
1/13

Phil Stokes

Infect If Needed | A Deeper Dive Into Targeted Backdoor
macOS.Macma

sentinelone.com/labs/infect-if-needed-a-deeper-dive-into-targeted-backdoor-macos-macma/

Last week, Google’s Threat Analysis Group published details around what appears to be
APT activity targeting, among others, Mac users visiting Hong Kong websites supporting pro-
democracy activism. Google’s report focused on the use of two vulnerabilities: a zero day
and a N-day (a known vulnerability with an available patch).

By the time of Google’s publication both had, in fact, been patched for some months. What
received less attention was the malware that the vulnerabilities were leveraged to drop: a
backdoor that works just fine even on the latest patched systems of macOS Monterey.

Google labelled the backdoor “Macma”, and we will follow suit. Shortly after Google’s
publication, a rapid triage of the backdoor was published by Objective-See (under the name
“OSX.CDDS”). In this post, we take a deeper dive into macOS.Macma, reveal further IoCs to
aid defenders and threat hunters, and speculate on some of macOS.Macma’s (hitherto-
unmentioned) interesting artifacts.

How macOS.Macma Gains Persistence

Thanks to the work of Google’s TAG team, we were able to grab two versions of the
backdoor used by the threat actors, which we will label UserAgent 2019 and UserAgent
2021 . Both are interesting, but arguably the earlier 2019 version has greater longevity since

https://www.sentinelone.com/labs/infect-if-needed-a-deeper-dive-into-targeted-backdoor-macos-macma/
https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://assets.sentinelone.com/infog/sentinelone-zero-day
https://www.sentinelone.com/blog/apples-macos-monterey-6-security-changes-that-may-have-passed-you-by/
https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/
https://objective-see.com/blog/blog_0x69.html

2/13

the delivery mechanism appears to work just fine on macOS Monterey.

The 2019 version of macOS.Macma will run just fine on macOS Monterey
UserAgent 2019 is a Mach-O binary dropped by an application called

“SafariFlashActivity.app”, itself contained in a .DMG file (the disk image sample found by
Google has the name “install_flash_player_osx.dmg”). UserAgent 2021 is a standalone
Mach-O binary and contains much the same functionality as the 2019 version along with
some added AV capture capabilities. This version of macOS.Macma is installed by a
separate Mach-O binary dropped when the threat actors leverage the vulnerabilities
described in Google’s post.

Both versions install the same persistence agent, com.UserAgent.va.plist in the current
user’s ~/Library/LaunchAgents folder.

3/13

Macma’s persistence agent, com.UserAgent.va.plist
The property list is worth pausing over as it contains some interesting features. First, aside
from the path to the executable, we can see that the persistence agent passes two
arguments to the malware before it is run: -runMode , and ifneeded .

The agent also switches the current working directory to a custom folder, in which later will
be deposited data from the separate keylogger module, among other things.

We find it interesting that the developer chose to include the LimitLoadToSessionType
key with the value “Aqua”. The “Aqua” value ensures the LaunchAgent only runs when there
is a logged in GUI user (as opposed to running as a background task or running when a user
logs in via SSH). This is likely necessary to ensure other functionality, such as requesting
that the user gives access to the Microphone and Accessibility features.

https://developer.apple.com/library/archive/technotes/tn2083/_index.html#//apple_ref/doc/uid/DTS10003794-CH1-SUBSECTION3

4/13

Victims are prompted to allow macOS.Macma access to the Microphone
However, since launchd defaults to “Aqua” when no key is specified at all, this inclusion is
rather redundant. We might speculate that the inclusion of the key here suggests the
developer is familiar with developing other LaunchAgents in other contexts where other keys
are indeed necessary.

Application Bundle Confusion Suggests A “Messy” Development
Process

Since we are discussing property lists, there’s some interesting artifacts in the
SafariFlashActivity.app’s Info.plist, and that in turn led us to notice a number of other oddities
in the bundle executables.

One of the great things about finding malware built into a bundle with an Info.plist is it gives
away some interesting details about when, and on what machine, the malware was built.

https://developer.apple.com/library/archive/technotes/tn2083/_index.html#//apple_ref/doc/uid/DTS10003794-CH1-SUBSECTION3

5/13

macOS.Macma was built on El Capitan
In this case, we see the malware was built on an El Capitan machine running build 15C43.
That’s curious, because build 15C43 was never a public release build: it was a beta of El
Capitan 11.2 available to developers and AppleSeed (Apple beta testers) briefly around
October to November 2015. On December 8th, 2015, El Capitan 11.2 was released with
build number 15C50, superseding the previous public release of 11.1, build 15B42 from
October 21st.

At this juncture, let’s note that the malware was signed with an ad hoc signature, meaning it
did not require an Apple Developer account or ID to satisfy code signing requirements.

Therein lies an anomaly: the bundle was signed without needing a developer account, but it
seems that the macOS version used to create this version of macOS.Macma was indeed
sourced from a developer account. Such an account could possibly belong to the author(s);
possibly be stolen, or possibly acquired with a fake ID. However, the latter two scenarios
seem inconsistent with the ad hoc signature. If the developer had a fake or stolen Apple ID,
why not codesign it with that for added credibility?

While we’re speculating about the developer or developers’ identities, two other artifacts in
the bundle are worthy of mention. The main executable in ../MacOS is called
“SafariFlashActivity” and was apparently compiled on Sept 16th, 2019. In the
../Resources folder, we see what appears to be an earlier version of the executable,

“SafariFlashActivity1”, built some nine days earlier on Sept 7th.

https://developer.apple.com/documentation/security/seccodesignatureflags/1397793-adhoc

6/13

While these two executables share a large amount of code and functionality, there are also a
number of differences between them. Perhaps the most intriguing are that they appear – by
accident or by design – to have been created by two entirely different users.

User strings from two binaries in the same macOS.Macma bundle
The user account “lifei” (speculatively, Li Fei, a common-enough Chinese name) seems to
have replaced the user account “lxk”. Of course, it could be the same person operating
different user accounts, or two entirely different individuals building separately from a
common project. Indeed, there are sufficiently large differences in the code in such a short
space of time to make it plausible to suggest that two developers were working
independently on the same project and that one was chosen over the other for the final
executable embedded in the ../MacOs folder.

Note that in the “lifei” builds, we see both the use of “Mac_Ma” for the first time, and
“preexcel” — used as the team identifier in the final code signature. Neither of these appear
in the “lxk” build, where “SafariFlashActivity” appears to be the project name. This bifurcation
even extends to an unusual inconsistency between the identifier used in the bundle and that
used in the code signature, where one is xxxxx.SafariFlashActivity and the other is
xxxxxx.preexcl-project .

Inconsistent identifiers used in the bundle and code signature of macOS.Macma
In any case, the string “lifei” is found in several of the other binaries in the 2019 version of
macOS.Macma, whereas “lxk” is not seen again. In the 2021 version, both “lifei” and “lxk”
and all other developer artifacts have disappeared entirely from both the installer and
UserAgent binaries, suggesting that the development process had been deliberately cleaned
up.

7/13

User lifei’s “Macma” seems to have won the ‘battle of the devs’
Finally, if we return to the various (admittedly, falsifiable) compilation dates found in the
bundle, there is another curiosity: we noted that the malware appears to have been compiled
on a 2015 developer build of macOS, yet the Info.plist has a copyright date of 2018, and the
executables in this bundle were built well-over 3 years later in September 2019 according to
the (entirely manipulatable) timestamps.

What can we conclude from all these tangled weeds? Nothing concrete, admittedly. But there
do seem to be two plausible, if competing, narratives: perhaps the threat actor went to
extraordinary, and likely unnecessary, lengths to muddle the artifacts in these binaries.
Alternatively, the threat actor had a somewhat confused development process with more
than one developer and changing requirements. No doubt the truth is far more complex, but
given the nature of the artifacts above, we suspect the latter may well be at least part of the
story.

For defenders, all this provides a plethora of collectible artifacts that may, perhaps, help us to
identify this malware or track this threat actor in future incidents.

macOS.Macma – Links To Android and Linux Malware?

Things start to get even more interesting when we take a look at artifacts in the executable
code itself. As we noted in the introduction, an early report on this malware dubbed it
“OSX.CDDS”. We can see why. The code is littered with methods prefixed with CDDS.

8/13

Some of the CDDS methods found in the 2021 UserAgent executable
That code, according to Google TAG, is an implementation for a DDS – Data Distribution
Service – framework. While our searches turned up blank trying to find a specific
implementation of DDS that matched the functions used in macOS.Macma, we did find other
malware that uses the same framework.

Android malware drops an ELF bin that contains the same CDDS framework

9/13

Links to known Android malware droppers
These ELF bins and both versions of macOS.Macma’s UserAgent also share another
commonality, the strings “Octstr2Dec” and “Dec2Octstr”.

Commonalities between macOS.Macma and a malicious ELF Shared object file
These latter strings, which appear to be conversions for strings containing octals and
decimals, may simply be a matter of coincidence or of code reuse. The code similarities we
found also have links back to installers for the notorious Shedun Android malware.

In their report, Google’s TAG pointed out that macOS.Macma was associated with an iOS
exploit chain that they had not been able to entirely recover. Our analysis suggests that the
actors behind macOS.Macma at least were reusing code from ELF/Android developers and
possibly could have also been targeting Android phones with malware as well. Further
analysis is needed to see how far these connections extend.

Macma’s Keylogger and AV Capture Functionality

https://www.jianshu.com/p/55e1545f2d45
https://en.wikipedia.org/wiki/Shedun

10/13

While the earlier reports referred to above have already covered the basics of
macOS.Macma functionality, we want to expand on previous reporting to reveal further IoCs.

As previously mentioned, macOS.Macma will drop a persistence agent at
~/Library/LaunchAgents/com.UserAgent.va.plist and an executable at
~/Library/Preferences/lib/UserAgent .

As we noted above, the LaunchAgent will ensure that before the job starts, the executable’s
current working directory will be changed to the aforementioned “lib” folder. This folder is
used as a repository for data culled by the keylogger, “kAgent”, which itself is dropped at
~/Library/Preferences/Tools/ , along with the “at” and “arch” Mach-O binaries.

Binaries dropped by macOS.Macma
The kAgent keylogger creates text files of captured keystrokes from any text input field,
including Spotlight, Finder, Safari, Mail, Messages and other apps that have text fields for
passwords and so on. The text files are created with Unix timestamps for names and
collected in directories called “data”.

11/13

The file 1636804188 contains data captured by the keylogger
We also note that this malware reaches out to a remote .php file to return the user’s IP
address. The same URL has a long history of use.

http://cgi1.apnic.net/cgi-bin/my-ip.php

Both Android and macOS malware ping this URL
Finally, one further IoC we noted in the ../MacOS/SafariFlashActivity “lifei” binary that
never appeared anywhere else, and we also did not see dropped on any of our test runs,
was:

/Users/%s/Library/Safari/Safari.app/Contents/MacOS/UpdateHelper

12/13

Malware tries to drop a file in the Safari folder
This is worth mentioning since the target folder, the User’s Library/Safari folder, is TCC
protected since Mojave. For that reason, any attempt to install there would fall afoul of
current TCC protections (bypasses notwithstanding). It looks, therefore, like a remnant of the
earlier code development from El Capitan era, and indeed we do not see this string in later
versions. However, it’s unique enough for defenders to watch out for: there’s never any
legitimate reason for an executable at this path to exist on any version of macOS.

Conclusion

Catching APTs targeting macOS users is a rare event, and we are lucky in this instance to
have a fairly transparent view of the malware being dropped. Regardless of the vector used
to drop the malware, the payload itself is perfectly functional and capable of exfiltrating data
and spying on macOS users. It’s just another reminder, if one were needed, that simply
investing in a Mac does not guarantee you safe passage against bad actors. This may have
been an APT-developed payload, but the code is simple enough for anyone interested in
malfeasance to reproduce.

Indicators of Compromise

SHA1
 000830573ff24345d88ef7916f9745aff5ee813d; UserAgent 2021 payload, Mach-O

 07f8549d2a8cc76023acee374c18bbe31bb19d91; UserAgent 2019, Mach-0
 0e7b90ec564cb3b6ea080be2829b1a593fff009f; (Related) ELF DYN Shared object file

 2303a9c0092f9b0ccac8536419ee48626a253f94; UserAgent 2021 installer, Mach-0
 31f0642fe76b2bdf694710a0741e9a153e04b485; SafariFlashActivity1, Mach-0

 734070ae052939c946d096a13bc4a78d0265a3a2; (Related) ELF DYN Shared object file
 77a86a6b26a6d0f15f0cb40df62c88249ba80773; at, Mach-0

 941e8f52f49aa387a315a0238cff8e043e2a7222; install_flash_player_osx.dmg, DMG
 b2f0dae9f5b4f9d62b73d24f1f52dcb6d66d2f52; client, Mach-0

 b6a11933b95ad1f8c2ad97afedd49a188e0587d2; SafariFlashActivity, Mach-0
 c4511ad16564eabb2c179d2e36f3f1e59a3f1346; arch, Mach-0

 f7549ff73f9ce9f83f8181255de7c3f24ffb2237; SafariFlashActivityInstall, shell script

https://www.sentinelone.com/labs/bypassing-macos-tcc-user-privacy-protections-by-accident-and-design/
https://www.sentinelone.com/blog/when-apple-admits-macos-malware-is-a-problem-its-time-to-take-notice/

13/13

File Paths
~/Library/Preferences/Tools/at
~/Library/Preferences/Tools/arch
~/Library/Preferences/Tools/kAgent
~/Library/LaunchAgents/com.UserAgent.va.plist
~/Library/Preferences/UserAgent/lib/Data/
~/Library/Preferences/UserAgent/lib/UserAgent
~/Library/Safari/Safari.app/Contents/MacOS/UpdateHelper

Identifiers
xxxxx.SafariFlashActivity
xxxxxx.preexcl.project

