
1/20

November 11, 2021

FIN7 Tools Resurface in the Field – Splinter or Copycat?
splunk.com/en_us/blog/security/fin7-tools-resurface-in-the-field-splinter-or-copycat.html

 By Splunk Threat Research Team November

11, 2021
This blog is part 1 and covers FIN7, a highly-skilled group, and the two tools. To find a
walkthrough of Remcos executed via Splunk's Attack Range Local, check out part 2,
Detecting Remcos Tool Used by FIN7 with Splunk.

https://www.splunk.com/en_us/blog/security/fin7-tools-resurface-in-the-field-splinter-or-copycat.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/security/splunk-fin7-tool-detections-remcos.html

2/20

FIN7 is a well-organized criminal group composed of highly-skilled individuals that target
financial institutions, hospitality, restaurant, and gambling industries. Until recently, it was
known that high-level individuals of this criminal enterprise were arrested — specifically 3 of
them — and extradited to the United States.

This criminal group performed highly technical malicious campaigns which included
effective compromise, exfiltration and fraud using stolen payment cards. Another heist
related to the history of this group and actors includes withdrawing money from ATMs,
bypassing all controls as seen in the video linked below.

Carbanak and FIN7 are usually referred to as the same group, although some security
researchers believe they might be two groups using the same malware and should be
tracked separately. Without delving deeper into the assumptions of being two different
groups, however, we can take a look at their tools which is what we can measure via
payload samples and research from the community.

Source: Mario Mazzochi ATM Carbanak Attack

https://www.justice.gov/opa/pr/three-members-notorious-international-cybercrime-group-fin7-custody-role-attacking-over-100
https://www.youtube.com/watch?v=083s802WMw0
https://attackevals.mitre-engenuity.org/enterprise/carbanak_fin7/#:~:text=ATT%26CK%20Description,and%20are%20therefore%20tracked%20separately.&text=They%20often%20use%20point%2Dof%2Dsale%20malware.
https://www.youtube.com/watch?v=083s802WMw0

3/20

FIN7 is a particular group highly specialized in targeting specific verticals. These individuals
carefully and thoroughly pretexted and pursued their victims in some cases to establish
rapport via conversations in order to lure their victims into clicking on their malicious
payloads.

According to the Department of Justice, FIN7 group stole approximately 15 million cards in
the United States. This group was significantly successful in its criminal enterprise,
including the creation of an apparent Information Security Technology company where they
kept track of their victims using off-the-shelf software like Atlassian JIRA.

Source: DOJ

https://www.justice.gov/opa/press-release/file/1084596/download
https://www.justice.gov/opa/press-release/file/1084581/download

4/20

Due to the notoriety, extent and sophistication of this group and the tools they use, we are
going to particularly focus on FIN7 tools, techniques and procedures. Recently, a specific
tool which is a signature of this group known as the JSS loader has apparently resurfaced,
indicated by reports from some security research sites and mentioned in some security
publications.

Based on previous arrests of what was thought to be some of the main characters of this
organization, we need to ask ourselves: is this a splinter from a former group trying to get
business back online, or is this a copycat using the former tools, rewriting them and even
attempting to reuse former infrastructure from past campaigns? Or basically, the group was
indeed not affected by arrests and decided to lay low and then reappear as reported
recently by Recorded Future.

We do not have enough information to respond to the above questions, however, we can
prepare ourselves to defend against this group by looking at their tools.

In this two-part blog we are going to address two tools used by this group — JSS Loader
and Remcos.

FIN7 Javascript

FIN7 is well known to use a spear-phishing campaign to compromise a machine by
downloading or executing an obfuscated javascript as the first stage. We analyze old and
the latest script found in the wild to summarize all possible behavior it may execute in the
targeted machine.

https://www.proofpoint.com/us/blog/threat-insight/jssloader-recoded-and-reloaded
https://threatpost.com/fin7-windows-11-release/169206/
https://geminiadvisory.io/fin7-ransomware-bastion-secure/?__cf_chl_jschl_tk__=wfMw07NrLQx2J4GEcAgOHxr4m48a0HQgImZ5fUKCZcE-1636316392-0-gaNycGzNCOU

5/20

Javascript Execution Using .XSL File

One interesting behavior we saw in one of these variants is how it executes the malicious
javascript. First it will create a copy of legitimate wmic.exe in “user\public” folder, as well as
the .xsl file that will be executed using command “wmic os get /format:”<malicious>.xsl”.
Then the .xsl will execute the actual malicious javascript in the .txt file extension. Below is
the screenshot of that .XSL file.

We can also see how it uses the cscript.exe application to execute the malicious javascript
by using the command “cscript //e:jscript ibivigi.txt”.

This JS is capable of gathering information to the compromised host by executing several
WMI query commands. Below is the WMI query we saw during our analysis.

WMI Query and Shell CMD Information It Gather and Checks

select * from
Win32_NetworkAdapterConfiguration where
ipenabled = true

MACAddress, DNSHostName

SELECT * FROM Win32_BIOS SMBIOSBIOSVersion, BIOS
SerialNumber, check virtualization

Win32_process.Handle Process Handle

cmd /c whoami /groups | find "12288" Check elevated privilege cmd instance

6/20

Select * from Win32_ComputerSystem Check if part of the domain, PC model,
DNS hostname

select * from Win32_DesktopMonitor Check Screen size, and Monitor Type

select * from win32_process Enumerate process, check virtualization

Aside from the table above, it queries wmi “Win32_OperatingSystem” to check several
items like in the screenshot below.

It checks if the host has an enabled UAC by querying the “EnableLua” Registry and saves
the output as part of its data gathering.

7/20

It will also try to gather AD information by running ActiveXObject “ADSystemInfo” to check if
the host is part of the domain or not.

Data Exfiltration

After gathering all that information, it will be encrypted and sent to its C2 server using the
HTTP POST Request command.

8/20

We also found some variants where it uses DNS exfiltration of data. With this feature, it will
encrypt first all the gathered data, encode it to base64, then query the C2 DNS server using
nslookup application with the encoded data to it. The command is shown in the figure
below.

JSSLoader

FIN7 also has some binary backdoor tools that will do a collection of data from the
compromised host and send it to its C2 server. Some variants of JSSloader are compiled to
.NET and some are in C++.

C2 Server Communication

In both JSSloader samples, we've seen that it is capable of communicating to its C2 server
to request for commands and exfiltrate collected data from the compromised machine.
Below is the user-agent it uses in those samples:

9/20

Collection of Data

Like the obfuscated JScript it is also capable of collecting data by using WMI query in
“Win32_ComputerSystem”, “Win32_Product” and “Win32_Process”.

Additionally, both variants have a function that will list all the files on the desktop of the
compromised host that will also send to its C2 server.

.NET compiled of JSSloader

JSSloader compiled C++

JSSloader Compiled .NET

10/20

There is also a feature in the .net version of JSSloader where it runs Windows command-
line tools like ipconfig.exe and systeminfo.exe then pipe the output to another function that
collects and exfiltrates data.

C++ compiled JSSloader

11/20

Taking a Screenshot

Another feature identified is taking a screenshot of the compromised host. The screenshot
image will not be dropped on the disk; rather, it will be saved in a memory stream that will
be encoded to base64 and sent to its C2 server.

Parsing Browser Databases

It also has some functions that parse the browser information like history and URL visits of
users in both Chrome and Firefox applications. This is done by accessing the SQLite
database of those browsers and executing SQL queries to its database.

12/20

Detections

Jscript Execution Using Cscript App (New)

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes
 where (Processes.parent_process_name = "cscript.exe" AND Processes.parent_process
= "*//e:jscript*") OR (Processes.process_name = "cscript.exe" AND Processes.process
= "*//e:jscript*")
 by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user
 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`
| `security_content_ctime(lastTime)`

Parsing Chrome history

Parsing Firefox URL visited

13/20

XSL Script Execution With WMIC (New)

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes
 where Processes.process = "*os get*" Processes.process="*/format:*"
Processes.process = "*.xsl*"
 by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user
 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

14/20

Non-Chrome Process Accessing Chrome Default Dir (New)

`wineventlog_security` EventCode=4663 NOT (process_name IN ("*\\chrome.exe",
"*\\explorer.exe", "*sql*")) Object_Name="*\\Google\\Chrome\\User Data\\Default*"
| stats count min(_time) as firstTime max(_time) as lastTime by Object_Name
Object_Type process_name Access_Mask Accesses process_id EventCode dest user
| `security_content_ctime(firstTime)`
| `security_content_ctime(lastTime)`

Non-Firefox Process Access Firefox Profile Dir (New)

`wineventlog_security` EventCode=4663
 NOT (process_name IN ("*\\firefox.exe", "*\\explorer.exe", "*sql*"))
Object_Name="*\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles*"
 | stats count min(_time) as firstTime max(_time) as lastTime
 by Object_Name Object_Type process_name Access_Mask Accesses process_id EventCode
dest user
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

15/20

Office Application Drop Executable Unit Test (New)

`sysmon` EventCode=11 Image IN
("*\\winword.exe","*\\excel.exe","*\\powerpnt.exe","*\\mspub.exe","*\\visio.exe","*\\

 TargetFilename IN ("*.exe","*.dll","*.pif","*.scr","*.js","*.vbs","*.vbe","*.ps1")
AND NOT(TargetFilename IN ("*\\program files*","*\\windows*"))
 | stats count min(_time) as firstTime max(_time) as lastTime by Image
TargetFilename ProcessGuid dest user_id
 | `security_content_ctime(firstTime)`
 |`security_content_ctime(lastTime)`

Cmdline Tool Not Executed In CMD Shell (New)

16/20

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes
 where (Processes.process_name = "ipconfig.exe" OR Processes.process_name =
"systeminfo.exe")
 AND NOT (Processes.parent_process_name = "cmd.exe" OR
Processes.parent_process_name = "powershell*" OR Processes.parent_process_name =
"explorer.exe")
 by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user
 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

Check Elevated CMD using whoami (New)

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes
 where Processes.process = "*whoami*" Processes.process = "*/group*"
Processes.process = "* find *" Processes.process = "*12288*"
 by Processes.dest Processes.user Processes.parent_process Processes.process_name
Processes.process Processes.process_id Processes.parent_process_id
 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

MS Scripting Process Loading WMI Module (New)

`sysmon` EventCode =7 Image IN ("*\\wscript.exe", "*\\cscript.exe") ImageLoaded IN
("*\\fastprox.dll", "*\\wbemdisp.dll", "*\\wbemprox.dll", "*\\wbemsvc.dll" ,
"*\\wmiutils.dll", "*\\wbemcomn.dll")
| stats min(_time) as firstTime max(_time) as lastTime values(ImageLoaded) as
AllImageLoaded count
 by Image EventCode process_name ProcessId ProcessGuid Computer | where count >= 5
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

17/20

MS Scripting Process Loading Ldap Module (New)

sysmon` EventCode =7 Image IN ("*\\wscript.exe", "*\\cscript.exe") ImageLoaded IN
("*\\Wldap32.dll", "*\\adsldp.dll", "*\\adsldpc.dll")
| stats min(_time) as firstTime max(_time) as lastTime values(ImageLoaded) as
AllImageLoaded count
 by Image EventCode process_name ProcessId ProcessGuid Computer | where count >= 2
 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

Detection Techniques
ID

Tactics Description

Jscript Execution Using
Cscript App (New)

T1059.007 Execution Detects jscript execution
using cscript application

XSL Script Execution With
WMIC (New)

T1220 Defense
Evasion

Detects execution of xsl script
using wmic process

https://github.com/splunk/security_content/blob/develop/detections/endpoint/jscript_execution_using_cscript_app.yml
https://attack.mitre.org/techniques/T1059/007/
https://github.com/splunk/security_content/blob/develop/detections/endpoint/xsl_script_execution_with_wmic.yml
https://attack.mitre.org/techniques/T1220

18/20

Non Chrome Process
Accessing Chrome Default
Dir (New)

T1555.003 Credential
Access

Detects non-chrome process
accessing Chrome user
default folder

Non Firefox Process Access
Firefox Profile Dir (new)

T1555.003 Credential
Access

Detects non-Firefox process
accessing Firefox profile
folder

Office Application Drop
Executable Unit Test (New)

T1566.001 Initial
Access

Detects MS office application
dropping executable and
scripts.

Office Document Executing
Macro Code (Existing)

T1566.001 Initial
Access

Detects office application
execute macro code

Cmdline Tool Not Executed
In CMD Shell(New)

T1059.007 Execution Detects execution of
Windows commandline tools
in non-cmd shell process

Check Elevated CMD using
whoami(New)

T1033 Discovery Detects whoami commandline
checks if cmd instance is
elevated

MS Scripting Process
Loading WMI Module(New)

T1059.007 Execution Detects ms scripting process
loading wmi modules

MS Scripting Process
Loading Ldap Module(New)

T1059.007 Execution Detects ms scripting process
loading ldap modules

Office Product Spawning
Wmic (updated)

T1566.001 Initial
Access

Detects office application
spawn wmic process

DNS Exfiltration Using
Nslookup App (Existing)

T1048 Exfiltration Detects dns exfiltration using
nslookup

Excessive Usage of
NSLOOKUP App (Existing)

T1048 Exfiltration Detects high usage of
nslookup application

Hashes

https://github.com/splunk/security_content/blob/develop/detections/endpoint/non_chrome_process_accessing_chrome_default_dir.yml
https://attack.mitre.org/techniques/T1555/003
https://github.com/splunk/security_content/blob/develop/detections/endpoint/non_firefox_process_access_firefox_profile_dir.yml
https://attack.mitre.org/techniques/T1555/003/
https://github.com/splunk/security_content/blob/develop/tests/endpoint/office_application_drop_executable.test.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/office_document_executing_macro_code.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/cmdline_tool_not_executed_in_cmd_shell.yml
https://attack.mitre.org/techniques/T1059/007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/check_elevated_cmd_using_whoami.yml
https://attack.mitre.org/techniques/T1033
https://github.com/splunk/security_content/blob/develop/detections/endpoint/ms_scripting_process_loading_wmi_module.yml
https://attack.mitre.org/techniques/T1059.007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/ms_scripting_process_loading_ldap_module.yml
https://attack.mitre.org/techniques/T1059.007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/office_product_spawning_wmic.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/dns_exfiltration_using_nslookup_app.yml
https://attack.mitre.org/techniques/T1048
https://github.com/splunk/security_content/blob/develop/detections/endpoint/excessive_usage_of_nslookup_app.yml
https://attack.mitre.org/techniques/T1048

19/20

Filename Hashes SHA1

JSSloader 48864921c6a905d34a413279b31d4bb719b59898

Macro contain JSSloader 895cbed43d27d42e7a021eb7a7f811f58896d8c7

Macro with JS implant a37e708427b777cf3cd780fa611cc4983a40d7fd

Latest JS script 731828ded8ba3d0e9ba21b58620f303efd04846f

JSSloader .net 53F92D0B56B3EADD97E77684C9C374DB08B654F8

Contributors

We would like to thank the following for their contributions to this post:

Teoderick Contreras
Rod Soto

Posted by

Splunk Threat Research Team

https://www.virustotal.com/gui/file/e0e8a8b3a807bad531cf98fa7ceaa57e43780cd67c3be1518de6d40023e22554/details
https://www.virustotal.com/gui/file/71832696f8efa5ea83ffd5cf0af981ea931297b4679e71990afd6bac350d31fe/details
https://app.any.run/tasks/5e672b01-896c-4cc5-af52-65070d448c7b/
https://bazaar.abuse.ch/sample/f9f52daf168e9d62a485fb63ea53a419d649eb7280d775d4662e0572f62c3318/
https://www.virustotal.com/gui/file/c328f48c5f4a2c2441bcd0b0c0551547ca254f7ebbb46d30d357e962d8330063
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

20/20

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team
focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

