
1/9

November 23, 2021

Recent Posts
threatresearch.ext.hp.com/javascript-malware-dispensing-rats-into-the-wild/

HP Threat Research Blog • RATDispenser: Stealthy JavaScript Loader Dispensing RATs into
the Wild

RATDispenser: Stealthy JavaScript Loader Dispensing RATs into the
Wild

Threat actors are always looking for stealthy ways of delivering malware without being
detected. In this article, we describe how attackers are using an evasive JavaScript loader,
that we call RATDispenser, to distribute remote access Trojans (RATs) and information
stealers. With an 11% detection rate, RATDispenser appears to be effective at evading
security controls and delivering malware. In total, we identified eight malware families
distributed using this malware during 2021. All the payloads were RATs, designed to steal
information and give attackers control over victim devices.

As with most attacks involving JavaScript malware, RATDispenser is used to gain an initial
foothold on a system before launching secondary malware that establishes control over the
compromised device. Interestingly, our investigation found that RATDispenser is
predominantly being used as a dropper (in 94% of samples analyzed), meaning the malware
doesn’t communicate over the network to deliver a malicious payload. The variety in malware
families, many of which can be purchased or downloaded freely from underground

https://threatresearch.ext.hp.com/javascript-malware-dispensing-rats-into-the-wild/
https://threatresearch.ext.hp.com/blog/

2/9

marketplaces, and the preference of malware operators to drop their payloads, suggest that
the authors of RATDispenser may be operating under a malware-as-a-service business
model.

In this report we:

Analyze the infection chain of RATDispenser and suggest detection opportunities for
detecting and blocking the malware
Describe how RATDispenser is obfuscated
Discuss the malware families distributed by RATDispenser
Share a YARA rule and a Python extraction script so that network defenders can detect
and analyze this malware

Infection Chain

Figure 1 – Email delivering RATDispenser as an attachment.

The infection chain begins with a user receiving an email containing a malicious attachment.
For example, Figure 1 shows a JavaScript file (.js) masquerading as a text file, supposedly
containing information about an order. The user simply needs to double-click the file to run
the malware.

https://github.com/hpthreatresearch/tools/tree/main/ratdispenser
https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_01.png

3/9

Network defenders can prevent infection by blocking executable email attachment file types
from passing through their email gateways, for example JavaScript or VBScript. Defenders
can also interrupt the execution of the malware by changing the default file handler for
JavaScript files, only allowing digitally signed scripts to run, or disabling Windows Script Host
(WSH).

When the malware runs, the JavaScript decodes itself at runtime and writes a VBScript file to
the %TEMP% folder using cmd.exe. To do this, the cmd.exe process is passed a long,
chained argument, parts of which are written to the new file using the echo function.

Figure 2 – Process execution graph showing chained command line argument.

Afterwards, the VBScript file runs, which in turn downloads the malware payload. If it was
downloaded successfully, it is executed, and the VBScript file is deleted.

Obfuscation

The initial JavaScript downloader is obfuscated and contains several eval functions. One of
the eval calls is a function that returns a long string, which is decoded by another function.

Figure 3 – Snippet from obfuscated JavaScript downloader.

The function that decodes the string is located further down in the script. At first sight it looks
complicated, but it is a simple replacement function. First, the passed arguments are stored
in a new variable. It is done this way to work correctly with an arbitrary number of arguments.
Next, the replacement operation runs on the initial string. The second argument of the
replace function in JavaScript is another function which returns the replacement string. In this

https://docs.microsoft.com/en-us/exchange/security-and-compliance/mail-flow-rules/inspect-message-attachments
https://docs.microsoft.com/en-us/previous-versions/tn-archive/ee156597(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/tn-archive/ee198684(v=technet.10)
https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_02.png
https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_03.png
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#specifying_a_function_as_a_parameter

4/9

case, the second argument to this inline function is the capturing group which matches the
regular expression {\d+}. Since the capturing group is a decimal number, it is used as an
index for the arguments array which is returned as a replacement string. In case of an index
out of bounds exception, the function returns the whole matching string, which was most
likely implemented to handle mismatches.

Figure 4 – Deobfuscation function using regular expression replacement.

To decode the string shown in Figure 3, three arguments (A, u, F) are passed to the function.
The decoded string is Base64 encoded which can simply be decoded to analyze it in more
detail. By creating and writing an ActiveX Data Stream Object this sequence is decoded and
executed using an eval statement. The newly decoded second stage code looks as follows
(Figure 5).

Figure 5 – Decoded JavaScript downloader string.

The most notable part of this sequence are the hex characters stored in a nested array,
which is used as another layer of obfuscation. Using an ActiveX object, a shell application
instance is created, passing a long, chained argument. By simply adding line breaks after the
& characters, we can reformat the command line argument into a readable format.

https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_04.png
https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_05.png

5/9

Figure 6 – Command line arguments passed to cmd.exe.

The first parts of the command line argument are used to write lines to a VBScript file using
an echo function. This file is then executed, resulting in a download through an XMLHTTP
object. The response to the GET request – the malware payload – is written to a file called
YVC.JAR. The VBScript file is then deleted. Afterwards, the cmd.exe process waits 12
seconds, before running the payload.

Malware Payloads

We have seen RATDispenser distribute eight malware families. In the example above, it
delivered Formbook, a keylogger and information stealer. To analyze which malware families
the loader is spreading, we wrote a signature to track sightings in the wild. Its obfuscation
made this task more complicated than usual. The malware splits strings using the replace

https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_06.png
https://malpedia.caad.fkie.fraunhofer.de/details/win.formbook

6/9

function, stores them in nested arrays, and interprets and executes commands using eval
functions, so it is difficult to find consistent patterns in them. Nevertheless, we wrote a YARA
rule (Figure 7) to understand the dispersion of malware families.

rule js_RATDispenser : downloader
{
 meta:
 description = "JavaScript downloader resp. dropper delivering various RATs"
 author = "HP Threat Research @HPSecurity"
 filetype = "JavaScript"
 maltype = "Downloader"
 date = "2021-05-27"

 strings:
 $a = /{(\d)}/

 $c1 = "/{(\\d+)}/g"
 $c2 = "eval"
 $c3 = "prototype"

 $d1 = "\\x61\\x64\\x6F\\x64\\x62\\x2E"
 $d2 = "\\x43\\x68\\x61\\x72\\x53\\x65\\x74"
 $d3 = "\\x54\\x79\\x70\\x65"

 $e1 = "adodb."
 $e2 = "CharSet"
 $e3 = "Type"

 $f1 = "arguments"
 $f2 = "this.replace"

 condition:
 #a > 50 and all of ($c*) and (any of ($d*) or any of ($e*)) and all of ($f*) and
filesize < 2MB
}

Figure 7 – YARA rule to detect RATDispenser.

Running a retrohunt over the last three months with this YARA rule identified 155
RATDispenser samples. Within those samples we noticed three variants. One of the variants
we described above. The two other variants are a PowerShell downloader and a dropper
which stores the payload as a Base64-encoded string and therefore does not perform any
network requests.

We also wrote a Python script that recovers the final payload and identifies the malware
family and RATDispenser variant. Analyzing the 155 malware samples with our script found:

145 of the 155 samples (94%) were droppers. Only 10 samples were downloaders that
communicate over the network to download a secondary stage of malware
8 malware families delivered as payloads

https://github.com/hpthreatresearch/tools/blob/main/ratdispenser/ratdispenser.yar
https://github.com/hpthreatresearch/tools/blob/main/ratdispenser/decode.py

7/9

All the payloads were remote access Trojans (RATs), keyloggers and information
stealers

Figure 8 – Malware families distributed by RATDispenser.

By far the most frequently observed malware families were STRRAT and WSHRAT,
accounting for 81% of the samples we analyzed. First seen in mid-2020, STRRAT is a Java
RAT that has remote access, credential stealing and keylogging features. WSHRAT, also
known as Houdini, is a VBS RAT first seen in 2013 that also has typical RAT capabilities.
Slightly less common were AdWind, Formbook, Remcos and Panda Stealer.

The most interesting among them is Panda Stealer. First seen in April 2021, this is a new
malware family that targets cryptocurrency wallets. The Panda Stealer sample we analyzed
were all fileless variants that download additional payloads from a text storage site, paste.ee.
The least common families were GuLoader and Ratty. GuLoader is a downloader known for
downloading and running various RATs, while Ratty is an open-source RAT written in Java.

Figure 9 shows the different variants and the malware families distributed through them.
Certain malware families were always downloaded – Panda Stealer and Formbook – rather
than dropped. Because this JavaScript malware can operate as a downloader or as a
dropper, and distributes RATs exclusively, we refer to it internally as RATDispenser.

https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_distribution.png
https://malpedia.caad.fkie.fraunhofer.de/details/jar.strrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.houdini
https://www.trendmicro.com/en_us/research/21/e/new-panda-stealer-targets-cryptocurrency-wallets-.html
https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye
https://malpedia.caad.fkie.fraunhofer.de/details/jar.ratty

8/9

Figure 9 – Overview of RATDispenser variants and the malware families they delivered.

Detection

Although JavaScript is a less common malware file format than Microsoft Office documents
and archives, in many cases it is more poorly detected. From our set of 155 RATDispenser
samples, 77 were available on VirusTotal which allowed us to analyze their detection rates.
Using each sample’s earliest scan result, on average the RATDispenser samples were only
detected by 11% of available anti-virus engines, or eight engines in absolute numbers.

Indicators of Compromise

You can find the full set of hashes, URLs, YARA rule and extraction script in the HP Threat
Research GitHub repository.

00853f4f702bf8a3c82edbd1892c19aaa612f03d4541625068c01d0f56d4415b : RatLoader -
> Formbook

 026b19fdc75b76cd696be8a3447a5d23a944a7f99000e7fae1fa3f6148913ff3 : RatDropper -
> STRRAT

 0383ab1a08d615632f615aa3c3c49f3b745df5db1fbaba9f9911c1e30aabb0a5 : RatDropper -
> WSHRAT

 094ddd437277579bf1c6d593ce40012222d8cea094159081cb9d8dc28a928b5a : RatDropper -
> AdWind

 2f9a0a3e221a74f1829eb643c472c3cc81ddf2dc0bed6eb2795b4f5c0d444bc9 : RatDropper -
> RemcosRAT

 942224cb4b458681cd9d9566795499929b3cedb7b4e6634c2b24cd1bf233b19a : RatLoader -

https://threatresearch.ext.hp.com/wp-content/uploads/2021/11/ratdispenser_07.png
https://github.com/hpthreatresearch

9/9

> Panda Stealer
b42c6b4dd02bc3542a96fffe21c0ab2ae21ddba4fef035a681b5a454607f6e92 : RatDropper -
> GuLoader

Tags

