Introducing Mandiant's Digital Forensics and Incident
Response Framework for Embedded OT Systems

Blog

Chris Sistrunk, Ken Proska, Glen Chason, Daniel Kapellmann
Nov 18, 2021

10 mins read

Threat Research

Incident Response

Operational Technology

1/12

https://www.mandiant.com/resources/mandiant-dfir-framework-ot

Collecting and analyzing forensic data is a core component of the incident response process.
This process is central to determining the existence, and subsequent scope of a
compromise, the tools used by adversaries, and their capabilities. However, obtaining digital
forensics and incident response (DFIR) data is not always a simple task, especially when
operational technology (OT) systems are involved.

OT networks often include a variety of uncommon and sometimes obscure products that
regularly leverage embedded software and firmware components. A good example of this is
real-time operating systems (RTOS) that support low latency communications for precise and
continuous operation of physical production environments.

As embedded systems are normally outside of the scope of traditional forensic
methodologies, defenders need to identify or define tools and methodologies to gather data
from these systems. A systematic approach is therefore needed to gather forensic data, build
collection frameworks, set security baselines, and establish structured incident response
processes.

) 13

In this post, we discuss Mandiant’s “DFIR Framework for Embedded Systems,” which is built
upon Mandiant’s world-renowned incident response methodology. Our framework explains
how to leverage native functionality built into OT devices and other commonly available tools
to help asset owners prepare incident response efforts. To exemplify how to apply the last
step of the framework, we collect data from an example remote terminal unit (RTU) in a lab
setting.

Want to learn more? Enroll in our Digital Forensics and Incident Response for PLCs training
course.

Why Do We Need A DFIR Framework for Embedded OT Devices?

Tools such as Mandiant’s Redline, FTK Imager, Volatility Framework, and many others have
established a standard for DFIR information across IT endpoints and OT intermediary
systems. Based on our experience, these tools have limited value when collecting data from
embedded systems. A DFIR framework for embedded systems is needed for the following
reasons:

» Gathering forensic data from OT assets helps to establish baselines for identifying
anomalous activity, to investigate incidents, or assist vulnerability and asset
management programs.

o Embedded OT systems often rely on non-conventional operating systems—such as
VxWorks, QNX, or Windows CE—that support real-time functionalities in physical
processes and environments. User interaction with an RTOS is not always simple and
often limited in scope but helps us to gather forensic information.

2/12

https://www.mandiant.com/media/12511/download
https://www.fireeye.com/services/freeware/redline.html
https://accessdata.com/products-services/forensic-toolkit-ftk/ftkimager
https://github.com/volatilityfoundation/volatility
https://www.fireeye.com/blog/threat-research/2019/12/fireeye-approach-to-operational-technology-security.html

o OT devices may be standalone, segmented, or air-gapped, often leading to a lack of
visibility and/or centralized data aggregation. Manual collection of data may be
required, which can be time-consuming and problematic when responding to an
incident.

» Organizations that follow a structured framework to collect and analyze this information
are likely to have increased visibility of critical assets. This provides opportunities to
identify malicious activity and respond promptly if there is an incident.

» Organizations often track forensic data from assets even without realizing it. This
happens in the form of procurement, maintenance, or other engineering processes.

Mandiant DFIR Framework for Embedded Systems

Mandiant’s DFIR Framework for Embedded Systems is comprised of three steps focused on
preparation and gathering information from embedded devices during the early stages of the
incident response process. Although we do provide an example for data collection, this
document is not intended to make readers experts in digital forensics, but instead as a guide
to understand and apply the framework to devices they operate.

3/12

THE MANDIANT INCIDENT RESPONSE PROCESS

Device and Tool
Identification

DFIR Framework for

e Embedded Systems l
PREPARATION

OEM Collaboration

I

DETECTION Data

Identification
and Collection

ANALYSIS

REMEDIATION MANDIANT

Figure 1: Mandiant DFIR Framework for Embedded Systems
Three steps to preparation:

1. Identify and document the inventory of embedded devices in an environment.
Determine the tools that can be used to extract information from them.

4/12

2. Collaborate with engineering team(s) and original equipment manufacturers (OEMSs) to

identify additional methods, tools, data sources, and vendor points of contact that may
assist in supporting incident response and recovery efforts.

3. Collect data that could be useful when responding to an unexpected condition or
incident.

These steps share many overlaps with forensic engineering processes familiar to OT
personnel, such as Root Cause Analysis (RCA) or Failure Mode and Effects Analysis
(FMEA). While RCA and FMEA are focused on collecting and analyzing evidence for events
affecting industrial processes, the DFIR framework for embedded systems adds the context
of an adversary performing unauthorized activity through digital means. As a result, the

application of this framework is most likely to succeed when supported by both cyber security

and engineering personnel.

Step 1: Device and Tool Identification

In this step, engineering and security teams collaborate to identify devices to collect data
from, perform physical walkdowns, and review documentation—such as technical
procedures or vendor manuals. Information from field observations and product
documentation yields important details on the different methods available to communicate
with a device. The most common methods are:

o Software applications utilized to connect to the device for configuration, diagnostics,
and troubleshooting.

e Terminal, Secure Shell (SSH), File Transfer Protocol (FTP), Telnet, or other
communication protocols deployed to establish command-line access to the device.

o Enabled web server to access a graphical user interface (GUI).

e Physical ports and interfaces, such as portable media or proprietary cabling.

A structured record of methods for communicating with different products is necessary to
sustain systematic data collection. Such documentation must describe details such as
product features that are disabled or blocked due to security controls, or assets that are
segmented and can only be accessed via portable media. The following table illustrates
different well-known OT products and the methods of communication they rely on. This
includes software from different OEM and different physical ports. In some cases, the
communications listed may not be required or utilized for normal operations but can provide
alternative methods of access to the device(s) when responding to an incident.

5/12

s

VENDOR

General Electric

Schneider Electric

Siemens

Schweitzer Engineering Labs
Emerson

Rockwell Automation

BenTek Systems

1: Asset communications inventory example

ASSET

D20MX

Easergy P5U20

SIMATIC S7-1200

SEL-4006

RX3i CPE302 Controller

ControlLogix 5580

SCADALink RIO900

[]

SOFTWARE

« SGConfig
» DS Agile Studio
+ D20M Shell

- eSetup Easergy Pro

» SIMATIC STEP 7

Basic(TIA Portal)

+ acSELerator
« SEL Grid Configurator
+ ASCII Shell

« PAC Machine Edition

» Studio 5000

Logix Designer

» SCADALink

RI0900 GUI

PHYSICAL
COMMUNICATION PORT

« Serial
- Ethernet

- Serial
« Ethernet
- USB

- Ethernet

Table

« Serial
« Ethernet

« Serial
- Ethernet

« Ethernet
- USBTypeB

« Serial
» Radio

MANDIANT

Defenders must also document supporting data resources such as locations for back-up
configurations, device-specific technical procedures/vendor manuals, credentials, and
individuals responsible for performing maintenance, troubleshooting, and configurations. This
documentation will help to shorten the time to recovery (TTR) and prevent unnecessary
delays when responding to an incident.

Step 2: OEM Collaboration

In-depth information about the functioning and features of embedded devices is most easily
obtained with the support of OEMs. Vendors in charge of designing and producing
embedded devices hold access to privileged information and tools that can support the
forensic process. Oftentimes an operator will have to decide between asking the vendor for
support or developing costly specialized tools to gather information from a device.

Given that most industrial environments use equipment from multiple OEMs, incident
response preparation and training must also be supported with formal documentation on
methods to communicate with devices. Gathering this data is easier with the support of
OEMs that often have access to more in-depth knowledge and tools to interact with their

products.

e OEMSs can help to preemptively identify what data (both volatile and non-volatile) is
available and how to collect it.

» OEMs often have proprietary tools or equipment that can be used to quickly collect
data of value or perform analysis for devices they manufacture.

 OEMs may provide replacement devices to substitute for compromised equipment
taken out of service.

o OEMSs’ support may be needed if device specific software licenses are required
urgently when responding to an incident.

 OEMs may have incident response guidance for asset owners to incorporate into their
procedures.

Step 3: Data Identification and Collection

Stakeholders from security and operational teams (e.g. engineering, operations, and
maintenance) collaborate to collect data from embedded devices based on the findings from
the previous steps. Collaboration from both sides helps prevent unexpected or unintentional
adverse impacts on production. Information collected during this third step makes it possible
to help build or enhance asset inventories and, in some cases, help establish a baseline.

Data identification and collection from embedded OT devices should follow the same
standard best practices as IT forensics—such as following the order of volatility, documenting
the chain of custody, and evidence preservation. However, in this case we look for different
physical and digital inputs that help us know more about the status of the device. The
following list provides a non-exhaustive reference of data that we consider useful for incident
response and intrusion analysis.

712

Device Time/Date

Last-known Approved
Configuration

0S Version

Firmware

CPU/Memory Usage
Running Processes
Logs and Diagnostic Data

Network Traffic

Memory Dump

Device Information

Function

Location

Connections
and Protocols

-
<
o
7
>
= =
a

Photos

Temperature

Time and date found on the system.

Last known approved configuration, factory acceptance test
(FAT) and site acceptance test (SAT)approved configurations,

0S version documented and found running at the time of collection.

Firmware running on the device at the time of collection
and firmware documented in last update or FAT/SAT.

Percentage of CPU/memory available and percentage used.
Individual processes running on the device.

Related security logs and diagnostic data available for the device.
Network traffic to and from the device.

If feasible.

Table
Device equipment identifier, manufacturer, model, serial number,
and any other unique identifiers.

Description of the function of the device
(e.g. PLC controlling temperature of a specific valve).

Physical location of the device (e.qg. site, building, room, panel, etc.)
and physical access logs, if applicable.

Physical connections for the device, wiring diagrams, MAC address,
and documented protocols used.

Status of LEDs, tamper tape seals, port blockers, wiring, devices
found connected at the time of collection, and other physical

Temperature of the device (may indicate high CPU usage).
This can be collected using an infrared temperature gun.

MANDIANT

2: Physical and digital data from embedded OT devices

While there is not a single specific solution for acquiring forensic data from embedded
devices, the process of becoming familiar with a device and learning how to gather
information about it is consistent from one device to the next. Taking this into consideration
we decided to illustrate the third step of the framework using a General Electric D20MX RTU
that General Electric provided to Mandiant in support of research into DFIR for embedded
devices. This research led to the creation of ics_mem_collect, a tool to perform basic
VxWorks memory collection and analysis.

https://www.blackhat.com/us-16/briefings.html#whats-the-dfirence-for-ics
https://github.com/fireeye/ics_mem_collect

994-0140 D20MX Substation Controller Supports digital and analog input/output modules
Instruction Manual

Accepts serial, ethernet, and modem communication
BO14-INUG Westmaint |1+ for D20MX User's Guide

Uses a PowerPC based processor that runs
SWMO0080 D20MX Shells User's Guide a VxWorks RTOS
D20MX Product Specification Sheet
Applications
Tera Term

E Communication Methods

D20M Shell
D20MX command line (shell)

General Electric SG Config /
General Electric DS Agile Studio SG Config (GUI based application)

MANDIANT

Figure_2: D20MX features and specifications based on publicly available information

We explored two alternatives to collect information from the D20MX: a command line shell
and a GUI-based proprietary application. Using both methods we obtained different types of
information.

D20M Shell

An initial exploration of available commands indicated that this method would enable us to
collect information for building a baseline of the device performance and perform live
response when required. Information accessible via D20M shell includes device user/error
logs and performance, serial and configuration data. Although we tested command-line
access to the D20MX using the standard D20M shell, we highlight that the D20MX has two
additional shells that provide further access and availability to data. These shells have
support for other advanced capabilities such as reading and writing memory or performing
packet captures.

9/12

DZeM>help
To see an explanation of a anmand ty
HELF command_name

dvailable commands are:

il Display yvour access level
arp Show AEP table
bkucfg Backup configuration to file
c witch to C shell
cf Copy firmuware
ol Copy license
cR Change priority
Dump memory
df Display file
ol Download S-Hecs inte NVREAM
el Display Error Log
exit Exit Shell
Contrcl UﬁRT FIFO
File System Operations

elp
Display IP information
SetsGet the JMOMN Baud Rate
List directory
Modify user passward
Pertormance monitor
Display memory Information
QUEPI exchange)
Display routing Information
Heatore contlg from flle
ZModem download
Select conflguratlion
Suspend process
Send exchange
Display-Save User Log
Signal process
swlilc-batch Process batch lic.
swlic=info S/ licensing Lnfo.
swlic-report Report license file info
swlic=unlock Unlock license key

'n."ﬂlI.JE L EI

DZ26M>m
Figure 3: D20MX command list

SGConfig & DS Agile Studio

An alternative to the D20M shell is SGConfig, a proprietary GUI-based application that
administrates many types of General Electric devices such as PLCs, RTUs, input/output

Eelp help

Set auto-logout timeout
Change baud rate

larm boot

opy configuration

Copy and Process HSP file
Commit firmware to backup
hecksum memory

Dump confliguration

Table directory

Enable debug Shell

Enable local authentication
Fill memory

Find table

He lg

HOLC test

Firmware information

Jam exchange

Verlty firmware files wsMDS

Flnj an [P host

uerT ProcCess

Display semaphore list

Revert firmware from backup

Resume process

Regiest exchange

Serial analyzer

Display avstem information

Serial test

Start teast tool

Display Version information
swlic Software license Manager
awllc=check Check validity of llie.
swlic=list List AutoStart processes
swlie-trial Ernable trial license
sw]ic-update Upcdate trial licenses

devices, and intelligent electronic devices (IEDs).

While SGConfig is primarily used to manage information associated with RTU and perform

configuration actions, some of its functionalities are well suited to support incident

responders. For example, SGconfig can export configuration data in a variety of forms
including but not limited to text, binary, and compressed, and XML formatted data (Figure 4).

Offering different file formats is useful to support analysis with different tools and

methodologies.

10/12

"‘E E Edit

U' - Draw
B Archive
u.-l‘= Miscellaneous
u'__" Communications
':' Configuration
., SYNC_FR i5CS
Tools

@ Hardware

Change Type
Application List
Generate »
Convert

Import

és o O [F B9

Export

!@@&@@@

Point Descriptors

Configuration File (text format)

Configuration File (binary format)
Configuration File (compressed binary format)
Xml file

Application Documentation
T

Figure 4: SGConfig configuration export options

SGConfig also contains a tool to compare binary format configuration files. Figure 5 provides
an example of comparing a baseline export (left) to a newer exported configuration file
(right). In our example, we modified the D20MX configuration by adding a user via the
SGCONFIG software. Using the SGConfig “Config Compare” feature, we were able to
identify the user we created with the name “BackupAdmin.” The “Config Compare” feature
identifies the configuration table that contains the modified data. In this case per the device
manual, table BO14USER “contains information about a user’s login name, passwords,

application access and other user specific information”.

I

L
.[[] Bo1ausER
=
~[] BorawTXT

|c:\Users\tester1\Desktop\config_2020_12_15_baseline.SHX |Fac_pEFsHxX
.['] Bo14RTLS ~ ~.[] Bo14rTLS
- ;
.[[) Bo14sYsL --.[] Bo1asysL

..[) Bo14USER
~[C] Bo1awTxT

.[] BO14_cFG ~[] Bo14_cFG

.1 ro1a opT Y ..["1 ro14a opT
I Processor: 0 Processor: 0
308: 00000000 FFFFFFFF¥4%% A |308: 00000000 FEEFFFEF ... y¥¥¥
310: FFFFFFFF 00000000 ¥¥¥¥...- 310: FFFFFFEF 00000000 ¥¥#¥¥....
318: _EEFEEEEE FEFEEEFE Sirrrninic 318: EEFFFFFE FFEFFEFE GUvuiis
320: illelc1 64 6D696E0D . 320: plsliH4261 636B7570 Lk
330: | 00000000 0000000O 330: | 00000000 0000000D
338: | 6368616E 67656065 changeme 338: | 6368616E 67656D65 changeme
340: | 00000000 00000000 340: |00000000 00DOOOOD
348: 00000000 OODO636F co 348: 00000000 O000636F co
350: | 6E74726F 6C000000 350: | 6274726F 6C000000 ntrol...
358: | 00000000 00000000 3ss: | 00000000 00DDO0OD
360: | oooooooo CEERER - 360:
368: 6F6D6520 746F2057 < 368:
370: 65736D61 696E7420 3 t 370:
EXCR | < 54525 . a78:
380: 00OOODOD OOODOODO --. 380:

Figure 5: Snippet of SGConfig compare

11/12

Outlook

Mandiant’'s DFIR Framework for Embedded Devices proposes a systematic approach to
collect and handle data from embedded devices. As such, the application of the framework
should rely on collaboration between security groups, engineers, maintenance workers, and
operators to collect and analyze data that support response to cyber incidents. Many of the
actions suggested in the framework leverage existing processes and procedures that can
also support other tasks such as disaster recovery or engineering RCA and FMEA.

Although it was out of the scope of this framework to provide various examples of data
collection from different embedded products, in most cases engineering personnel may
already be acquainted with tools that can help your organization to follow the steps we
suggest. We also provide the following recommendations:

o Collaborate with OT teams and OEMs.
o Identify OT teams and OEM point of contacts that will support incident response
efforts. This should include engineering, operations, and maintenance teams.
o lIdentify individuals with knowledge and expertise of the process and its
embedded devices.
o Work with and communicate with these individuals to walk through the concepts
and processes highlighted in this framework.
¢ Incorporate the processes described in this report into existing procedures.
o Include specific verbiage and sections in incident response and/or engineering
procedures for cyber incidents affecting embedded industrial equipment.
o Append inventories of embedded devices, the tools and communication methods
identified, and data checklists.
Review data sources available and customize these lists where feasible, as
device/environment configuration will vary amongst sites and industries.
o Create processes to update and review documentation for newly acquired
embedded industrial equipment.
¢ Incorporate embedded industrial equipment in incident response training and
exercises.
o Develop table-top exercises emulating cyber incident(s) affecting embedded
industrial equipment and practice procedure execution.
o Develop awareness training for OT teams covering cyber-attacks and embedded
devices.
o Walk through the process of collecting data from embedded equipment using the
tools documented through the first steps of this framework.

Want to learn more? Enroll in our Digital Forensics and Incident Response for PLCs training
course.

12/12

https://www.mandiant.com/media/12511/download

