Malware Analysis: Syscalls

(=)
mOrv4i November 12, 2021

This blog post can accompany a walkthrough video with herrcore on YouTube available here.

In the eternal cat-and-mouse chase between cyber attackers and cyber defenders, one of
the critical activities that defenders can perform is the analysis of malware to draw out I0Cs
(Indicators of Compromise) and determine what it is that the malware has actually done on a
system.

When malware is run on a Windows system it needs to interact with that system in some
way. One of the most common ways to do so is by using the Windows API, where well
known API calls such virtualAllocateEx , WriteProcessMemory and

CreateRemoteThread would allow malware to inject some malicious code into a process
and then run that code.

117

https://jmpesp.me/malware-analysis-syscalls-example/
https://twitter.com/herrcore
https://www.youtube.com/watch?v=Uba3SQH2jNE

For this reason, when debugging malware one of the first things you'll see people do is set
breakpoints on these well known API calls and any others that could be used to perform
malicious actions.

Similarly, defensive software such as EDRs will often monitor these API calls, such as by
hooking them so that when they are called they first take a detour into EDR code where the
arguments and behaviour can be analysed, before allowing the API call to continue.

Attackers have attempted to circumvent this by going 'lower' and using internal or
undocumented API calls, such as RtlCreateUserThread or NtAllocateVirtualMemory ,
but these in turn are now also under close scrutiny.

The latest step is to move the angle of approach to as close to the kernel as possible, and to
use syscalls directly, but first we should probably cover what a syscall actually is.

Syscalls

Note, the following applies to 64-bit executables on 64-bit Windows . While similar, 32-bit
applications and on 32-bit Windows and WOW®64 work slightly differently.

As alluded to above, the Windows Operating System (OS) has multiple layers of abstraction
in order to allow developers internally some license to make changes to the way Windows
internals works without breaking any programs that use their APIs.

For example, Microsoft provide the Windows API with great documentation on msdn which
developers that wish to interact with the OS are encouraged to use (for example
CreateThread in kernel32.dll which, unsurprisingly, creates a thread running some code).
These API calls themselves may utilise other, lower level, internal or undocumented API
calls, such as RtlCreateUserThread (in ntdll.dll), in order to provide that abstraction layer
and wrap code that may change or be platform dependent, etc.

Ultimately, most of these API calls need to make some change that needs to be handled by
the Windows Kernel (such as anything using hardware like reading and writing to disk).
'Kernel space' is highly protected and userland code cannot make change to or call kernel
functions, except through the use of syscalls.

217

https://msdn.microsoft.com/

Explorer Paint MSDev

KERMEL32, GDI32,USER 32 (Win32)
NTOLL
WINZZK

MNTOSKRML Image shamelessly pilfered from

HaL, Drivers

B UserMode
B Kernel Mode

http://masters.donntu.org/

These syscalls takes place in functions in ntdll.dll (or Win32k for graphical calls), and are
prefixed with Nt or Zw , such as NtCreateThread . These are the functions that actually
perform the syscall, transferring execution from userland to the kernel in a controlled manner.
So when an application calls, for example, CreateRemoteThread , the actual flow looks
something like this:

2. Make syscall

(o gr‘n::u:‘\ﬂ_-ss'rhr‘e.'mdsagi.h.w'I (.« Kernel-mode
* userland « Unexported
* userland

e pN / N oo Al | instruction

l. Call function in NTDLL

Image nabbed from https://miro.medium.com/max/
So what does a syscall look like?

Essentially a syscall is simply involves moving a predetermined number (the System Call
Number) into the rax register and then invoking the syscall instruction, something like
this:

3/17

text : ep0aaaLEeRA3D1d ; =============== 5 UB RO UTINE =sss=======s============================
text:eaeaaeals88A3018

text:epeeaaalieassDle

.text : 60066001 880A3D10 public NtCreateThread
.text:0000000180043010 NtCreateThread proc near
text:eaeaaeals88A3018 ; _ 184
Jtext :pepessnl300A3D10 mov rld, rcx 3 NtCreateThread

Ltext:pepaaaalsaaA3D1S mov eax, 4E

Ltext:90000001800A3018 es byte ptr ds:7FFE@3@8h, 1

.text : 60066001 880A3D20 inz short loc_1388A3D25
.text:8@00008150043D22 ; Low latency system call
Ltext:pepaaaalseaA3D24 retn

tEXEIBBBOBBOLBOOAIDRS § - - - - == - mmm oS
. text: HE0BGH1800A3D25

Ltext:90000001800A3025 loc_1888A3D25: 5 CODE XREF: NtCreateThread+l@tj
Ltext:pepaaaals8eA3D25 int 2Eh ; DOS 2+ internal - EXECUTE COMMAND
Ltext:00000001800A3D25 3 D5:5I -»> counted CR-terminated command string
Ltext:pepaaaalsaaA3D27 retn

Ltext:000000018004A3027 NtCreateThread endp

NtCreateThread in ntdll.dll making a syscall.

This then hands execution over to the kernel, which looks up the relevant function for this
syscall number in the System Service Dispatch Table (SSDT) and then invokes it.

Using Syscalls

Now, using syscalls as a developer is risky as the syscall numbers are internal to Windows
and can (and do) change with any update. So if you write code that uses the syscall
instruction directly you could have working code one minute and broken code the next.

However, to attackers, they provide an excellent opportunity to hide their tracks by interacting
with the OS at the lowest possible userland level, bypassing any controls or detections in
place around the API layers and making life more difficult for reverse engineers as their
binaries will not have any of the usual imports for the activities they are performing. Similarly,
the usual breakpoints when dynamically reverse engineering malware on VirtualProtect ,
VirtualAlloc , WriteProcessMemory etc are all useless, as those API calls are not
actually invoked.

To highlight this, I've written a simple example program that uses syscalls to execute some
benign 'Message Box' shellcode into a target process. The code is available here for anyone
interested in investigating further.

This program uses the popular Syswhispers2 project to do all the heavy lifting.
Syswhispers2 maintains a lookup table of known syscall numbers across Windows versions
and updates and populates the rax register with the appropriate value at runtime before
invoking the syscall instruction to perform the action.

The functions are named after their 'real' counterparts to make it easy to develop in, but
make no mistake - these are not the real functions ntdlil.dlIl.

4/17

https://github.com/m0rv4i/SyscallsExample
https://github.com/jthuraisamy/SysWhispers2

syscallsZ.asm + X
MLOAUET Y Vd LUEREY CRUT

NtAllocateVirtualMemory PROC
mov |Fsp +5), Fcx
mov [rsp+l6], rdx
mov [rsp+24], rB8
mov [rsp+32], ro
cuh_ren 7Rhb
mov ecx, 815882185h
call SW2?_ GetSyscallNumber
rsp, Z&n
rox, [rsp +8]
rdx, [rsp+16]
r8, [rsp+24]
ra, [rsp+32]
rid, rcx
syscall
ret
NtAllocateVirtualMemory ENDP

assembly for NtAllocateVirtualMemory
As we can see above, a function hash identifier is passed to the Syswhispers2

; Save registers.

; Load function hash into ECK.
: Resolve function hash into syscall number.

; Restore registers.

; Imvoke system call.

Syswhispers2

GetSyscallNumber function which will determine the current OS and return the correct
syscall number (in the rax register, as per usual).

After other register values are restored, the syscall instruction is then called.

This assembly file, along with the respective header and C files generated by Syswhispers2,
can be imported in any project and provide you with the suite of functions you need to
perform syscalls in your program and not use the Windows APlIs at all.

In our example, we allocate some memory in the target process, write the shellcode to it,
change it to execute permissions and then create a thread in the process to run the code.

5/17

#include <iostream>
#include "shellcode.h"
#include "syscalls.h"

#define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0)

int main(int argc, char* argv[])

{

printf("**** Syscalls Example! ****\n");

if (argc '= 2) {
printf("[!] Usage: %s <pid to inject into>\n", argv[0]);
return EXIT_FAILURE;

auto pid = atoi(argv[1]);

if (!'pid) {
printf("[-] Invalid PID: %s\n", argv[1l]);
return EXIT_FAILURE;

HANDLE hProcess;

CLIENT_ID clientId{};

clientId.UniqueProcess = (HANDLE)pid;

OBJECT_ATTRIBUTES objectAttributes = { sizeof(objectAttributes) };

auto status = NtOpenProcess(&hProcess, PROCESS_ALL_ACCESS, &objectAttributes,

&clientId);

if (!NT_SUCCESS(status)) {
printf("[-] Failed to open process: %d, NTSTATUS: Ox%x\n", pid, status);
return EXIT_FAILURE;

}
printf("[*] Successfully opened process %d\n", pid);

size_t shellcodeSize = sizeof(shellcode) / sizeof(shellcode[0]);
printf("[*] Shellcode length: %11ld\n", shellcodeSize);

PVOID baseAddress = NULL;

size_t allocSize = shellcodeSize;

status = NtAllocateVirtualMemory(hProcess, &baseAddress, 0, &allocSize,

MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);

if (!NT_SUCCESS(status)) {
printf("[-] Failed to allocate memory, NTSTATUS: 0x%x\n", status);
return EXIT_FAILURE;

}
printf("[*] Successfully allocated RW memory at Ox%p of size %1ld\n",

baseAddress, allocSize);

size_t bytesWritten;

status = NtWriteVirtualMemory(hProcess, baseAddress, &shellcode, shellcodeSize,

6/17

&bytesWritten);

if (!NT_SUCCESS(status)) {
printf("[-] Failed to write shellcode to memory at Ox%p, NTSTATUS: Ox%x\n",

baseAddress, status);

return EXIT_FAILURE;
}

printf("[*] Successfully wrote shellcode to memory\n");

DWORD oldProtect;
status = NtProtectVirtualMemory(hProcess, &baseAddress, &shellcodeSize,

PAGE_EXECUTE_READ, &oldProtect);

if (!'NT_SUCCESS(status)) {
printf("[-] Failed to change permission to RX on memory at 0x%p, NTSTATUS:

Ox%x\n", baseAddress, status);

return EXIT_FAILURE;
b

printf("[*] Successfully changed memory protections to RX\n");

HANDLE hThread;

CONTEXT threadContext;

CLIENT_ID threadClientId;

USER_STACK teb;

status = NtCreateThreadEx(&hThread, GENERIC_EXECUTE, NULL, hProcess, baseAddress,

NULL, FALSE, NULL, NULL, NULL, NULL);

}

if (!NT_SUCCESS(status)) {
printf("[-] Failed to create thread, NTSTATUS: 0Ox%x\n'", status);
return EXIT_FAILURE;

}

printf("[*] Successfully created thread in process\n");

printf("[+] Shellcode injected using syscalls!\n");
return EXIT_SUCCESS;

Syscalls example code using Syswhispers2
As you can see Syswhispers2 has made is super easy to use syscalls in malware, however
any of this can be done manually of course or in slightly different ways by malware authors.

Analysis

So now to the meat of the matter, what does malware that uses syscalls look like under the
microscope, and what do we need to know to look for?

If we examine our example binary in CFF Explorer we can see that, as expected, it doesn't
import any of the usual suspect API calls, similar to if it was using dynamic API resolution.

717

File Settings 7

B W

w® CFF Explorer VIII - [SyscallsExample.exe]

SyscallsExample.exe

B [T File: SyscallsExample.exe
— (= Dos Header

[Z] Mt Headers
[l File Header
[Z] Optional Header
[Z] Data Directories [x]

— (=] Section Headers [x]
— |3 Import Directory

— | Resource Directary
— @Ezception Directory
— &Bﬁelocation Directory
— |3 Debug Directory

— ‘ﬁ,ﬂdd’ms Converter
— 4, Dependency Walker
— 4, Hex Editor

— %, Identifier

— 4, Quick Disassembler
— 4, Rebuilder

— ‘ﬁ,Hmune Editor

Module Mame Impaorts OFTs TimeDateStamp | ForwarderChain | Name RVA FT= (1&T)
0000AZ8A /A 00009C48 00009C4AC 00009C50 00009C54 00009C58
szhnsi (nFunctions) Dword Dwerd Dword Dword Dword
VCRUNTIMETAD.Il 4 ODODACFD 00000000 00000000 ODODAEGE 0000ADBD
api-ms-win-crt-stdi... 4 ODODADFD 00000000 00000000 0000BOGE 00004180
api-ms-win-crt-con... 1 0000AD18 00000000 00000000 0000BOBE 000DADAS
api-ms-win-crt-run... 18 0DD0AD3S 00000000 00000000 00D0BOAS 00DOACER
api-ms-win-crt-mat... 1 0000AD43 00000000 00000000 0000BOCA 0000A0DE
api-ms-win-crt-loc... |1 D00DAD38 00000000 00000000 DO0DBOEA 000DADCE
api-ms-win-crt-hea... 1 000DAD23 00000000 00000000 0000B10C 000DADBS
KERMEL32.dII 15 ODODACTD 00000000 00000000 0000B28A 0000ADDD
OFTs FTs (IAT) Hint Mame

Cword Cword Word srfinc

000000000000B21C | DOODOOOOOODOBZ21C | 0225 GetCurrentThreadld

000000000000B140 | ODOOCOODOODOBI40 | 04DC RtlLockupFunctionEntry

000000000000B15A | ODODODOOODODOBTSA | OME3 RtlVirtualUnwind

000000000000BIGE | DODODODODODOBIGE | 05CO UnhandledExceptionFilter

000000000000B18A | DODDDODODODOBI8A | D57F SetUnhandledExceptionFilter

000000000000B276 | DDDDDODODODOBZTE | 0281 GetMeduleHandleW

000000000000B262 | ODODOOOODDDOB262 | 0383 IsDebuggerPresent

000000000000B24C | OOODOOOOOODOBZ4C | 03GF Initialize5ListHead

000000000000B232 | ODOOOOOOOODOBZ32 | 02F3 GetSystemTimeAsFileTime

000000000000B12C | ODOOOOOODODOBI2C | (MD5 RtlCaptureContext

000000000000B206 | DODOOOOODODOB206 | 0221 GetCurrentProcessld

Our syscalls example doesn't import any of the usual 'suspicious' imports.
If we run it in a debugger, none of our API breakpoints get hit.

When we start to statically reverse engineer the binary we don't see calls to LoadLibrary ,
no API hashes or dynamic resolution.

If we see this, and suspect the use of syscalls, one quick and easy win is to simply check for
any syscall instructions. We can do this in IDA through the Text search with Find all

occurrences checked.

8/17

String syzcall e

[] Match case

[Regular expression

(] 1dentifier Search for syscall instructions in IDA
[] search Up

B Find &ll occurrences

IDA View-A t} Occurrences of: syscall @ @ Hex View-1 @ Structur
Address Function Instruction

text: 0000000 14000 1094 sub_ 140001070 lea rox, aSyscallsExampl ; "% Syscalls Example! *===n"
text:00000001400012C1 sub_ 140001070 lea rcx, aShellcodelInjec ; "[+] Shellcode injected using sysc...
Ltext:0000000140001580 gyscall + Low latency system call
Ltext:0000000140001540 gyscall + Low latency system call
Ltext:00000001400015ED0 gyscall + Low latency system call
text:0000000140001620 gyscall + Low latency system call

text: 000000014000 1680 gyscall + Low latency system call

Jtext: 000000014000 1640 gyscall + Low latency system call

Ltext: 000000014000 16ED gyscall + Low latency system call
text:0000000140001720 gyscall + Low latency system call
text:00000001400017a60 gyscall + Low latency system call
Jtext:0000000140001740 gyscall + Low latency system call

The text search which find all occurrences of 'syscall', including syscall instructions.

Normal applications should almost under no circumstances be making syscalls directly, and
instead be using API calls to interact with the OS. If you find syscall instructions it is a large
red flag.

Examining one of these instances we can see the function and recognise it from
Syswhispers2, with the API hash being passed to the syscall number identification function
and the the syscall instruction itself at the bottom.

mov [rsp+8], rcx

mov [rsp+18h], rdx

mov [rsp+18h], r8

mav [rsp+28h], rg

sub rsp, 28h

mov ecx, BFBCCBESh

call sub_l488814F8

add rsp, 28h One example
mov rex, [rsp+i)

mov rdx, [rsp+leéh]

mov rg, [rsp+lsh]

mav rd, [rsp+2eh]

Mo rl@, rcx

syscall ; Low latency system call
retn

9/17

We can take this function hash (9xFBCCOE8) and search for it in our example project, or
Syswhispers2 itself, and find that it is for NtReadFile .

syscalls2.asm & X

NtReadFile PROC
mov [rsp +8], rcx ; Save registers.
mov [rsp+16], rdx
mov [rsp+24], r8
mov [rsp+32], r9
sub rsp, 2Bh
mov ecx, BAFBCCBERh ; Load function hash into ECX.
call SW2_GetSyscallNumber ; Resolve function hash into syscall number.
add rsp, 2Bh
rcx, [rsp +8] ; Restore registers.
ribx, [rsp+16]
r8, [rsp+24]
rd, [rsp+32]
ri@, rcx
syscall ; Invoke system call.
ret
MtReadFile ENDP

match that call to the Syswhispers2 function.

Of course this only works if the target is using Syswhispers2, but knowing that the PE is
using syscalls can help focus reversing efforts and ensure we don't miss anything. Attackers
can also use hard-coded syscall numbers if they know the specific version of Windows that
the payload will be run on, or write their own syscall number resolution routine.

Similarly, they can also set up a syscall and populate the rax register but jmp toa
legitimate syscall instruction in ntdll.dll. In this case, our Text search wouldn't find
anything as there are no syscall instructions in the PE.

Dynamic Analysis

The best way however is to kernel debug the target and set breakpoints on the SSDT for
functions of note (allocating virtual memory, writing to virtual memory etc), as this will allow
the analyst to track the activity with 100% certainty.

This topic warrants its own blog post however, so we shall cover this next time!

An alternative, if we searched and found syscall instructions in the PE, is to take the list
of syscall instructions in IDA and use the relative offsets to place breakpoints on those calls
when we're debugging the application.

10/17

sub_148681B38 proc ; CO EF: main+124tp

sub_l4@88163@

Noting the address and relative offset of the syscall instructions in IDA
For example, if we note the address of this instruction in IDA, we can see it's at a relative
offset of 1B6D (0x140001B6d - the module base address of 0x140000000).

So we can start debugging and stick a breakpoint on this offset (it is unlikely to be the same
address due to ASLR, but we can just add this offset to the module base address once its
loaded) along with all the other syscall instructions, and from there start to build a picture of
what the application is doing.

Edit: After this blog post went out readgsqword on twitter reached out and shared the
following code for idapython which | have included here.

from idautils import *
from idaapi import *
from idc import *
def breakpoint_syscall():
name = get_input_file_path().split("\\")[-1]
for segea in Segments():
for funcea in Functions(segea, get_segm_end(segea)):
functionName = get_func_name(funcea)
for (startea, endea) in Chunks(funcea):
for head in Heads(startea, endea):
disasm_line = generate_disasm_line(head, 0)
if disasm_line.find("syscall") != -1 and disasm_line.find("Low latency
system call") != -1:
offset = head - get_imagebase()
print("bp %s:0+0x%08x;"%(name, offset))
idc.add_bpt(head)
breakpoint_syscall()

If you have IDA pro you can paste this in the Python prompt and it will set a breakpoint on
each code line in a function containing a syscall instruction.

11/17

https://twitter.com/readgsqword

For x64dbg lovers, it will also print the command needed to set breakpoints for each offset in
x64dbg, which can be copy pasted into the x64dbg command prompt.

Python:

rom idautils import *

1-aap1 import *
from idc import *
def hrvukpulnt_syscall{j:
put file path().split({™\\")}[-1]
for __Era in Segments(
funcea in Functi (s segm_end(s
functionName = func ﬂamwtf cea)
in Chunks(func

stem call™) != -1:

B+
)
&
8
@

* @+

bd; bp SyscallsExample.exe:|

CPU B Lo B totes B 5 W Memory Ma W c : 2§ SEH

Type Address Module/Label /Ex Lion Ste) semb 1y
Software

. BXE Enabled

. BNE Enabled

. BXE Enabled

. BYE Enabled

. BXE Enabled

breakpoints set successfully.

Here we can see it has created breakpoints on all five of the syscalls used

(NtOpenProcess , NtAllocateVirtualMemory , NtWriteVirtualMemory ,
NtProtectVirtualmemory and NtCreateThreadEx)

Note this will only create breakpoints for syscalls IDA finds in a function, so if the code is
elsewhere in a binary or IDA believes is it not used, then this will not include those calls.
However the search technique can be used as a fallback in that case.

We start debugging the malware again and once we hit the entrypoint we have the module
address:

INT3 breakpoint “entry breakpoint™ at <syscallsexample.mainCRTStartup > (00007FF FCGE39080)! he entrypoint

breakpoint in x64dbg providing an address in the module.

12/17

We know that a syscall instruction is at offset 1B6D , so we stick a breakpoint on
OX7FF7C6E31B6D

Command: bp 0x7FFTCEE31BEL|
Set our breakpoint
Breakpoint at 0000 7FFFCEES 166D set!
This time, when we continue execution, we hit the breakpoint and x64dbg helpfully informs
us that this syscall will call NtAllocateVirtualMemory

- MNotes Breakpoints

, OWOR
MOV R10, RCX

NtAllocateVirtualMemory
MO7FF7CBE31B70 MOV QWORD PTI
MOV QWORD PTI
MOV QWORD PTI
MOV QWORD PTI
SUB_RSP. 28
x64dbg examines the syscall number in rax and informs us this syscall is
NtAllocateVirtualMemory
A quick search and we can see that the second argumentto NtAllocateVirtualMemory is

a pointer to the location that will receive the base address of the allocation.

Syntax

C++

__kernel entry NTSYSCALLAPT NTSTATUS NtAllo
[in] HANDLE ProcessHandle,
[in, out] PVOID *BaseAddress,
[in] ULONG_PTR ZeroBits,
[in, out] PSIZE_T RegionSize,
[in] ULONG AllocationType,
[in] ULONG Protect

NtAllocatevirtualMemory , despite being an internal API call, is documented on MSDN.
The Windows 64-bit calling convention passes the first four integer arguments in the rcx

rdx , r8 and r9 registers, so if we follow rdx inthe dump and step over the syscall, we
will see this location being populated with a pointer to the base address of the allocation.

Ml Dump 2 il Dump 3 Ml Dump 4 Ml Dump 5 & watch 1

ES
g BO
Al E3 CGB|F7 7F 4E 0 N. rdx
ol L

30 04

C 5B E0 2B 04 90
points to this location before we step over the syscall.

13/17

Dump 2 M0 Dump 3 Il Dump 4 MM Dump 5 & watch1

EDOF6FFELO he same

.

location after the ssaII.
We can right-click this location and choose integer -> hex 64 to show this location as a 64 bit
int, then copy the value and examine that region in our target process (here notepad.exe).

MOV RE, QWORD
Sync with expression MOV RS, OWORD

MOV R10, RCX
SYSCAL

"""" Allocate Memary

MOV OWORD PTR 55:

MOV OWORD PTR

MOV QWORD PTR

Hex MOV QWORD PTR &
SUB RSP, 28

Go to

Text
Integer Signed byte (8-hit)

. text :00007FF7CHE3: Float Signed short (16-bit)
Address Signed long (32-bit)
Disassembly Signed long long (54-bit)

- Unsigned byte (8-hit)
E2 C6 |F7 7F
Unsigned short {16-bit)
Unsigned lang (32-bit)
Unsigned long long (64+-bit)
Hex short (16-hit)
Hex long (32-bit)

Hex long long (64-hit)
. 48 4; 3

Dump 2 Ml Dump 3 Il Dump 4

he location as an int

We can then open up the target process in Process Hacker and examine this location in
memory, noting that it has indeed been allocated.

14/17

B Notepad.exe (33016) (0x1d8560a0000 - 0x1d8560a1000) - | x

0o0ooaooa !D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weseeeevnnnnnnas
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wesessasammannas
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sesessasammannas
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
00000040 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 weeeeeevnnmannas
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnmnannas
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnnnannas
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnmannas
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeesnnmannas
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wesessasammannas
000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 seseseasammannas
000000kL0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
000000cd 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnmannas
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnnnannas The
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnnnannas
000000£0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnnmannas
00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnmannas
00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wesessasnmmannas
00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sessssasammannas
00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
00000160 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnnnannas
00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeeevnnnannas
000001580 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weweeeevnmmannas
00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wesessasammannas
000001ad 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sessssasammannas

AAAA/RTLA AR AR AR AR AR AR AR AR AR RA AR AR AR AR AR AR

Re-read Write Go to... 16 bytes per row o Save...

allocation was successful.

If we continue execution, rinsing and repeating for the other syscalls, we see the region get
populated with the shellcode, the thread get created and then the message box pop as the
shellcode is run.

15/17

B " Motepad.exe (33016]) (0x1d8560a0000 - 0x1d8560a1000)

00000000 £c 43 81 =4 £0 ££ ££ ££ =8 40 00 00 00 41 51 41 JHevesnawnans AQR
00000010 50 52 51 56 48 31 42 &5 48 8k 52 60 3= 48 8k 52 PROVH1.=H.R":>H.E
00000020 13 3= 48 8k 52 20 3e 48 8k 72 50 3e 48 0f B7 4& .>H.R >H.rP:>H..J
00000030 4a 44 31 c9 48 31 c0 ac 3c 6l Tc 02 2c 20 41 1 JM1.H1..<&l., A.
00000040 c9 0d 41 01 el =2 =od 52 41 51 3e 48 b 52 20 32 ..A....RAQ>H.E >
00000050 8k 42 3c 48 01 40 3= 3k 20 88 00 00 00 48 85 c0 .B<H..Z>.u.... H..
Q000o0o0en 74 6f 48 01 40 S0 3e 8b 48 18 3e 44 8b 40 20 49 toH..P>.H.>D.E I
00000070 0l 40 3 5c 483 £f cf 3= 41 &b 34 38 458 01 dé 4d ... \H..>zA.4.H..M
00000080 31 cf% 48 31 cl ac 41 cl c% 0d 41 01 cl 38 =0 75 l.H1..A...A..S8.u1
000000580 £1 32 4c 03 4c 24 05 45 35 d1 75 46 58 3= 44 8k .>L.L$.ES.u.X>D.
000000a0 40 24 45 01 40 &6 3e 41 8b Oc 48 3e 44 8b 40 lc @5I..f>R..H>D.E.
000000k0 4% 01 40 3= 41 S8k 04 28 48 01 40 41 %8 41 58 5 I..>»A...H..RHDE~
000000cd 59 5a 41 58 41 59 41 5a 48 83 ec 20 41 52 £f =0 YZIR¥XAYRFH.. AR..
00000040 5% 41 5% 5a 3e 43 8k 12 =9 49 £f ff £ff 54 49 c7 E4Y¥ZI-H...I...]I. The nggion
000000ed c1 40 00 00 00 3e 43 8d 95 la 01 00 00 32 4c 8d .@...>H...... >L.
000000£0 85 2 01 00 00 43 31 cB 41 ba 45 83 56 07 ££ 45 H1.A.E.W...
00000100 blr 20 1d 2a Oa 41 ba at 55 bd 5d ££ 45 48 83 cd ... % A.ceeaas H..
00000110 28 3c 06 Tc Oa 80 fb =0 75 05 kb 47 13 72 6f €a {(<.|....un..5.r0]
00000120 00 5% 41 29 da ££ 45 53 79 73 €3 6l 6c 6c 73 20 .YR....S5yscalls
00000130 49 &= ©a 65 63 74 €% ©f ge 21 00 42 41 44 20 53 Injesction!.BAM 5
00000140 41 4% 44 20 54 4% 45 20 4c 41 44 5% 00 00 00 00 ATID THE LADY....
00000150 a0 00 00 00 00 a0 00 00 OO0 00 00 00 00 00 00 00 6.seesnannananas
00000led 40 00 00 OO0 00 00 00 00 OO0 00 00 00 00 00 00 00 w.seevnannananas
0000a170 a0 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 weseesesnnananas
000Qools0 a0 00 00 00 00 00 Q0 OO0 OO0 00 00 00 00 00 00 00 wessesnsnnananas
0000oled a0 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00 s.seevnannananas
000001a0 00 00 00 OO0 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 w.eseevnannananas
Write Go to... 16 bytes per row w Save Close
after the shellcode has been written to it.
B untitled - Notepad — O *
File Edit Format View Help
&
BAM SAID THE LADY *
o Syscalls Injection!
v
4 >
Ln 1, Col1 100% Windows (CRLF) UTF-8 d

The shellcode executing.

16/17

It's worth noting however that this technique (along with the static analysis with the search)
only works if the syscalls instructions take place inside the malware, such as with
Syswhispers2, which is why the ultimate authority when dealing with syscall malware is a
kernel mode debugger.

Summary

Using syscalls is a sophisticated technique available to attackers that take a little extra work
but allows the malware to bypass APl hooks, breakpoints and detections by interacting with
the kernel directly via the syscall interface.

Knowing what to look for then if you suspect the use of syscalls then is extremely useful, and
having this knowledge in the back pocket can help you avoid running afoul of malware using
this technique. We've looked at what syscalls are, and some ways to help locate and debug
what they are doing in 64bit Windows executables.

You can find the example projects (including a vanilla APl example and a syscalls example)
used in this blog on GitHub here: https://github.com/mO0rv4i/SyscallsExample

17/17

https://github.com/m0rv4i/SyscallsExample

