
1/15

Codi Starks, Ryan Chapman

REvil Under the Microscope
blogs.blackberry.com/en/2021/11/revil-under-the-microscope

Summary

U.S. and European law enforcement agencies revealed new seizures and arrests this week
involving the REvil ransomware group, underscoring the intense interest and outrage
following in the wake of these malicious campaigns. These developments also highlight the
immediate need for security professionals to fully understand the inner workings of this
group and the associated malware family, to better protect their organizations and
stakeholders. This blog dives deep into REvil's latest tactics, techniques, and procedures
(TTPs), drawing insights from a recent incident handled by the BlackBerry Incident
Response Team.

Gootkit

REvil is notorious for using “watering hole” attacks to gain initial access into networks. This
is accomplished by compromising a website that the group expects will be visited by a
target group. In this case, the REvil group posted a ZIP archive containing a Gootkit loader
on a compromised website disguised as an informational page containing a description of a

https://blogs.blackberry.com/en/2021/11/revil-under-the-microscope
https://www.theverge.com/2021/11/8/22770701/revil-ransomware-arrest-kaseya-crypto-europol-cybersecurity
https://threatpost.com/revil-affiliates-arrested-doj-europol/176087/
https://www.blackberry.com/us/en/services/incident-response
https://blogs.blackberry.com/en/2020/04/threat-spotlight-gootkit-banking-trojan

2/15

search term popular among its intended victims. Upon accessing the compromised site,
users were redirected to hxxps://fibarokrakow[.]com/about[.]php, initiating the download of
the Gootkit loader ZIP file. Once opened, the ZIP file initiated a JavaScript payload via
wscript.exe.

Following execution of the Gootkit loader, the final deobfuscated code snippet performs the
following actions:

1. Loops through an array of three domains
2. For each domain, generates a random string to be used as part of a download URL
3. Performs an HTTP GET request to each domain, using a format string including a

“search.php” endpoint, a static value (redacted here), and the randomly generated
number

4. Checks the GET request response for a 200 (“OK”) value
5. If the GET request was successful, the downloaded content is then executed as

additional code

A full analysis of the Gootkit loader and additional actions taken following its execution are
included below.

Initially the JavaScript file contained obfuscated code within a variable labeled “knew”:

Figure 1: Gootkit loader obfuscated Javascript

JavaScript formatting tools such as JSTool and js-beautify make the code more legible, as
exemplified by lines 47-72 of the “beautified” code:

3/15

Figure 2: Gootkit loader beautified code

The code kicks off with a call to summer (9754), which passes an unused integer to the
summer () function. This function simply calls round (9102):

Figure 3: Gootkit loader summer function

After sleeping just shy of 65 seconds, the round () function implements a while loop that is
used to call other functions within the code. For example, when first run, the variable race is
set to 5647, which is then used in a try/catch block implemented within the loop. This loop
not only takes time to run, but is used to feed new values into the electric array in order to
execute the next function:

4/15

Figure 4: Gootkit loader round function

In the first invocation of round, the electric [] array is checked to see if the current value of
the array position (the value in race) equals a valid function to run. If not, the catch
statement kicks in and sets a much larger integer position in the electric array to equal
another function: indicate. This means that the loop will execute 2842404 - 5647 =
2,836,757 times before eventually calling the indicate () function, which looks like this:

Figure 5: Gootkit loader indicate function

5/15

Notice the setting of electric [4438089] = third, which sets the next function to run after
returning to the calling while loop. In this fashion, we find multiple assignments of functions
to various array positions within the electric [] array. After another attempted sleep
(commented out above), the indicate function sets the knew variable, which is later
decoded.

To avoid the consistent iterations of the while loop and speed up analysis, the round ()
function can be modified to make its calls directly, rather than waiting for the loop to
continue incrementing the race value as such:

Figure 6: Gootkit loader modified round function

Decoding of the knew variable occurs within the third function called from this location,
which is million ():

Figure 7: Gootkit loader decoding the knew variable

The play () function is called with two arguments: The return value of a call to multiply
(knew), along with a static string labeled above, as seen in Figure 7. Once this returns, the
stead value is an array that includes the string “constructor” at index 0 and the following
code (already beautified for review purposes) at index 1:

6/15

Figure 8: Gootkit loader stead array

Above we can see an important host-based Indicator of Compromise (IoC) for the loader, a
registry key:

HKCU\\Oifmb

If this key does not exist, it is created. Next, we see another set of obfuscated code that is
decoded via a call to multiply (). By setting a breakpoint on the return for the multiply ()
function, we see the final bit of deobfuscated code:

7/15

Figure 9: Gootkit loader deobfuscated code

While the general layout of the loader was analyzed, BlackBerry was unable to obtain a
copy of the exact JavaScript that would have been downloaded in this particular example of
the final phase. Threat intelligence was used to find similar code, but the exact code was
unavailable.

BloodHound and Kerberoasting

Following the Gootkit installation, REvil didn’t immediately make use of the persistent
access to this system. Instead, the group waited three days before connecting and
beginning the initial enumeration. The first hands-on-keyboard activity related to the threat
actor was a BloodHound output file within the infected user’s profile directory, named
<date_time>_BloodHound [.] zip, where <date_time> was the time the data was
captured.

BlackBerry researchers retrieved a copy of the BloodHound output file and began
enumerating attack paths that the threat actor may have abused. A path to Domain Admin
was found via three “Kerberoastable” accounts. The attack paths looked similar to the
following:

https://github.com/nidem/kerberoast

8/15

Figure 10: BloodHound Kerberoasting attack path

The REvil group used their apparent knowledge of this attack path to Kerberoast three of
the accounts to retrieve their plain text credentials. Windows Event logs were unavailable
during the timeframe of the incident to allow for identification of the Kerberoasting activity,
although the REvil group left a text file on disk containing the Kerberos Ticket Granting
Service (TGS) tickets for the three accounts assigned Service Principal Names (SPNs). The
contents of the file looked similar to the following:

Figure 11: Kerberos TGS ticket

BlackBerry determined that the TGS tickets could easily be cracked using the password
cracking software tool John the Ripper to retrieve the plain text password. These accounts
were later used by the threat actor to move laterally and install additional persistence

https://en.wikipedia.org/wiki/John_the_Ripper

9/15

mechanisms.

Figure 12: TGS ticket cracking

Lateral Movement and Enumeration

After gaining access to multiple highly privileged accounts, the threat actor began pivoting
to other hosts on the network via Remote Desktop Protocol (RDP). From there, the PsExec
tool was also used to pivot to other hosts to shut down Windows Defender services.

BlackBerry also discovered the Mimikatz utility used to “pass the hash” for additional
compromised accounts. This method was used to gain an RDP session on remote hosts
using the NTLM hash of the compromised user account(s). While Windows does not
traditionally use NTLM hashes for RDP authentication, the “restrictedadmin” argument
forces RDP to pre-authenticate with an NTLM hash, presenting a pass-the-hash
vulnerability.

10/15

Prior to executing the RDP pass the hash technique, the threat actor staged the remote
system by enabling the restrictedadmin feature via a registry edit through PsExec.

Lastly, the Advanced IP Scanner utility was executed on multiple systems to map out
network systems that the actor had access to. The Advanced IP Scanner utility is frequently
abused by ransomware groups and can provide a good indicator of compromise if the tool
is not used legitimately within an environment.

Command-and-Control

The threat actor utilized two methods of installing Cobalt Strike command-and-control (C2)
within memory. The first and simplest method was utilizing a simple encoded PowerShell
command to execute a Cobalt Strike stager. Below is a snippet from the discovered Cobalt
Strike stager:

Figure 13: Encoded Cobalt Strike stager

A memory image was taken for further identification of injected processes. Using the
volatility “malfind” function, BlackBerry determined that two separate “rundll32.exe”
processes contained injected Windows PE files, as seen in the images below.

Figure 14: RunDLL32 process injection - PID 2884

https://blogs.blackberry.com/en/2021/10/blackberry-shines-spotlight-on-evolving-cobalt-strike-threat-in-new-book

11/15

Figure 15: RunDLL32 process injection - PID 4736

BlackBerry extracted the two executable files and determined that they were Cobalt Strike
Beacons, configured to reach out to the following two IPs:

139.180.172[.]42
155.138.216[.]60

Command-and-Control – Registry Cradle

The BlackBerry Incident Response Team also discovered a PowerShell command used to
stage Cobalt Strike within the registry key:
HKLM:\SOFTWARE\Microsoft\PowerShell\info. The threat actor ran the PowerShell via a
remote service which executed the following:

BlackBerry was able to retrieve a portion of the PS1 script that was executed via WMI using
PowerShell script block log 4104, as shown in the following screenshot:

12/15

Figure 16: Encoded PowerShell script

The contents of the registry key were extracted for further analysis. Unfortunately, the
PowerShell code executed on the system contained undefined variables, such as pdqnas.
As such, it did not appear to be decodable as-is.

However, other .vbs and .js implementations by the REvil group were available that use the
same technique and means of execution. Decoding the registry key was possible using
another equivalent JavaScript loader:

https://any.run/report/a0081f88e43338810fe23bd2e1fba8857b45f4378df38fc0c21742
6468b924fc/408db7df-2c3d-466e-b745-f704a1b2daa3

The JavaScript loader was used to decode the registry key and retrieve the Cobalt Strike
Beacon details. Upon execution, the Beacon was configured to spawn the legitimate
Microsoft gpupdate.exe binary with injected code, which was configured to reach out to the
following IP over port 443:

216.128.128[.]98

Data Exfiltration

The REvil group is known to exfiltrate data prior to deploying ransomware. In identifying any
potential exfiltration activity, the BlackBerry Incident Response Team searched across a
number of forensic artifacts to identify common exfiltration tools, or enumeration of sensitive
folders or file shares. The threat actor used the PowerSploit PowerShell module to discover
file servers on the network that may contain sensitive data for exfiltration:

After discovering potential file servers, typically a threat actor will begin enumerating
available shares. One of the most helpful artifacts in identifying enumeration of sensitive file
shares or folders is the Windows Shellbag artifact, located within the USRCLASS.dat
registry hive. In this case, the actor navigated through many folders on the primary file
server, likely in attempts to identify the “crown jewels.”

In addition to this enumeration activity, the FreeFileSync utility was executed from the
same system immediately following the Shellbag enumeration event. Unfortunately, the
threat actor had deleted the folder containing any logs related to FreeFileSync, and
Windows Event logs on the system were unavailable from the timeframe of the file’s initial
execution. However, through file carving and memory analysis, BlackBerry was able to
extract many (but not all) Windows Event logs from the incident timeframe. Windows Event

https://any.run/report/a0081f88e43338810fe23bd2e1fba8857b45f4378df38fc0c217426468b924fc/408db7df-2c3d-466e-b745-f704a1b2daa3
https://blogs.blackberry.com/en/2018/09/unpacking-a-packer-powershell-obfuscation-using-securestring

13/15

ID 5156, used to track connections allowed by the Windows Filtering Platform, showed
connections from FreeFileSync to Google-owned IP addresses, such as that shown in the
image below.

Figure 17: FreeFileSync remote connections

Analysis of firewall activity from the system to the Google-owned IPs also revealed several
gigabytes worth of network traffic sent from FreeFileSync. BlackBerry determined that the
REvil group likely used FreeFileSync to exfiltrate data to Google Drive™.

Ransomware Installation

Prior to deploying ransomware across the environment, the threat actor once again
attempted to disable the Windows Defender feature via Powershell and Scheduled Tasks.
Rather than deploying ransomware across the entire environment, the group was more
selective, instead targeting the Hyper-V hosts, and more specifically the Cluster Shared
Volumes (CSVs) containing the virtual machines (VMs). VMs and Hyper-V services were
stopped via PowerShell just prior to deploying ransomware to the CSVs.

The file xyz[.]dll was then downloaded to the affected systems and deployed against the
Cluster Shared Volumes.

14/15

REvil/Sodinokibi ransomware includes a configuration that is used to determine parameters,
such as which file extensions to target for encryption, which processes to kill prior to
beginning the encryption routine, and which directories or extensions to exclude to avoid
causing damage to the target operating system. The Sodinokibi ransomware is well-
documented in the following article by the BlackBerry Threat Research team:

https://blogs.blackberry.com/en/2019/07/threat-spotlight-sodinokibi-ransomware

Hunting

Applying defense in depth is important to both detecting and preventing this sort of
intrusion. BlackBerry identified several opportunities at which the threat group may have
been detected and eradicated early on in the attack chain. While intrusion prevention is
critical, a robust intrusion detection posture is as — if not more — vital to preventing this
sort of widespread ransomware event. With 24x7x365 monitoring of antivirus/EDR tools, as
well as endpoint event logs and network appliances, this event very likely could have been
detected and prevented before becoming a large-scale compromise.

In this incident, BlackBerry identified multiple TTPs that can be monitored for abuse
detection, including:

Monitoring of encoded PowerShell commands or potential web requests
Monitoring for creation of BloodHound output files

 Baseline data transfer tools and remote administration tools, such as FreeFileSync or
PsExec, and monitor for outlying software

 Monitoring for usage of common password dumping techniques, such as mimikatz,
procdump, or comsvcs.dll

 Monitoring for usage of enumeration tools, such as Advanced IP Scanner or
PowerSploit commands

About Codi Starks

Senior Professional Services Incident Response Consultant at BlackBerry.

https://blogs.blackberry.com/en/2019/07/threat-spotlight-sodinokibi-ransomware

15/15

Codi Starks has more than twelve years of IT, cybersecurity, and incident response
experience. During his time in the field he has supported and led difficult incident response
engagements for Fortune 500 companies spanning multiple continents.

He currently holds several certifications and achievements, including an M.S. in Information
Security and Assurance, as well as the OSCP and SANS GCFE certifications. He has won
multiple cybersecurity competitions, including OpenSOC, SANS DFIR Netwars, and SOCX.

About Ryan Chapman

Ryan Chapman is Principal Incident Response & Forensics Consultant, BlackBerry.

As an author, instructor, and information security professional with over 18 years’
experience, Ryan runs and works incidents for clients to provide response, assessment,
and training in the digital forensics and incident response (DFIR) realm at BlackBerry.
His primary case types involve digital forensics investigations (e.g. ransomware cases),
compromise assessments, business email compromises, tabletop exercises, and more.
Ryan loves the fact that the security industry is an ever-evolving creature.

Back

https://www.linkedin.com/in/codi-starks-b3a0ab61/
https://www.linkedin.com/in/ryanjchapman/

