
1/11

November 16, 2021

Office Documents: May the XLL technique change the threat Landscape in 2022?
yoroi.company/research/office-documents-may-the-xll-technique-change-the-threat-landscape-in-2022/

11/16/2021

Introduction

Contrasting the malware delivery is hard. Cyber attackers evolve their techniques frequently, but a
major trend remained constant: Microsoft Office and Excel documents represent the favorite delivery method many cyber criminals
use to inoculate malware into private and public companies. This technique is extremely flexible and both opportunistic and APT actors abuse
it.

In the last months, we monitored with particular attention several attack waves adopting a new delivery technique: binary libraries directly
loaded by Microsoft Excel, just in one click. This emergent delivery technique leverages XLL files, a particular file type containing a Microsoft
Excel application ready to be loaded.

This Microsoft Office exploitation method is silently abused in many attack waves around the world, but recently, this new emergent technique
landed in Italy too. In fact, we observed cybercriminal campaigns leveraging XLL files against manufacturing companies.

For this reason, the Yoroi Malware ZLab decided to dig inside this technique providing a bird view of the evolution of
malicious office file techniques and a detailed analysis of this new method abused by cyber-criminals.

Technical Analysis

The Timeline

Before 2017, the most email-based attacks were based on VBA macro weaponized Office documents. The VBA macro scripts are legit tool
allowing users to automatize some elementary operations in complex documents. However, due to that capability to execute code, attackers
create obfuscated payloads to download and execute other malicious stages.

In 2017, two critical exploits were released to the public, and attackers extensively adopted it in widespread spam campaigns. : CVE-2017-
0199 and CVE-2017-11882:

CVE-2017-0199 allows an attacker to download and execute malicious HTA files from the internet, due to a flaw in the handling and
parsing of OLE Objects inside the malicious document. We tracked that vulnerability inside an old blog post, Playing Cat and Mouse:
Three Techniques Abused to Avoid Detection - Yoroi

https://yoroi.company/research/office-documents-may-the-xll-technique-change-the-threat-landscape-in-2022/
https://yoroi.company/research/playing-cat-and-mouse-three-techniques-abused-to-avoid-detection/

2/11

CVE-2017-11882 is a remote code execution vulnerability allowing the attacker to execute a shellcode embedded inside the malicious
document, due to a flaw in memory handling of the Equation Editor component, present inside of all Office applications. We tracked this
technique in many reports, and we noticed that it has been used for many years thanks to its adaptability through malware operations. It
was used both in APT and cybercrime operations.

Then, between 2018 and 2020, we observed new spikes of VBA macro adoption in malicious documents. In this period, the attackers improved
in an intensive way the obfuscation of the payloads, adding a large number of intermediate dropping stages, composed by many different
types of technologies and scripts.

In the beginning of 2020, many attackers started to adopt a new technique, the exploitation of the XLM Macro 4.0 scripts, a legacy technology
present in Microsoft Office since 1992 and compatible from Windows 3.1 to the newest versions.

The recent analysis and detections revealed that this kind of scripts are extremely effective in evading antivirus detection. So, malware writers
decided to improve this technique creating a hybrid approach combining the usage of both XLM macro and VBA ones as well. That behavior
boosted and it is widely used since today.

Along the XLM and classic macros, in the middle of 2021 something is changing: threat actors are starting to use the XLL files.

3/11

The XLL Dropper

A malicious attack using abusing the XLL vector starts with the delivery of a malicious file with the extension “XLL”.

It is the Excel Add-In file, that provides a way to use third-party tools and functions within Microsoft Excel. The third-party code can
be C/C++ .NET code inside the Excel environment. In fact, despite the Excel icon, the XLL file is a Dynamic Linked Library, a binary executable
file.

For instance, the XLL sample file has the following static information:

Hash 994013d66ae20cfa4ef1097d73481b00a672131d0de44d79a04ff12f492aae55

Threat XLL Dropper

Brief Description Malicious XLL file, dropping several payloads

SSDEEP 12288:70Ws7IMtR4yVld8bzbBSreqhgFK/UqWdP:70bdkX1CcLd

Table 1: Static information about the sample

The sample has been weaponized by using the open-source tool named Excel-DNA available on GitHub, it works adding an executable
resource inside the file compressed with LZMA algorithm.

Figure 1: Static information of the EXCEL-DNA component and relative manual extraction

The retrieval of the payload can be performed manually by extracting the resource using an archive manager tool compatible with LZMA
algorithm. In detail, the payload is stored in the PE resource with the properties "Assembly LZMA", so we were able to extract it and
decompress it.

Figure 2: Extraction of .xll file

The DLL payload

The payload executed inside the XLL file is another DLL file, having the following static information:

Hash 8f9dcf822dd8f22dd3c21f0798e97554a24b05a0fa3065d2580933ff4af29a6d

Threat .NET dll embedded payload

Brief Description Payload contained inside the XLL file.

SSDEEP 96:mFCZXPFomsKQrdLVaBlP1WiGxB7BHjA5ASDBmq9:mFCIvKQrnanQ39HjA2on

Table 2: Static information about the sample

The goal of this payload is the download and execution of two other payloads from the internet. The DropURLs are obfuscated through a
series of simple characters manipulations, as shown in the following screen:

https://github.com/Excel-DNA/ExcelDna

4/11

Figure 3: Decoding the first DropURL

After decoding the URL, we obtained a link pointing to the Discord Content Delivery Network, widely used by cyber criminals to deliver
malware. The link were not easily readable in during the static inspection because it is stored in an obfuscated manner. Once decrypted with
a XOR-like function, named by the malware writer “onetimepass” it becomes readable.

This decryption function is then used also to decode the second payload shows the same behavior.

Figure 4: First Encrypted Payload

Figure 5: XOR Decryption Function

Figure 6: Second Encrypted Payload

Once the two payloads have been decoded, they are loaded in memory with the reference to the legit process path
“aspnet_regbrowsers.exe”. Now, the malware has prepared all the environment for the next stage of the infection, the injection phase.

5/11

Figure 7: Decoding the payloads

The Injection Module

Like most crimeware, it adopts the injection self-defense technique, inoculating the malicious code inside one of the legit processes of the
Microsoft Windows environment.

The two components isolated in the previous phase have this purpose, one of them is the injection code, the other is the payload to inject
inside a target process.

Hash 2f4dede7501c5e406ba8063dc53c48199620197a3c925fdf193dd5134749791e

Threat DLL Loader

Brief Description Injects (Process Hollowing) the first payload in aspnet_regbrowsers.exe

SSDEEP 1536:JKb0LsDiNcDWJ6BFwwQXXGBtFa3prSXqTNETV+kNgJ5PqNslOYu:JSeNMBA2bFa5wT9NgpA

Table 3: Static information about the sample

The payload contained inside the “array[2]” variable array is immediately decoded from Base64 and loaded in
memory thanks to the “Assembly.Load” .NET routine.

Figure 8: Payload loaded in memory

The just loaded dll invokes the method “WeatherApp”, which accepts three arguments: the path of aspnet_regbrowsers.exe,an empty string
and the first payload (array[0]). This module is an additional DLL loaded with process hollowing techniques.

6/11

Figure 9: Classic Process Hollowing into aspnet_regbrowsers.exe

The Payloads

Since its initial distribution, we monitored the malicious drop urls to track any changes to the delivery infrastructure. We tracked a series of XLL
files having the same behavior and they leverage Discord CDN to vehicolate other different payloads. The first one is AgentTesla.

 Hash 50d645e57a915baf4db98b6476681dce65d809e84f2c72eff0d6db4b10fd28d0

Threat AgentTesla Stealer

Brief
Description

Obfuscated AgentTesla

SSDEEP 3072:Q9Wgl88xIaXntoTAKeNGUsE1M+IJkE0oU6btrJ58low2wefpxSqL8cQWxQq8E3zH:QzVtok0UY+qkR298lrmv4HWsE3z6UJ

Table 4: Static information about the sample

We were able to immediately identify the main routine of this sample. In the following screen we show the main method and a piece of the
target applications found by AgentTesla to perform its operations of exfiltration.

Figure 10: AgentTesla Stealing Function

Besides that sample, we retrieved other XLL samples having the same infection chain and it is a Formbook/XLoader payload, having the
following static information:

Hash 64a668add3d7f3bbcc0ef6acb25529c70df773d74e7e17a4a8fd8c95e81ee8bd

Threat Formbook

Brief Description Formbook payload retrieved in a second time from the dropurl

SSDEEP 3072:W7psS2npp9ymO/pw4imY0bXkN6edhTDYEUvCJ6Trad+:Wu/emIpwdrTN6edhvYdg6fR

Table 11: Static information about the sample

After an intensive debugging session, we isolated the routine aimed at decoding the shellcode to be injected into explorer process, as reported
also by Fortinet.

https://www.fortinet.com/blog/threat-research/deep-analysis-formbook-new-variant-delivered-phishing-campaign-part-ii

7/11

Figure 12: Shellcode injected in explorer routine

Hash 7f1f224a14a2e412a8c22535fc584c31bbcfe41241eb794c605c91987996d62e

Threat Dridex

Brief
Description

Dridex dropper

SSDEEP 768:ceQJmg+fxfveZ5RI3dO1+IpwY5xW04HPJ4hLqm9NdUPhnutmbX+NFw2WP0t9gE53:6f+f9eZzx++5SHhQ+qTciMIgAmw

We also found another interesting campaign hitting Italy and leveraging the XLL file-format. This time, it implements the “xlAutoOpen” export
function in native C++ language, executing the malicious code in a similar manner of the “AutoOpen” function in the canonic VBA Macro.

This dropper downloads a second payloand: a dll file able to load Dridex malware.

Figure 13: Dridex XLL dropper

8/11

Conclusion

Delivering malware through weaponized Microsoft Office files is incredibly effective from the attacker perspective, so,
new delivery techniques and the evolution of the strategies abused to inoculate malicious code inside company assets through this vector is a
serious risk.

Monitoring and responding to new, emergent cyber-criminal trend is key part of what we do in Yoroi’s Malware ZLAB, ensuring intelligent and
adaptive protection to Yoroi customers. The increasing adoption of XLL files in Excel based attack campaigns is a warning signal telling
us that cyber offenders are evolving to ensure their damage capabilities, pointing us in the direction to forecast new potential explosion
of diversified malicious email waves in 2022.

Indicator of Compromise

Hash:

994013d66ae20cfa4ef1097d73481b00a672131d0de44d79a04ff12f492aae55
8f9dcf822dd8f22dd3c21f0798e97554a24b05a0fa3065d2580933ff4af29a6d
2f4dede7501c5e406ba8063dc53c48199620197a3c925fdf193dd5134749791e
50d645e57a915baf4db98b6476681dce65d809e84f2c72eff0d6db4b10fd28d0
C011cd7891e9668deaf83ebf396132d5ada8d8510a1d6853af748432a5280911
64a668add3d7f3bbcc0ef6acb25529c70df773d74e7e17a4a8fd8c95e81ee8bd
2bebba83d0caec961116d39f9f52dbb2277c937ceef88326b34b646de3763fd0

Dropurl

hxxps://cdn.discordapp.com/attachments/899351847805018123/899351889978748958/ascii.]txt
hxxps://cdn.discordapp.com/attachments/901544852150427722/901953881720901683/tSq3sp.]txt
hxxps://cdn.discordapp.com/attachments/897597296584298507/897960862311120917/Wiovms.]txt

C2 (AgentTesla SMTP):

sales[@[bswaterenergy[.com
lnfo[@[aothailand[.com

C2 (Formbook):

art-space[.xyz/c8te/

Yara Rules

9/11

rule generic_xll_x32

{

meta:

description = “Yara rule for generic x32 xll files”

author = “Yoroi Malware ZLab”

last_updated = “2021-05-11”

tlp = “white”

category = “informational”

strings:

 $STR1 = { 56 57 33 ff 80 3d ?? ?? ?? ?? 00 74 ?? 8b 15 ?? ?? ?? ?? 85 d2 75 ?? e8 ?? ?? ?? ?? 8b f0 8b ce e8 ?? ?? ?? ?? 8b 15
?? ?? ?? ?? 0f b6 c0 66 85 c0 0f 45 d6 89 15 ?? ?? ?? ?? 74 ?? 8b 42 10 85 c0 74 09 ff d0 c6 05 ?? ?? ?? ?? 01 e8 ?? ?? ?? ?? a1 ??
?? ?? ?? 85 c0 75 ?? e8 ?? ?? ?? ?? 8b f0 8b ce e8 ?? ?? ?? ?? 0f b6 c8 a1 ?? ?? ?? ?? 66 85 c9 0f 45 c6 a3 ?? ?? ?? ?? 74 ?? 8b 40
08 85 c0 74 ?? ff d0 0f b7 f0 e8 ?? ?? ?? ?? 5f 66 8b c6 c6 05 ?? ?? ?? ?? 00 c6 05 ?? ?? ?? ?? 01 5e c3 }

// xlAutoOpen proc near

// 56 push esi

// 57 push edi

// 33 FF xor edi, edi

// 80 3D A2 F2 06 10 00 cmp byte_1006F2A2, 0

// 74 44 jz short loc_1003B081

// 8B 15 A4 F2 06 10 mov edx, dword_1006F2A4

// 85 D2 test edx, edx

// 75 25 jnz short loc_1003B06C

// E8 34 02 00 00 call sub_1003B280

// 8B F0 mov esi, eax

// 8B CE mov ecx, esi

// E8 CB 26 00 00 call sub_1003D720

// 8B 15 A4 F2 06 10 mov edx, dword_1006F2A4

// 0F B6 C0 movzx eax, al

// 66 85 C0 test ax, ax

// 0F 45 D6 cmovnz edx, esi

// 89 15 A4 F2 06 10 mov dword_1006F2A4, edx

// 74 10 jz short loc_1003B07C

//

// loc_1003B06C:

// 8B 42 10 mov eax, [edx+10h]

// 85 C0 test eax, eax

// 74 09 jz short loc_1003B07C

// FF D0 call eax

// C6 05 A1 F2 06 10 01 mov byte_1006F2A1, 1

//

// loc_1003B07C:

//

10/11

// E8 0F FF FF FF call xlAutoClose

//

// loc_1003B081:

// A1 A4 F2 06 10 mov eax, dword_1006F2A4

// 85 C0 test eax, eax

// 75 23 jnz short loc_1003B0AD

// E8 F1 01 00 00 call sub_1003B280

// 8B F0 mov esi, eax

// 8B CE mov ecx, esi

// E8 88 26 00 00 call sub_1003D720

// 0F B6 C8 movzx ecx, al

// A1 A4 F2 06 10 mov eax, dword_1006F2A4

// 66 85 C9 test cx, cx

// 0F 45 C6 cmovnz eax, esi

// A3 A4 F2 06 10 mov dword_1006F2A4, eax

// 74 25 jz short loc_1003B0D2

//

// loc_1003B0AD:

// 8B 40 08 mov eax, [eax+8]

// 85 C0 test eax, eax

// 74 1E jz short loc_1003B0D2

// FF D0 call eax

// 0F B7 F0 movzx esi, ax

// E8 A2 00 00 00 call sub_1003B160

// 5F pop edi

// 66 8B C6 mov ax, si

// C6 05 A1 F2 06 10 00 mov byte_1006F2A1, 0

// C6 05 A2 F2 06 10 01 mov byte_1006F2A2, 1

// 5E pop esi

// C3 retn

condition:

 $STR1 and uint16(0) == 0x5A4D

}

rule malicious_dll

{

meta:

description = “Yara rule for the malicious dll file extracted from a xll file”

author = “Yoroi Malware ZLab”

11/11

last_updated = “2021-05-11”

tlp = “white”

category = “informational”

strings:

$bytes_1 = { 00 02 0E 0E 0E }

$bytes_2 = { 17590C2B17070608 }

$bytes_3 = { 0817590C081530E5 }

$bytes_4 = { 072A??026F1?0000 }

$bytes_5 = { 6A72??0?0070280? }

$mscoree = { 6D 73 63 6F 72 65 65 2E 64 6C 6C }

condition:

all of them and uint16(0) == 0x5A4D and filesize < 20KB

}

This blog post was authored by Luigi Martire, Carmelo Ragusa and Luca Mella of Yoroi Malware ZLAB.

