
1/14

December 1, 2021

Analyzing How TeamTNT Used Compromised Docker Hub Accounts
trendmicro.com/en_us/research/21/l/more-tools-in-the-arsenal-how-teamtnt-used-compromised-docker-hu.html

Cloud

Following our previous disclosure of compromised Docker hub accounts delivering cryptocurrency miners, we
analyze these accounts and discover more malicious actions that you need to be aware of.

By: Trend Micro Research December 01, 2021 Read time: (words)

In early November, we disclosed that compromised Docker Hub accounts were being used for cryptocurrency
mining and that these activities were tied to the TeamTNT threat actor. While those accounts have now been
removed, we were still able to investigate TeamTNT’s activities in connection with these compromised
accounts.

In addition to the behavior we noted earlier, we identified several other actions that the same threat actor
carried out in different venues. One was the use of Weave Scope, a legitimate tool by Weaveworks used to
monitor/control deployed containers.

Weave ScopeWeave Scope is a visualization and monitoring tool for Docker and Kubernetes. System
administrators can use this to monitor and control their deployed containers/pods/workloads.

https://www.trendmicro.com/en_us/research/21/l/more-tools-in-the-arsenal-how-teamtnt-used-compromised-docker-hu.html
https://www.trendmicro.com/en_us/research/21/k/compromised-docker-hub-accounts-abused-for-cryptomining-linked-t.html

2/14

 Figure 1. Weave Scope window

One can manage running containers by executing, rebooting, pausing, stopping or even deleting containers, all
of which can be controlled from a web console (either local or in the cloud).

In this attack scenario, the compromised underlying host was made a node of the threat actor-controlled
Weave Scope Cloud instance, from where they could execute various commands.

 Figure 2.

Terminal command executed via Weave Scope
The administration features make Weave Scope an interesting target. This is how attackers targeted this
recently:

1. The attacker spins up a new privileged container based on an image from a compromised account. In the
arguments, the attacker attempts to mount the root file system of the underlying host to the ‘/host’ mount point
and executes a bash script fetched from the attacker’s infrastructure.

3/14

 Figures 3-5. Code to spin up new container

2. The script ‘scope2.sh’ is downloaded and piped to ‘bash’ to be executed. The script initially checks if the
hostname’s value is ‘HaXXoRsMoPPeD’ halting the execution if true. This looks like a flag to check if a system
has already been compromised.

 Figure 6. Script checking for hostname

3. Environment variables are set, which overrides localization settings, prevents command history logging, and
exports a new path.

4. A variable ‘SCOPE_TOKEN’ is populated from a controlled endpoint, which contains the Weave Scope
service token. ‘SCOPESHFILE’ contains the Weave Scope script, which is encoded in base64.

 Figure 7. Encoded

script
5. The path to ‘docker’ binary is fetched using ‘type docker’. To evade any TTY events, they’re redirected to
‘/dev/null’. Based on this, the execution proceeds.

4/14

6. The file ‘/tmp/.ws’ is checked:

a. If the file doesn’t exist, the following commands are executed:

i. The ‘/tmp/’ path is remounted with read-write permissions using the ‘mount’ utility.

ii. The base64 encoded string of the ‘SCOPESHFILE’ variable is decoded and the output is redirected to
‘/tmp/.ws’. This is the Weaveworks’ script and is hidden by default since the file name begins with a ‘.

iii. The permissions of the newly created script are changed to executable using ‘chmod’

b. If the file ‘/tmp/.ws’ exists, then execution proceeds as follows:

i. The ‘/tmp/’ path is remounted as read-write using ‘mount’ utility.

ii. The Weaveworks utility Weave Scope at /tmp/.ws is stopped and launched with the service token fetched on
step 4.

 Figure 8. Stop and relaunch of Weave Scope utility

Weaveworks published a blog post in September 2020 that shared best practices for securing Weave Scope.
Unfortunately, the abuse of this legitimate tool is still quite prevalent.

Trend Micro Solutions

Cloud One Workload Security™

When a new container is created over Docker daemon’s REST API, the rule ‘1010326 – Identified Docker
Daemon Remote API Call’ triggers with different notes for different steps of the container creation from image.

Events are generated when the 'containerd’ process is created and are logged using the Integrity Monitoring
module:

https://www.weave.works/blog/preventing-malicious-use-of-weave-scope

5/14

 Figure 9: Alert for containerd process

When the Docker Daemon is observed listening on TCP port, the Log Inspection module detects this as seen
below:

 Figure 10. Results of Log Inspection module

The AntiMalware Module detects the malicious script ‘scope2.sh’ as a Trojan:

 Figure 11. Detection of malicious script

Intrusion Prevention

1. 1010326 - Identified Docker Daemon Remote API Call
2. 1010561 - Identified Kubernetes Unprotected Primary Channel Information Disclosure
3. 1010762 - Identified Kubernetes API Server LoadBalancer Status Patch Request
4. 1010769 - Identified Kubernetes Namespace API Requests
5. 1009493 - Kubernetes Dashboard Authentication Bypass Information Disclosure Vulnerability (CVE-2018-

18264)
6. 1009450 - Kubernetes API Proxy Request Handling Privilege Escalation Vulnerability (CVE-2018-

1002105)
7. 1009561 - Kubernetes API Server Denial of Service Vulnerability (CVE-2019-1002100)

Log Inspection

6/14

1. 1009105 – Kubernetes
2. 1008619 - Application – Docker
3. 1010349 - Docker Daemon Remote API Calls

Integrity Monitoring

1. 1008271 – Application - Docker
2. 1009060 - Application - Kubernetes Cluster master
3. 1009434 - Application - Kubernetes Cluster node

Cloud One Network Security™

The following rules are triggered by this attack in Network Security:

29993: HTTP: Docker Container With Root Directory Mounted with Write Permission Creation Attempt
33719: HTTP: Docker Daemon "create/exec" API with "Cmd" Key Set to Execute Shell Commands
33905: HTTP: Kubernetes API Proxy Request Handling Privilege Escalation Vulnerability
34487: HTTP: Kubernetes Dashboard Authentication Bypass Vulnerability
34488: HTTPS: Kubernetes Dashboard Authentication Bypass Vulnerability
34668: HTTP: Docker Build Image API Request with remote and networkmode Parameters Set
34796: HTTP: Docker Version API Check Request
35799: HTTP: Kubernetes Overlength json-patch Request
38836: HTTP: Kubernetes API Namespaces Request
38837: HTTP: Kubernetes API Namespaces Status Request
38838: HTTP: Kubernetes API Create Namespace Request
38839: HTTP: Kubernetes API Delete Namespace Request
38840: HTTP: Kubernetes API Update Namespace Request
38847: HTTP: Kubernetes API Server loadBalancer Status Patch Request
38892: HTTP: Kubernetes API Admission Control Create Mutating Webhook Request
38893: HTTP: Kubernetes API Admission Control Create Validating Webhook Request
38896: HTTP: Kubernetes API Admission Control Resources Request
38898: HTTP: Kubernetes API Admission Control List Mutating Webhook Configurations Request
38899: HTTP: Kubernetes API Admission Control List Validating Webhook Configurations Request
38901: HTTP: Kubernetes API Admission Control Delete Validating Webhook Request
38902: HTTP: Kubernetes API Admission Control Delete Mutating Webhook Request
38903: HTTP: Kubernetes API Admission Control Update Validating Webhook Request
38904: HTTP: Kubernetes API Admission Control Update Mutating Webhook Request
38905: HTTP: Kubernetes API Admission Control Read Mutating Webhook Request
38906: HTTP: Kubernetes API Admission Control Read Validating Webhook Request
38907: HTTP: Kubernetes API Admission Control Replace Mutating Webhook Request
38908: HTTP: Kubernetes API Admission Control Replace Validating Webhook Request
38909: HTTP: Kubernetes API CustomResourceDefinition Resources Request
38910: HTTP: Kubernetes API Create CustomResourceDefinition Request
38916: HTTP: Kubernetes API List CustomResourceDefinition Resources Request
38917: HTTP: Kubernetes API Update CustomResourceDefinition Resources Request
38918: HTTP: Kubernetes API Update Status CustomResourceDefinition Resources Request
38919: HTTP: Kubernetes API Read CustomResourceDefinition Resources Request

Trend Micro Vision One™

7/14

 Figure 12.

Detection Model for Weave Scope abuse
Since Weave Scope is a legitimate tool used in workloads, one can enable or disable the XDR Model from
Detection Model Management by toggling the ‘Status’. If the tool is not supposed to be used in the environment
and there are alerts as XDR Model triggers or Observed Attack Techniques, it must be checked.

Workbench

 Figure 13.

Workbench diagram
The diagram in Figure 13 demonstrates the power of correlation amongst different Cloud One™ modules,
composed into a single screen. The left panel shows the sequence of observed attack techniques with the
events generated from Cloud One™ modules, while the right panel details the various objects involved in this
attempt. The corresponding MITRE ATT&CK tags help identify the parts of the framework being abused.

8/14

 Figure

14. Workbench diagram
This Workbench shows all the workloads using the Impact Scope in the organization where the unencrypted
Docker REST API is exposed and on which it’s listening.

Root Cause Analysis

9/14

10/14

Figure 15 and 16. Root cause analysis diagrams
In the RCAs generated from the Observed Attack Techniques, we can deep dive into the various fields of
importance, such as the exact time at which the outbound connection was observed and the process lineage
with the process command line. This shows that ‘nsenter’ is being executed from ‘scope’, it’s being used to
create a ‘bash’ shell, and the context is fetched from the PID 1 or ‘init’ process responsible for starting and
shutting down the system.

Escaping from a compromised container

Based on our research, the attackers also used a well-known technique to escape from a compromised
container to the host. They did this by using bind mounts and fetching the Docker Hub credentials from the
following paths:

1. /root/.docker/config.json
2. /home/*/.docker/config.json

As per Docker’s official documentation:

“You can log into any public or private repository for which you have credentials. When you log in, the
command stores credentials in $HOME/.docker/config.json on Linux or
%USERPROFILE%/.docker/config.json”.

When someone logs into their Docker Hub account using the Docker command line and there are no credential
stores specified, the username, password and registry server link are populated as a JSON that looks like this:

https://docs.docker.com/engine/reference/commandline/login/

11/14

 Figure

17. Code with Docker login
By default, the registry used is of Docker Inc. The value of ‘auths.auth’ field is the base64-encoded string that
contains the credentials in the format ‘username:password’. If these credentials are compromised, one can
gain access to the victims’ information:

1. Email ID used to create the account
2. Private Images
3. Access tokens
4. Slack Webhooks
5. Content Subscriptions
6. Upgraded features

Now we take a look into how the enumeration of exposed kubelets was performed.

Enumeration Of Exposed Kubelets

This attack abused the Docker REST API to create a container from an image that had a script at the
filesystem path ‘/root/init.sh’, which contains the following:

1. They initially update the alpine-based container and add the packages they need in later operations, like
compiling zgrab from source, using masscan, etc.

 Figure 18. Building zgrab

2. Once the above steps are executed, they begin the execution of their malicious function using a kill switch,
which is based on the contents of a certain endpoint on the attacker’s infrastructure to be equal to ‘RUN’.

 Figure 19. Executing malicious

functions
3. Once the kill switch is confirmed to be equal to ‘RUN’, the malicious PWN function is executed.

12/14

 Figure 20: Checking for

the kill switch
This script fetches a scan range from a malicious server endpoint. If the results fetched contain ‘ENDE’, that
signals the exit of the malicious script.

The results returned by the endpoint is stored in the variable ‘SCAN_RANGE’, which is later appended to
‘.0.0.0/8’. For example, if the value returned from the endpoint is 10, then the value of ‘SCAN_RANGE’ will be
‘10.0.0.0/8’

The variable ‘rndstr’ is a six-letter random alphabetical string that accumulates a list of IP addresses of running
pods with the kubelet API TCP port 10250 exposed that have been found using masscan and zgrab. Once this
subnet is completed, the results are sent back to the threat actor using a for loop, which iterates over the
results acquired via a website.

Once the results are sent, the kill switch loop loops back for a new subnet from the infrastructure unless all the
subnets are enumerated.

The threat actor seems to do this as preparation to later target exposed kubelets. Earlier, we detailed about the
shift in focus from Docker REST API to Kubernetes API. Here’s a trend of exposed Kubernetes API port 10250
indexed by Shodan from approximately 1,200 exposed workloads, months ago:

 Figure 21. Growth in exposed port 10250

Trend Micro Solutions

Cloud One Workload Security™

Intrusion Prevention

1. 1010326 - Identified Docker Daemon Remote API Call
2. 1010561 - Identified Kubernetes Unprotected Primary Channel Information Disclosure
3. 1010762 - Identified Kubernetes API Server LoadBalancer Status Patch Request
4. 1010769 - Identified Kubernetes Namespace API Requests
5. 1009493 - Kubernetes Dashboard Authentication Bypass Information Disclosure Vulnerability (CVE-2018-

18264)

https://www.trendmicro.com/en_us/research/21/k/teamtnt-upgrades-arsenal-refines-focus-on-kubernetes-and-gpu-env.html

13/14

6. 1009450 - Kubernetes API Proxy Request Handling Privilege Escalation Vulnerability (CVE-2018-
1002105)

7. 1009561 - Kubernetes API Server Denial of Service Vulnerability (CVE-2019-1002100)

Log Inspection

1. 1009105 – Kubernetes
2. 1008619 - Application – Docker
3. 1010349 - Docker Daemon Remote API Calls

Integrity Monitoring

1. 1008271 – Application - Docker
2. 1009060 - Application - Kubernetes Cluster master
3. 1009434 - Application - Kubernetes Cluster node

Cloud One Network Security™C

29993: HTTP: Docker Container With Root Directory Mounted with Write Permission Creation Attempt
33719: HTTP: Docker Daemon "create/exec" API with "Cmd" Key Set to Execute Shell Commands
33905: HTTP: Kubernetes API Proxy Request Handling Privilege Escalation Vulnerability
34487: HTTP: Kubernetes Dashboard Authentication Bypass Vulnerability
34488: HTTPS: Kubernetes Dashboard Authentication Bypass Vulnerability
34668: HTTP: Docker Build Image API Request with remote and networkmode Parameters Set
34796: HTTP: Docker Version API Check Request
35799: HTTP: Kubernetes Overlength json-patch Request
38836: HTTP: Kubernetes API Namespaces Request
38837: HTTP: Kubernetes API Namespaces Status Request
38838: HTTP: Kubernetes API Create Namespace Request
38839: HTTP: Kubernetes API Delete Namespace Request
38840: HTTP: Kubernetes API Update Namespace Request
38847: HTTP: Kubernetes API Server loadBalancer Status Patch Request
38892: HTTP: Kubernetes API Admission Control Create Mutating Webhook Request
38893: HTTP: Kubernetes API Admission Control Create Validating Webhook Request
38896: HTTP: Kubernetes API Admission Control Resources Request
38898: HTTP: Kubernetes API Admission Control List Mutating Webhook Configurations Request
38899: HTTP: Kubernetes API Admission Control List Validating Webhook Configurations Request
38901: HTTP: Kubernetes API Admission Control Delete Validating Webhook Request
38902: HTTP: Kubernetes API Admission Control Delete Mutating Webhook Request
38903: HTTP: Kubernetes API Admission Control Update Validating Webhook Request
38904: HTTP: Kubernetes API Admission Control Update Mutating Webhook Request
38905: HTTP: Kubernetes API Admission Control Read Mutating Webhook Request
38906: HTTP: Kubernetes API Admission Control Read Validating Webhook Request
38907: HTTP: Kubernetes API Admission Control Replace Mutating Webhook Request
38908: HTTP: Kubernetes API Admission Control Replace Validating Webhook Request
38909: HTTP: Kubernetes API CustomResourceDefinition Resources Request
38910: HTTP: Kubernetes API Create CustomResourceDefinition Request
38916: HTTP: Kubernetes API List CustomResourceDefinition Resources Request
38917: HTTP: Kubernetes API Update CustomResourceDefinition Resources Request
38918: HTTP: Kubernetes API Update Status CustomResourceDefinition Resources Request
38919: HTTP: Kubernetes API Read CustomResourceDefinition Resources Request

14/14

Conclusion

Vulnerabilities posed by poor security misconfigurations or inherent software bugs are difficult to protect. In the
above case, we observed the use of legitimate platforms like Weaveworks. To stay protected, we need to
rethink about inculcating security in our daily work by regular patching, staying updated and alerted with the
latest happenings in cyberspace.

Trend Micro™ Cloud One™ – Workload Security equips defenders and analysts with the ability to protect
systems against vulnerabilities, exploits, and malware, offering protection from on-premise to cloud workloads.
Virtual patching can protect critical systems even before the official patches are made available.

Trend Micro™ Vision One™ provides a clear view of the most important events as alerts in a concise manner,
because the race is about quick response. With XDR capabilities with telemetries from your multi-cloud
environments or on-premise workloads, security teams get a clear and vivid understanding of what to prioritize.

Indicators Of Compromise

IP address

45.9.148[.]182

Domain

dl[.]chimaera.cc

Shell scripts

Hash Detection Name

7c110dc507ed4e2694500c7c37fe9176e9f4db23bc4753c0bfc9f3479eb6385a Trojan.SH.MALXMR.UWELG

b7cef848b61cfb7d667e60ade3a1781def69f5395b5ad6a2a16f7b7fa11ef1db Trojan.Win32.FRS.VSNW0CK21

https://www.trendmicro.com/en_us/business/products/hybrid-cloud/cloud-one-workload-security.html
https://www.trendmicro.com/en_us/business/products/detection-response.html

