Mitigation

Detections

Commands

Revix runs this command to determine machine info:
uname -a && echo " | " && hostname

Revix tries to query this directory:

/dev/urandom

Revix runs the below command to stop VMs running on the ESX platform in order to encrypt
the data on those VMs:

esxcli --formatter=csv --format-param=fields=="WorldID,DisplayName" vm process list | awk
-F "\"*\"*" Y{system("esxcli vm process Kill --type=force --world-id="$1)}'

Typos:

In some instances, typos that malware authors commit to the code are useful in detecting
specific malware or similar code used in other malware families. Below are some of the typos
we found in this variant of Revix:

--silent (-s) use for not stoping VMs mode

semms to be protected by os but let's encrypt anyway...

YARA Ruleset 1

12/16


https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revil.yar

rule Revix {
meta:

description = "Detects REvil Linux - Revix 1.1 and 1.2"

author = "Josh Lemon"

reference = "https://angle.ankura.com/post/102hcny/revix-linux-ransomware"

date = "2021-11-04"

version = "1.0"

hash1 =
"f864922f947a6bb7d894245b53795b54b9378c0f7633¢c521240488e86f60c2¢c5"

hash2 = "559e9c0a2ef6898fabaf0a5fb10ac4a0f8d721edde4758351910200fe 16b5fa7"

hash3 =
"ea1872b2835128e3cb49a0bc27e4727ca33c4ebebale80422db19b505f965bc4"

strings:

$s1 = "Usage example: elf.exe --path /vmfs/ --threads 5" fullword ascii

$s2 = "uname -a && echo \" | \" && hostname" fullword ascii

$s3 = "esxcli --formatter=csv --format-param=fields==\"WorldID,DisplayName\" vm
process list" ascii

$s4 = "awk -F \"\\W"™* \\"*\" {system(\"esxcli" ascii

$s5 = "--silent (-s) use for not stoping VMs mode" fullword ascii

$s6 = "IIBY DEFAULT THIS SOFTWARE USES 50 THREADS!!!" fullword ascii

$s7 = "%d:%d: Comment not allowed here" fullword ascii

$s8 = "Error decoding user_id %d " fullword ascii

$s9 = "Error read urandm line %d!" fullword ascii

$s10 = "%d:%d: Unexpected "%c" in comment opening sequence" fullword ascii

$s11 = "%d:%d: Unexpected EOF in block comment" fullword ascii

$s12 = "Using silent mode, if you on esxi - stop VMs manualy" fullword ascii

$s13 = "rand: try to read %hu but get %lu bytes" fullword ascii

$s14 = "Revix" fullword ascii

$s15 = "without --path encrypts current dir" fullword ascii $e1 = "[%s] already
encrypted" fullword ascii

$e2 = "File [%s] was encrypted" fullword ascii

$e3 = "File [%s] was NOT encrypted" fullword ascii

$e4 = "Encrypting [%s]" fullword ascii

condition:
uint16(0) == 0x457f and filesize
¥
YARA Ruleset 2
/*

author = "Vishal Thakur - malienist. medium.com"
date = "2021-11-15"
version = "1"

13/16


https://github.com/YaraExchange/yarasigs/blob/master/ransomware/crime_lin_revix.yar

description = "Detects Revix-1.2a and earlier versions of Revix"
info = "Generated from information extracted from the malware sample by manual
analysis."
*/
import "pe"
rule revixStatic {
strings:

$header = { 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 02 00 3e 00 01 00 00 00
50 16 40 00 00 00 00 00}

$config={7B 2276 657222 3A????2C 22706964 22 3A227??7??222C 227375
62 22 3A 22?7 ?7?222C 2270 6B 22 3A 22?7 ??222C 227569 64 22 3A 22?7?7722
2C22736B223A 2277 7??222C226F 73223A 2277 7??7222C 226578 74 22 3A 22
?7?77??7227D}

$uname = {75 6E 61 6D 65 20 2D 61 20 26 26 20 65 63 68 6F }

condition:

all of them and

filesize
}
rule revixCode {

strings:

$err1 ={4572 72 6F 72 20 6F 70 65 6E 20 75 72 61 6E 64 6D }

$err2 = {4572 72 6F 72 20 64 65 63 6F 64 69 6E 67 20 6D 61 73 74 65 72 5F 70 6B }

$err3 ={66 6174 616C 206572726F 722C 6D 6173 7465725F 706B 207369
7A 652069 7320626164}

Serrd = { 45 72 72 6F 72 20 64 65 63 6F 64 69 6E 67 20 75 73 65 72 5F 69 64 }

$err5 = { 45 72 72 6F 72 20 64 65 63 6F 64 69 6E 67 20 6E 6F 74 65 5F 62 6F 64 79 }

$form1 = { 65 78 70 61 6E 64 20 33 32 2D 62 79 74 65 2? 2?}

$form2 = { 65 78 70 61 6E 64 20 31 36 2D 62 79 74 65 2? 2?2}

$config = { 7B 22 76 65 72 22 3A 22 22 2C 22 70 69 64 22 3A 22 2? 22 22 2C 22 73 75
62 22 3A 22 27 22 22 2C 22 70 6B 22 3A 22 2? 2? 22 2C 22 75 69 64 22 3A 22 27 72 22
2C 22 73 6B 22 3A 22 27 22 22 2C 22 6F 73 22 3A 22 2?2 2?7 22 2C 22 65 78 74 22 3A 22
2222227D)

condition:

14/16



all of them and
filesize

}

rule revixESX {

strings:

$cmd1 ={6573 78 63 6C 69 }
$cmd2 = { 2D 66 6F 72 6D 61 74 74 6572 3D ?? ?? ??}
$cmd3 ={ 2D 2D 66 6F 72 6D 61 74 2D 70 61 72 61 6D }
$cmd4 = {76 6D 20 70 72 6F 63 6573 7320 6C 69 73 74 }
$cmd5 ={6573 78 63 6C 69 20 76 6D 20 70 72 6F 63 65 73 73 20 6B 69 6C 6C }
$cmd6 = { 2D 2D 77 6F 72 6C 64 2D 69 64 3D 22 ?? ?? ?? }

$config ={7B 22 76 65 72 22 3A ?? ?? 2C 22 70 69 64 22 3A 22 ?? ??222C 227375
62 22 3A 22 7?7??7?222C 2270 6B 22 3A 22 ?7? 7?77?22 2C 227569 64 22 3A 22 ?? ?77? 22
2C22736B 22 3A 2277?77 222C 22 6F 73 223A 22?7?77 222C 226578 74 22 3A 22
?7?7??227D}

condition:
all of them and
filesize
}
rule revixPE {
condition:

pe.entry point == 0x401650

Conclusion

As we can see in the analysis shown above, the execution of Revix is a bit clunky in this
variant. It requires multiple conditions to be met before the ransomware is successful in
encrypting data.

15/16



Revix needs to be executed as a command-line argument with elevated privileges, specified
target directories, and the number of threads. Basically, it's not a standalone application at
this time and is quite noisy as well.

If Revix is not run with silent mode enabled, it will try to stop any VMWare ESX virtual
machines, triggering incident response processes from the victim. Revix could quite possibly
fail to encrypt the virtual machines due to reduced/restricted access of where they reside on
a Linux system.

As new variants for the Revix ransomware are released, we expect the execution to be more
efficient, requiring fewer manual processes from the threat actor.

References

ESXi 7.0 U3 ESXCLI Command Reference

DarkSide on Linux: Virtual Machines Targeted - Naiim, M.,2021

getdents64(2)_- Linux man page

Code Analysis details by Intezer Analyse

© Copyright 2021. The views expressed herein are those of the author(s) and not
necessatrily the views of Ankura Consulting Group, LLC., its management, its subsidiaries, its
affiliates, or its other professionals. Ankura is not a law firm and cannot provide legal advice.

16/16


https://developer.vmware.com/docs/14743/esxi-7-0-u3-esxcli-command-reference/namespace/esxcli_vm.html
https://www.trendmicro.com/en_au/research/21/e/darkside-linux-vms-targeted.html
https://linux.die.net/man/2/getdents64
https://analyze.intezer.com/files/f864922f947a6bb7d894245b53795b54b9378c0f7633c521240488e86f60c2c5

