
1/3

November 27, 2021

Halo's Gate Evolves -> Tartarus' Gate
trickster0.github.io/posts/Halo's-Gate-Evolves-to-Tartarus-Gate

trickster0 on Nov 27

Updated Nov 27 3 min read

A while ago in my twitter, I have mentioned what a huge fan I am of Hell’s Gate and Halo’s

Gate. Hell’s Gate originally is a very creative way to fetch the syscall numbers by parsing the

InMemoryOrderModuleLIst from PEB structure. By finding the ntdll.dll address, which is

usually the first entry in InMemoryOrderModuleLIst, it is possible to obtain the syscall

numbers by parsing its exports for the necessary functions we need.

Even though this is an excellent technique to bypass most of the Antiviruses, unfortunately

due to the evolution of EDRs and unhooking, this technique cannot succeed.

Below we can see a normal syscall where Hell’s Gate would absolutely work.

As we have mentioned EDRs evolved and a new technique came to light by Reenz0h, called

Halo’s Gate. Halo’s Gate is basically a modified version of Hell’s Gate to unhook the

WINAPI calls.

For anyone not aware, unhooking is the process where you evade the hooked WINAPI

functions by the AVs/EDRs in order for them to check the parameters and the flow of a

program.

Halo’s Gate basically check the first bytes of the called WINAPI and if they are as they

should “4c8bd1b8”, then the WINAPI is not hooked and everything proceeds normally, but

when the first byte is “e9”, then a jmp assembly instructions redirects the execution of the

program to the AV/EDR checking engine, hence it is hooked.

In the screenshot you can see what a hooked call looks like by certain EDRs.

https://trickster0.github.io/posts/Halo's-Gate-Evolves-to-Tartarus-Gate/
https://github.com/am0nsec/HellsGate
https://github.com/trickster0/trickster0.github.io/raw/master/assets/img/favicons/ntallocate_normal.png


2/3

Halo’s Gate tackles this problem if the byte is “e9” by going up or down and check the syscall

of the next or previous syscall, if it is not hooked then we grab the syscall and add +1 byte

since they are all in order.

Since I am very fond of this technique and It was not working in different EDRs, I was

curious why and I had to dig more since it was not the detection/prevention of the security

product but it was just failing. Soon I realized that not all EDRs hook the same way, so I had

to bypass and extend it Halo’s Gate further into Tartarus’ Gate.

Regarding the EDR, that I was against, I am sure it is easy to find out which one it is but

apparently it starts with the bytes “4c8bd1e9” as you can see below when the WINAPI call is

hooked.

Basically what I did was to modify the Halo’s Gate code by adding one more check, to check

for the 4th byte if it is “e9”, if it is, it will do the same as the explanation on Halo’s Gate to

unhook it, so I ended up calling this Tartarus’ Gate.

I am certain there are more EDRs that have their own hooking method so I can see how this

could evolve even further depending on the situation.

Source Code can be found here You will notice that the custom way to copy the shellcode to

the allocated space is removed, for some reason it was not working very well against this

EDR so I would avoid depending on the case. Also, this code might fail a few times

depending on the EDR, so if it will not work on the first try, try a few times. If you use a

different method that works better than CreateRemoteThread, it will work in a very stable

manner.

Resources: https://sektor7.net/#!res/2021/halosgate.md

https://github.com/am0nsec/HellsGate

https://github.com/trickster0/trickster0.github.io/raw/master/assets/img/favicons/create_thread.png
https://github.com/trickster0/trickster0.github.io/raw/master/assets/img/favicons/ntallocatevirtualmemory.png
https://github.com/trickster0/TartarusGate
https://sektor7.net/#!res/2021/halosgate.md
https://github.com/am0nsec/HellsGate


3/3

Credits to : Reenz0h from Sektor7 for Halo’s Gate and the authors of Hell’s Gate - Paul

Laîné and smelly__vx

 

 

https://twitter.com/am0nsec
https://twitter.com/smelly__vx

